
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficient Arc Spline Approximation of
Large Sized Complex Lane-Level Road Maps

Jinhwan Jeon and Seibum B. Choi, Member, IEEE

Abstract—The rapid advancement of autonomous driving and
ADAS technologies has increased the demand for high-definition
(HD) lane-level maps that accurately preserve rich geometric
information while scaling to city-wide coverage. While traditional
polyline-based formats are widely used, they struggle to provide
continuous representations of key geometric properties such as
curvature and heading angle, which are essential for autonomous
driving applications. Curve-based representations have been
introduced to address these limitations, but existing methods
are often restricted to simplified or sparsely connected road
networks, limiting their effectiveness in large-scale, real-world
environments.

This study presents an arc-spline-based lane representation
framework that efficiently models complex, large-sized lane-level
maps while preserving continuous road geometry. To achieve this,
we introduce a novel road network decomposition and merg-
ing method that enables structured parameterization without
requiring full map-scale optimization. Instead, optimization is
localized to cluster connection regions, significantly enhancing
computational efficiency. Validation using lanelet maps from
the nuScenes dataset demonstrates that our approach maintains
an average approximation error of 4.3 cm while preserving
detailed lane topology and global tangential continuity, while
also achieving a significant reduction in storage requirements
compared to conventional polyline formats.

Index Terms—Lane-level maps, Road network, Arc spline
approximation, Graph partitioning, Divide and conquer

I. INTRODUCTION

W ITH the continuous advancement of vehicle navigation
technology, HD maps have evolved to store not only

large-scale road network data but also essential geometric
properties for autonomous driving. These maps are critical
for improving localization, navigation, and decision-making
in modern autonomous systems.

As autonomous vehicles operate in increasingly large and
complex environments, the ability of HD maps to repre-
sent intricate lane structures accurately and efficiently be-
comes essential. Leading commercial providers such as Tom-
Tom [1] and HERE [2], along with mapping standards like
OpenStreetMap (OSM) [3] and Lanelet2 [4], commonly use
polyline-based representations, where road geometry is de-
fined by sequences of discrete points. While flexible and
compatible with existing frameworks, such representations
lack continuous geometric properties like curvature, heading
angle, and tangent continuity, which are critical for trajectory
planning and control [5]. Moreover, polyline maps do not in-
herently support arc-length parameterization, making uniform
path sampling and motion smoothing difficult.

Jinhwan Jeon and Seibum B. Choi are with the Department of Mechanical
Engineering, Korea Advanced Institude of Science and Technology, Daejeon
34141, e-mail: (jordan98@kaist.ac.kr, sbchoi@kaist.ac.kr).

Figure 1. Exemplary arc spline approximation result (gray dash line) on
the One North region of the nuScenes HD map. The proposed framework
accurately and efficiently parameterizes large-scale HD maps, including
complex urban intersections and curvy roads.

To overcome these limitations, curve-based represen-
tations have been proposed, offering improved geometric
continuity and compactness. Various parametric curve ap-
proaches have been studied, including piecewise polynomials
[6], [7], Bézier curves [8], Hermite splines [9], B-splines [10],
Clothoids [11]–[14], and Arc splines [15]–[17].

Curve-based map formats have also been adopted in indus-
try. For example, ASAM OpenDRIVE [18] supports various
curve types such as arcs, spirals, and polynomials, moving
beyond simple line segment representations. However, it re-
quires users to manually provide curve parameters and lacks
an automated process for converting point-based polyline data
into curve representations, leaving point-to-curve parameter-
ization as an open challenge. A comparison of related studies
and HD map formats is presented in Table I.

Table I categorizes prior work based on map size and road
network complexity. We define small maps as < 2 km²
(e.g., single intersections), medium as 2–30 km² (urban district
scale), and large as > 30 km² (city-scale). Similarly, we define
network complexity as low (minimal intersections), medium
(basic intersections), and high (dense, lane-level interconnec-
tions), as illustrated in Fig. 1.

While some studies such as [16] addressed large-scale
mapping, they focused on simple highway-like networks or
lacked G1 (tangential) continuity. Others [7], [9], [11], [13]
targeted complex networks but operated on small-sized regions
without detailed lane-level representations.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Table I
SUMMARY AND COMPARISON OF VARIOUS LANE MARKING

PARAMETERIZATION METHODS

Works Curve Type Map Size Complexity
[1]–[4] P Small - Large Low - High

[18] A, C, CP Small - Large Low - High
[6] CP Medium Low
[7] CP1 Medium Medium
[8] BE Small Low
[9] CHS Medium Medium

[10] BS Small - Medium Low
[11] C Small - Medium Medium
[12] C Small - Medium Low
[13] C Medium Medium
[14] C Small - Medium Low

[15], [16] A Small - Large Low
[17] A Small - Medium Low

A stands for Arc Spline, BE stands for Bézier Curve, BS stands for B
Spline,C stands for Clothoid, CHS stands for Cubic Hermite Spline, CP
stands for Cubic Polynomial and P stands for Polylines.

Maintaining G1 continuity is especially important, as dis-
continuities in curve segments can degrade downstream tasks
like motion planning and localization. Even polyline-based
formats often apply post-processing to achieve tangential
continuity [5].

Building upon the limitations of prior studies, this work
proposes a lane marking parameterization framework that
ensures global G1 continuity while effectively handling large-
size, complex lane-level maps. This goal presents two key
challenges: achieving G1-continuous parameterization for in-
terconnected lane networks and ensuring computational ef-
ficiency for large-sized maps.

To address the first challenge, we extend our previous
work [17], which focused on arc-spline approximation for sim-
pler road networks, by introducing modifications that support
more complex lane structures with multiple connections and
intersections. For the second challenge—largely overlooked in
previous research—we design an efficient approach to param-
eterize maps containing thousands of lane segments. Instead
of solving a large-scale constrained optimization problem in a
single step, which is computationally expensive and difficult
to maintain, we propose a scalable solution that avoids re-
optimizing the entire map upon updates or extensions.

A more efficient strategy is to divide the large-scale opti-
mization problem into smaller, manageable subproblems and
then merge the results. This approach, commonly known as
a divide-and-conquer algorithm, models the lane-level road
map as a lane marking connectivity graph G = (V,E), where
each vertex V corresponds to a linestring (i.e., a sequence of
lane marking points), and edges E represent valid connections
between linestrings. The overall procedure is described in
Algorithm 1.

After parameterizing each linestring cluster independently,
G1 continuity must still be enforced between adjacent clusters
(Line 6 of Algorithm 1). However, achieving global continuity
is nontrivial, as the complexity of this final merging step
depends heavily on how the original graph G is partitioned.
A well-designed partitioning strategy can reduce the problem

1Cubic Catmull-Rom Spline was utilized for intersection modeling

Algorithm 1 Divide-and-Conquer Approach for Map Param-
eterization

1: Extract the lane marking connectivity graph G = (V,E)
2: Partition G into smaller linestring clusters {G′

i}
3: for each cluster G′

i do
4: Independently parameterize G′

i

5: end for
6: Merge the parameterized results to construct the final

representation

to a set of simple, localized optimizations, while a poor one
may lead to expensive full-map optimization.

Graph partitioning is a widely used technique for dividing
a graph into smaller subgraphs while minimizing edge cuts
and balancing node distribution. This approach is particularly
effective in large-scale computational tasks, where decompo-
sition significantly improves efficiency. Various partitioning
methods have been developed, each with characteristics suited
to specific applications.

In the domain of road networks, graph partitioning has been
applied to enhance routing and traffic simulation performance.
For example, multilevel partitioning has proven effective for
managing large-scale networks. METIS [19] achieved low
edge cuts and improved shortest-path computations, while
recursive bisection [20] enabled hierarchical decomposition
for efficient route planning. Community detection approaches
have also been explored: Zhou et al. [21] divided heteroge-
neous networks into homogeneous regions to optimize traffic
flow, and Anwar et al. [22] applied spectral clustering with
recursive bipartitioning for similar purposes. Yu et al. [23]
further improved partitioning compactness using travel speed
data. In addition, MFMC-based methods [24] have been used
to detect network vulnerabilities, and graph components [25],
though not traditional partitioning methods, have been em-
ployed to identify isolated regions and simplify processing.

While these studies focus on improving traffic-related tasks,
our goal differs fundamentally. We aim to identify an optimal
partitioning strategy that supports efficient merging of inde-
pendently parameterized linestring clusters. Ideally, adjacent
clusters could be merged by optimizing only a small subset of
directly connected linestrings, avoiding re-parameterization of
the entire cluster. This would yield substantial computational
savings. However, conventional partitioning methods are not
designed to preserve global G1 continuity—an essential re-
quirement in curve-based lane modeling.

For example, although graph components can isolate discon-
nected subgraphs, they are ineffective in densely connected
maps like those in the nuScenes dataset, where the entire
network often forms a single large component. Similarly,
the Louvain method [26], a popular community detection-
based partitioning approach, can divide a road network G
into densely connected clusters. While more scalable than
component-based partitioning, it still requires re-optimizing
all linestrings within merging clusters to enforce G1 conti-
nuity—resulting in a costly full-map optimization at the final
step.

To overcome these limitations, we propose a novel road net-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Large Scale, Complex

Lane Level Map

Road Network 

Graph Extraction

Road Network 

Decomposition 
Linestring Clustering

Linestring Cluster 1 Linestring Cluster 1*

Save Parameters

Arc Spline 

Approximation

Block 1

Single Arc Approximation

Single Linestring (Multiple Arc) Approximation

Multiple Linestring Approximation

Arc Spline Approximation (Chap. III)

Linestring Cluster 𝒏

.

.

.

.

.

.

Linestring Cluster 𝒏*

Linestring Cluster 2

Linestring Cluster 𝒏 − 𝟏

Linestring Cluster 2*

Linestring Cluster 𝒏 − 𝟏*

Adjacent Clusters

Linestring Cluster 1*

Linestring Cluster 𝒏* 

.

.

.

Linestring Cluster 2*

Linestring Cluster 𝒏 − 𝟏* 

Arc Spline 

Approximation

Block 2

Arc Spline Approximated 

With Modification

Road Network Decomposition (Chap. IV)

Merging Linestring Clusters (Chap. V)

Figure 2. Block diagram illustrating the full pipeline of the proposed arc spline approximation for large-scale, complex lane-level maps. The process
begins by decomposing the provided road network into linestring clusters, followed by arc spline approximation for each cluster(Block 1). Adjacent linestring
clusters are then grouped and merged, ensuring G1 continuity at connection points through an efficient re-approximation process(Block 2), eliminating the
need for full map-scale optimization. Finally, the parameterized map is converted and saved in the conventional point-based format, with a reverse procedure
for recovering arc parameters.

work decomposition method tailored to facilitate the merging
process in Algorithm 1. Unlike traditional graph partitioning
approaches that prioritize minimizing edge cuts, our method
partitions the network in a way that supports localized merg-
ing. As a result, only a small set of adjacent linestrings must be
optimized during merging, significantly reducing computation
and enabling scalable parameterization for large maps, as well
as easier future updates.

Our framework is primarily based on the Lanelet2 [4] for-
mat. However, since the core algorithm operates independently
of map format, only the graph extraction module requires
adaptation for use with alternative formats.

The contributions of our research can be summarized as
follows.

1. An arc-spline approximation framework that transforms
raw and noisy polyline lane data into multiple arc
segments, even for complex and highly interconnected
road networks.

2. A novel road network decomposition and merging strat-
egy that ensures global G1 continuity between adjacent
arc segments, enabling scalable processing of large-size
HD maps.

The structure of this paper is as follows: Section II provides
an overview of the proposed parameterization pipeline for
large-scale, complex lane-level maps. Section III discusses the
advantages of arc-spline representations and extends our pre-
vious work [17] to support multi-linestring approximation in

complex road networks. Section IV introduces a novel cluster-
ing algorithm for road network decomposition, and Section V
presents an efficient merging strategy for adjacent clusters.
This merging process incorporates additional constraints into
the arc-spline framework from Section III, enabling localized
optimization limited to directly connected linestrings, thereby
improving computational efficiency. Section V also explains
how parameterized maps are stored and how arc parameters
can be recovered from saved data. Section VI provides exper-
imental validation of the overall framework using real-world
datasets. Finally, Section VII concludes the paper and suggests
directions for future work.

II. OVERVIEW

The overall process of arc-spline approximation for large-
sized, complex lane-level maps is illustrated in Fig. 2. The
procedure begins with the decomposition of the road network
into multiple linestring clusters (orange box) using the pro-
posed method described in Section IV. Each cluster is then
independently approximated using the arc-spline framework
(Section III, blue box).

To ensure smooth transitions between adjacent clusters,
physically connected clusters—those sharing common end-
points—are grouped into pairs (green boxes) for merging.
Since the initial approximation is performed independently for
each cluster, discontinuities may appear at the boundaries. To
resolve this, we perform localized re-approximation (block 2)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

only on the directly connected linestrings between adjacent
clusters, as detailed in Section V. This avoids re-optimizing
entire clusters and significantly improves computational effi-
ciency. By eliminating discontinuities through this localized
merging process, the framework ensures global G1 continuity
without requiring full map-scale optimization.

Finally, the arc-parameterized map is converted into a con-
ventional point-based polyline format for storage. A reverse
conversion procedure is also provided to recover arc param-
eters from the saved format, allowing seamless transitions
between representations.

III. ARC SPLINE APPROXIMATION

In this section, we first explain the rationale behind selecting
arc splines for lane parameterization. We then describe how
our previous arc-spline approximation framework [17] has
been extended in a structured, hierarchical manner—from
fitting a single arc segment to approximating complex, in-
terconnected linestrings using arc splines. Next, we discuss
the limitations of this approach when applied to large-scale
lane-level maps, highlighting the necessity of road network
decomposition.

As illustrated in Fig. 2, the enhanced arc-spline approxi-
mation framework will be applied to the linestring clusters
generated by the road network decomposition introduced in
Section IV. Additionally, a constraint function will be intro-
duced to ensure smooth transitions between adjacent linestring
clusters, as discussed in Section V. Further details will be
provided in the following sections.

A. Advantages and Practical Applications of Arc Splines

Among various curves considered for lane marking parame-
terization, arc splines offer several advantages that make them
particularly well-suited for ADAS and autonomous driving ap-
plications [15]–[17]. A key property of arc segments (circular
arcs) is their invariance under translation and rotation, allowing
them to maintain geometric consistency across both global
and local (ego vehicle) coordinate systems. In contrast, curves
such as cubic splines may lose their original form when trans-
formed, making map-based localization more challenging.

Another practical advantage is that the distance between a
point and an arc segment can be computed in closed form [15],
enabling efficient real-time localization using arc-spline-based
maps. In addition, arc splines require only three control points
for representation [17], resulting in a compact structure that
integrates well with existing polyline HD map formats without
major structural changes.

For these reasons, we adopt and further enhance the arc
spline-based approach for lane marking parameterization in
this study.

B. Single Arc Approximation

Among the various methods for parameterizing arcs, it is
well-known that an arc can be defined using three control
points by employing the rational Bézier curve format [27].
As shown in Fig. 3, two points (A1 and A2) are positioned

Figure 3. Single arc parameter configuration: Two arc nodes A1, A2 and a
signed-distance parameter k

at the start and end of the arc, respectively, with a third point
(C) located along the bisector of the line segment A1A2. To
determine C, we introduce a vector v orthogonal to the line
segment A1A2, which can be computed using one additional
variable k, as shown below.

v =
1

∥A1 −A2∥2
·
[
0 −1
1 0

]
· (A2 −A1)

C =
1

2
(A1 +A2) + kv

(1)

Each arc segment in this work is thus defined by two 2D
points (A1, A2) and a signed-distance parameter k. While
our previous work relied on three control points (A1, A2,
and the midpoint of the arc) for parameterizing a single arc
segment, we have reduced the dimensionality by eliminating
one control point in this work.

As outlined in [17], when approximating data points with
an arc segment, we optimize the variables A1, A2, and
k by solving a Non-linear Least Squares (NLS) problem,
which integrates two models: the Anchor model and the
Measurement model.

The Anchor model, as its name suggests, anchors A1

and A2 to the starting and ending points, respectively, by
penalizing the distance to these target points. If we define
P1 and Pn as the starting and ending data points, the cost
function for the Anchor model can be expressed as:

LAC = ∥P1 −A1∥2ΣAC
+ ∥Pn −A2∥2ΣAC

(2)

Here, the notation ∥·∥2Σ = (·)⊤Σ−1(·) represents the
squared Mahalanobis distance, which can be interpreted as
the square of a weighted Euclidean distance. The weight
is incorporated by multiplying the inverse of the covariance
matrix ΣAC with the squared 2-norm of the original residual
vectors P1 −A1 and Pn −A2.

On the other hand, the Measurement model minimizes the
discrepancy between data points and the arc approximation
by adjusting k, thereby refining the position of the control
point C. The detailed derivation of the cost function for
the Measurement model can be found in [17], so it is not
repeated here. A key difference from our previous work is the
introduction of a newly designed signed-distance parameter
k, which is now applied to modify the original measurement
model, as shown below.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Figure 4. Parameter configuration for two arc segments: A1, A2, A3, k1,
k2. While G0 continuity is automatically achieved, an additional constraint
model is required to ensure G1 continuity.

LME =

n∑
i=1

∥riME (A1,A2, k,Pi)∥
2

Σi
ME

(3)

In this equation, riME represents the arc approximation error
for each data point Pi, with covariance Σi

ME.
By combining the Anchor and Measurement models, the

NLS problem for single arc approximation can be formulated
as follows:

min
A1,A2,k

L = LAC + LME

= ∥P1 −A1∥2ΣAC
+ ∥Pn −A2∥2ΣAC

+

n∑
i=1

∥riME (A1,A2, k,Pi)∥
2

Σi
ME

(4)

Optimizing variables A1, A2, and k using MATLAB’s
‘lsqnonlin.m‘ function from the Optimization Toolbox [28],
the best-fitting arc segment for the given data points can be
obtained.

C. Single Linestring (Multiple Arc) Approximation

Typically, a single arc segment is insufficient to accu-
rately approximate a sequence of data points (referred to as
linestrings in Lanelet2 [4]). To improve accuracy, we represent
the data using multiple arc segments.

Adjacent arc segments are constructed to share a common
node, which inherently ensures point-wise (G0) continuity. For
example, as illustrated in Fig. 4, when two arc segments are
connected, three arc nodes (A1, A2, A3) and two signed-
distance parameters (k1, k2) are used as optimization variables.

To further ensure tangential (G1) continuity between adja-
cent arc segments, we introduce a continuity constraint into the
optimization formulation. In the example shown in Fig. 4, the
G1 condition is satisfied when the vectors

−−−→
C1A2 and

−−−→
A2C2

are parallel [29]. Extending this to a general case with m arc
segments, the G1 continuity constraint between the ith and
(i+1)th segments can be expressed as follows.

rEq(i) =
(Ai+1 −Ci)

⊤
(Ci+1 −Ai+1)

∥Ai+1 −Ci∥∥Ci+1 −Ai+1∥
− 1 , for i = 1 : m

(5)
Note that control points Ci and Ci+1 are computed using the
optimization variables: Ai, Ai+1, Ai+2, ki and ki+1.

By repeatedly applying the single arc approximation cost
function (Equation 4) across multiple arc segments and inte-
grating the newly introduced equality constraints from Equa-
tion 5, we can establish an optimization problem for the
arc spline approximation of a single linestring consisting of
multiple arc segments, as detailed below.

min
A1,···Am+1,k1,···km

L = LAC + LME

= ∥P1 −A1∥2ΣAC1
+ ∥Pn −Am+1∥2ΣAC1

+

m∑
i=2

∥PIdx(i) −Ai∥2ΣAC2

+

m∑
i=1

Idx(i+1)∑
j=Idx(i)

∥rME (Ai,Ai+1, ki,Pj)∥2Σj
ME

s.t. rEq = 0
(6)

In Equation 6, both the Anchor and Measurement models
are computed for all arc segments, while ensuring the vector
function rEq remains zero. The notation Idx(i) represents
the index of the data point to which the first point of the
ith arc segment is anchored. This is reflected in the Anchor
model cost function: ∥P1 −A1∥2ΣAC1

+∥Pn −Am+1∥2ΣAC1
+∑m

i=2 ∥PIdx(i) −Ai∥2ΣAC2

.
For the Measurement model, data points between

indices Idx(i) and Idx(i + 1) are approximated by
the ith arc segment, assuming the points are well-
ordered. This results in the Measurement model cost:∑m

i=1

∑Idx(i+1)
j=Idx(i) ∥rME (Ai,Ai+1, ki,Pj)∥2Σj

ME
.

For a fixed number of arc segments, the cost in Equation
6 is minimized with respect to the optimization variables
A1, · · · ,Am+1, k1, · · · , km. If the approximation error re-
mains high, an additional arc segment is introduced, and the
optimization process is repeated until the error falls below a
predefined threshold.

Based on this multiple arc spline approximation framework,
a single linestring can be effectively approximated with mul-
tiple arc segments.

D. Multiple Linestring Approximation

A standard Lanelet map, as defined in [4], consists of mul-
tiple lanelets, each bounded by left and right linestrings and
associated with regulatory elements. Therefore, when applying
arc-spline approximation to lane-level maps, it is crucial to
consider continuity across connected linestrings, rather than
treating each in isolation, as discussed in Section III-C. The
full process for arc-spline approximation of interconnected
linestrings involves three key steps, illustrated in Fig. 5.

1) Individual Linestring Parameterization: Each linestring
is first approximated independently using the method de-
scribed in Section III-C. These initial results serve as the
basis for enforcing global G1 continuity across linestrings in
subsequent steps.

2) Ensuring G0 Continuity for Adjacent Linestrings:
While G1 continuity is enforced within each linestring during
initial approximation, adjacent linestrings may not even satisfy



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

G0 Continuity!
Step 1

Step 2

Step 3

Data Points Normal Arc Nodes End Arc Nodes

LineString ID 1001 LineString ID 1004 LineString ID 1007

Figure 5. Arc-spline approximation process for multiple connected linestrings.
Step 1: Independent approximation of each linestring (blue nodes: arc nodes).
Step 2: Enforcing G0 continuity by merging adjacent endpoints into shared
end arc nodes (green nodes). Step 3: Re-optimization to ensure G1 continuity
across connected linestrings.

G0 continuity due to misaligned endpoints. In this step, we
merge the endpoints of connected linestrings by replacing the
two separate arc nodes with a shared node, referred to as an
end arc node. All other arc nodes are referred to as normal
arc nodes.

3) Ensuring G1 Continuity for Adjacent Linestrings:
We then extend the optimization problem from Section III-C
to enforce G1 continuity not only within linestrings but also
across their connections. The optimization variables include
all arc node positions (both end and normal) and the signed-
distance parameters k for each arc. The cost function and
constraints are updated to reflect the G1 condition across
the entire connected network. Due to space limitations, the
detailed formulation is omitted.

We solve this optimization using MATLAB’s nonlinear
least squares (NLS) solver [28], consistent with the previous
sections. Fig. 6 shows an example of arc-spline approximation
across multiple linestrings spanning approximately 1.35 km.
The result demonstrates the framework’s robustness across
both low and high curvature regions.

E. Arc Spline Approximation for Large Maps

While the procedure described in Section III-D can be
directly applied to large-scale lane-level maps in an offline
setting, two key challenges arise in practice.

1) Time-Intensive Computation: As map size increases,
the performance of the nonlinear least squares (NLS)
solver degrades, resulting in significantly longer computation
times—even when executed offline.

2) Inefficiency in Updates and Extensions: When road
conditions change, updating the arc parameters for a single
linestring requires re-solving the optimization problem for the
entire network, even for unaffected or distant linestrings. This
approach becomes increasingly inefficient as the map grows,
complicating updates and extensions.

These limitations underscore the need for a more scalable
approach. To address them, we adopt a divide-and-conquer
algorithm, as introduced in the Introduction. By partitioning

-5950 -5900 -5850 -5800 -5750 -5700 -5650 -5600 -5550 -5500

Global X[m]

-2200

-2150

-2100

-2050

-2000

-1950

-1900

-1850

G
lo

ba
l Y

[m
]

Multiple Arc Approximation

Data Points
Arc Spline Approx.
Arc Node

Figure 6. Example of arc spline approximation for multiple linestrings
spanning approximately 1.35km. Black and yellow regions represent areas
of low and high curvature, respectively, qualitatively demonstrating that
our multiple linestring arc spline approximation framework (Section III-D)
maintains consistent performance across varying road curvatures.

the map into manageable linestring clusters, the proposed
method enables efficient parameterization while supporting
faster and more localized updates.

The following section presents our road network decom-
position framework, which partitions the map into smaller
segments for efficient arc-spline approximation and stream-
lined maintenance. The multi-linestring arc-spline framework
introduced in this chapter will be reused in both Sections IV
and V, as illustrated in Fig. 2, with further details provided in
the respective sections.

IV. ROAD NETWORK DECOMPOSITION

This section introduces a novel road network decomposition
algorithm designed to enable efficient arc-spline approxi-
mation for lane-level road networks. We also analyze the
properties of the resulting linestring clusters, which will be
used in Section V to demonstrate the scalability and efficiency
of the proposed method in large and complex maps.

The decomposition algorithm utilizes a linestring connec-
tivity graph G, constructed from the input road network, to
identify appropriate clusters of lane marking linestrings. As
described in Section II and illustrated in Fig. 2, the graph
G = (V,E) represents connectivity among linestrings, where
each vertex V corresponds to a linestring and an edge E is
added between two linestrings if one is reachable from the
other.

A. Road Network Decomposition Strategy

As discussed in the Introduction, it is essential to avoid
applying arc spline approximation to the entire map at once.
Instead, the map should be divided into smaller linestring
clusters, with the additional requirement that merging adjacent
clusters does not necessitate re-optimizing all arc segments.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Figure 7. Road network decomposition strategy for efficient merging. When
clusters C1 and C2 are connected through a simple linear region, only
the boundary linestrings l1 and l2 require re-approximation with positional
and heading constraints (orange endpoints). This avoids re-optimizing all arc
segments in both clusters. Therefore, the road network should be decomposed
such that cluster connections occur only at simple linear regions.

To support this, we observe that most road geome-
tries—aside from complex regions such as intersections or
roundabouts—consist of relatively simple linear segments. If
the decomposition algorithm ensures that adjacent clusters are
connected only through such linear segments, the merging
process becomes significantly more efficient.

For example, consider two adjacent clusters C1 and C2,
each independently approximated using arc splines. As il-
lustrated in Fig. 7, ensuring G1 continuity between them
only requires re-optimizing the boundary linestrings l1 and l2,
with position and heading constraints applied at their shared
endpoints (orange nodes). All other linestrings within C1

and C2 remain unaffected, significantly reducing the overall
computational cost.

To enable decomposition scenarios similar to Fig. 7, we
propose three primary clustering rules for forming lane
marking linestring clusters in road networks:

Rules for Clustering of Linestrings

1. If a node is shared by three or more linestrings, all of
those linestrings belong to the same cluster.

2. If a node is shared by two linestrings that are not directly
connected by a navigable vehicle path, those linestrings
are assigned to the same cluster.

3. Linestrings cannot be shared between different clusters:
If two clusters share a linestring, they must be merged
into a single cluster.

A key distinction of our road network decomposition
method lies in its objective. Unlike conventional graph par-
titioning approaches that cluster elements based on similarity,
our method focuses on determining which linestrings should
or should not belong to the same cluster. This decision is
guided by the principle that adjacent clusters should connect
only through simple linear regions, as illustrated in Fig. 7.

To achieve this, linestrings connected via simple linear
transitions are placed into separate clusters, ensuring that
cluster boundaries occur at clearly defined junctions (Fig. 7).
In contrast, linestrings with complex interconnections are
grouped within the same cluster.

A key classification rule addresses cases where two
linestrings share a node. If the connection is linear—such as
the link between l1 and l2 in Fig. 7—they are assigned to
different clusters. However, in rare cases where two linestrings
are not in the same path (i.e., represent diverging directions
or unconnected sections), they are placed in the same cluster.
This rule ensures that only straightforward linear transitions
trigger cluster separation, while more intricate structures re-
main grouped.

By traversing the road network and applying these clustering
rules at each linestring’s endpoints, we classify linestrings into
two categories. Those that follow the three rules form Type
A clusters. Remaining linestrings that cannot be clustered
using these rules, but are still connected, are grouped into
Type B clusters. An example of this decomposition process is
illustrated in Fig. 8.

B. Properties of Linestring Clusters

As discussed earlier, efficient parameterization of large-
scale, complex lane-level maps requires clustering lane mark-
ing linestrings such that global map-scale optimization is
avoided during the final merging step. Before analyzing how
the proposed linestring clusters (Types A and B) support this,
we first examine their structural characteristics.

Type A clusters are formed strictly based on the three rules
introduced earlier, and thus their properties are directly derived
from those rules.

In contrast, Type B clusters consist of linestrings that do
not satisfy the clustering conditions for Type A and therefore
remain unassigned. These remaining linestrings are grouped
together into Type B clusters. The following proposition
outlines the key properties that distinguish Type B clusters
from Type A.

Proposition 1 (Type B Property). All lane marking linestrings
within a Type B linestring cluster are connected in series, with
no nested structures.

Proof. Any nested structure necessarily includes at least one
node connected to three or more linestrings. According to Rule
1, such a configuration satisfies the condition for forming a
Type A cluster.

Therefore, if a cluster contains a nested structure, it must
include at least one Type A subcluster. This contradicts the
assumption that the entire structure can be classified as a
Type B cluster. Hence, Type B clusters cannot contain nested
structures and must consist solely of linestrings connected
sequentially in a non-branching manner.

Illustrative Example: As shown in Fig. 9, when the green
linestrings are ignored, the remaining linestrings in clusters
(a) and (b) form simple series connections that do not satisfy
Rules 1 and 2, thus qualifying as Type B clusters. However,
when the green linestrings are included, a nested structure is



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Type A Linestring Cluster
Type B Linestring Cluster

Rule 1 Rule 3 Type B Connection

Figure 8. Example of road network decomposition based on the proposed three clustering rules. Starting from a sample road network (top left), Rule 1 assigns
the red-highlighted linestrings to a Type A cluster due to their high connectivity (bottom left). Then, Rule 3 merges clusters sharing common linestrings (top
right). Finally, remaining interconnected linestrings not covered by the rules are grouped into a Type B cluster (bottom right). This process enables systematic
partitioning of lane-level road networks into multiple manageable clusters.

+

+

Type B Type A

Type B Type A

(a)

(b)

Figure 9. Illustrative example for Proposition 1. If a Type B linestring cluster
includes a nested structure (green), it can be decomposed into a smaller Type
B cluster and a Type A cluster, which contradicts the definition of a Type B
cluster.

created in which nodes are shared by three or more linestrings,
satisfying Rule 1 and resulting in the formation of a Type A
cluster. This illustrates that nested structures inherently lead
to the presence of Type A clusters, thereby supporting the
proposition.

C. Arc Spline Approximation of Individual Linestring Clusters

Referring back to the block diagram in Fig. 2, once the road
network graph G has been decomposed using the clustering
rules described in Section IV-A, arc-spline approximation is
performed independently for each lane marking linestring
cluster, regardless of whether it is Type A or Type B. At this
stage, inter-cluster connections are not yet considered; the fo-
cus remains on individual cluster parameterization. Therefore,
the multiple-linestring arc-spline approximation method from
Section III-D is applied without modification.

This process yields arc-spline-approximated Type A and
Type B clusters, highlighted by the blue dashed box in Fig. 2.
Clusters that are physically adjacent and share a common node
are then grouped by type, as shown in the green dashed box.
In the following section, we introduce an efficient merging
strategy that ensures G1 continuity across these adjacent
clusters without requiring full map-scale re-approximation.

V. MERGING ADJACENT LINESTRING CLUSTERS

In this section, we describe the process for efficiently merg-
ing adjacent arc spline approximated linestring clusters (Types
A and B) while ensuring G1 continuity without requiring
full map-scale optimization. We first present the merging
strategy based on the type configuration of the clusters. Next,
we detail the method for storing parameterized arc segments
using conventional polyline-based map formats and outline
the procedure for recovering arc parameters (Ai,Ai+1, ki)
from the saved data. Finally, we discuss how the proposed
framework can support efficient future updates and extensions
to the map.

A. Properties of Merging Adjacent Linestring Clusters

Building on the properties of Type A and Type B linestring
clusters discussed in Section IV, we now present an efficient
merging strategy that avoids re-optimizing all arc segments
within the merging clusters and eliminates the need for full
map-scale optimization.

The merging process is illustrated in Fig. 10. For Type A–A
merging, the procedure is straightforward and involves a single
scenario. In contrast, merging between Type A and Type B
clusters yields three distinct cases. As described in Section IV,
Type B clusters—except for rare closed-loop cases—typically
have two open ends.

• A–B–A (1): Each end of the Type B cluster connects to
a different Type A cluster.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

A1 A2

Merging adjacent linestrings

(a) Merging Types A-A (b) Merging Types A-B, A-B-A (1), (2)

A1

A2

B1

B2

Merging adjacent linestrings

Figure 10. Merging of individually arc-spline-approximated adjacent linestring clusters based on cluster type. (a) Merging between Type A–A clusters involves
a single scenario. Multiple connections in A–A merging are handled independently for each connected linestring pair (red circles). (b) Merging between Type
A–B clusters includes three possible configurations: A–B, A–B–A (1), and A–B–A (2). In the A–B case, either A1 or A2 is missing (open end). In A–B–A
(1), A1 and A2 belong to different clusters, while in A–B–A (2), they belong to the same cluster.

• A–B–A (2): Both ends of the Type B cluster connect to
the same Type A cluster.

• A–B: Only one end of the Type B cluster connects to a
Type A cluster, with the other end remaining open.

These configurations guide how local re-approximation is
applied during the merging step, as described in the following
subsections.

1) Merging Type A - Type A: When merging Type A–Type
A linestring clusters, the following propositions hold:

Proposition 2 (Type A–A Merging 1). Let A1 and A2 be
two distinct Type A linestring clusters. If a linestring l1 ∈ A1

is connected to a linestring l2 ∈ A2, then l1 and l2 must be
sequentially connected.

Proof. As shown in Fig. 11, assume that l1 and l2 are not
sequentially connected, i.e., they share a node (blue node) but
diverge in direction. According to Rule 2 in Section IV-A,
such a configuration implies that l1 and l2 should belong to
the same cluster, contradicting the assumption that they belong
to different clusters A1 and A2. Therefore, l1 and l2 must be
sequentially connected.

Proposition 3 (Type A–A Merging 2). Let A1 and A2 be
two distinct Type A linestring clusters. If a linestring l1 ∈ A1

is connected to a linestring l2 ∈ A2, their shared connection
node (blue node in Fig. 11) is not connected to any other
linestrings—either from different clusters or from within A1

or A2.

Proof. Suppose a third linestring l3 also connects to the blue
node. Two cases arise: (1) l3 ∈ A3, a different cluster, or (2)
l3 ∈ A1 ∪A2, i.e., within the same clusters as l1 or l2.

In either case, the node connects three linestrings,
which—according to Rule 1—must be grouped into the same
cluster. This contradicts the assumption that l1 ∈ A1 and
l2 ∈ A2 are from different clusters.

While Fig. 11 shows l3 connected to l1, the same reasoning
holds if it connects to l2. Hence, no such additional connection
can exist, and the proposition is proven.

According to Propositions 2 and 3, and as illustrated in
Fig. 11, the merging of arc spline approximated Type A
linestring clusters A1 and A2 can be performed by focusing

Figure 11. Illustrative example for Propositions 2 and 3. Two distinct Type
A linestring clusters, A1 and A2, are connected via linestrings l1 and l2.
(1) A contradiction arises if l1 and l2 are not sequentially connected. (2) A
second contradiction occurs if an additional linestring l3 connects to the blue
node, violating the clustering rules.

solely on the transition between linestrings l1 and l2. By
applying G0 and G1 continuity constraints at the orange
nodes, the arc spline approximation module introduced in
Section III-D can be applied exclusively to l1 and l2. Since
the shared node (blue node) has no additional connections, the
remaining linestrings in A1 and A2 remain unaffected and can
be excluded from the optimization. This localized merging
approach significantly improves computational efficiency by
eliminating the need for full-cluster re-optimization.

Furthermore, multiple connections between A1 and A2 may
exist. For instance, they may be connected at more than one re-
gion, as shown in Fig. 10. However, Proposition 3 guarantees
that each such connection point involves only two linestrings,
allowing each merging pair to be optimized independently.
Consequently, even in cases with multiple connection points,
merging can be performed in a modular and efficient manner
without introducing interdependency between the connections.

2) Merging Type A - Type B - Type A (1) and (2): Moving
on to merging cases Type A - Type B - Type A (1) and (2),



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Figure 12. Illustrative example for Proposition 4. Two distinct Type A
linestring clusters (A1 and A2) and a Type B cluster (B1) are connected
via linestrings la1, la2, and lb1, lb2. (1) A contradiction arises if lb1 and
lb2 are not the two endpoints of B1. (2) Another contradiction occurs if
an additional linestring l3 connects to either la1 or la2 at the blue nodes,
violating the clustering rules.

the following proposition holds.

Proposition 4 (Type A–B–A (1) and (2) Merging). Let A1

and A2 be Type A linestring clusters, and B1 be a Type B
cluster. If linestrings lb1, lb2 ∈ B1 are connected to la1 ∈ A1

and la2 ∈ A2, respectively, then lb1 and lb2 must be the two
endpoints of B1, and all linestrings in the sequence la1, B1, la2
are sequentially connected.

Proof. As shown in Fig. 12 and by Proposition 1, linestrings
within B1 are connected in a continuous, non-branching
series. If lb1 (or lb2) is not an endpoint and is connected to
A1 (or A2), this introduces a nested structure—contradicting
Proposition 1. Thus, both lb1 and lb2 must be the endpoints
of B1.

Furthermore, as with Proposition 3, if the shared blue
node between la1 and lb1 had another connecting linestring,
it would violate Rule 1. Additionally, if la1 and lb1 were
not sequentially connected, they would be assigned to the
same cluster under Rule 2, again contradicting the initial
assumption. The same logic applies to la2 and lb2. Therefore,
the full sequence la1, B1, la2 is sequentially connected.

This proposition applies to both Type A–B–A (1) and
A–B–A (2) configurations, as it does not require A1 ̸= A2.
Similar to the Type A–A merging case, the blue connection
points are not linked to any other linestrings, enabling efficient
merging by applying the arc spline approximation only to the
adjacent linestrings at the cluster boundaries.

If B1 contains multiple arc spline approximated linestrings,
merging only requires re-optimization of the two pairs:
(la1, lb1) and (la2, lb2). However, in the special case where
B1 contains only a single linestring (lb1 = lb2), the merging is
applied over the full sequence la1, B1, la2, with additional G0

and G1 constraints enforced at the orange nodes, as illustrated
in Fig. 12.

3) Merging Type A - Type B: The merging case of
Type A–Type B can be viewed as a simplified version of
the Type A–B–A (1) and (2) scenarios. For example, by
removing the linestring cluster A2 from Fig. 12, lb2 becomes
a free end of B1. In this case, the merging is performed by
reapplying arc spline approximation to la1 and all arc-spline-
approximated linestrings in B1, with additional G0 and G1

continuity constraints enforced at the orange node in A1.

B. Arc Spline Approximation for Adjacent Linestring Clusters

Using the methods and properties described in Section V-A,
we efficiently merge adjacent arc-spline-approximated
linestring clusters based on their merge types, leveraging
the arc spline approximation framework introduced in
Section III-D.

1) Computation of Additional Constraints: To merge dif-
ferent types of clusters, additional G0 and G1 continuity
constraints must be applied at the interface nodes, particularly
within the Type A clusters. For example, in Fig. 11, the
positions and tangents at the orange nodes of l1 and l2 must
remain fixed to preserve continuity with the rest of the clusters
A1 and A2. The process is as follows:

1. Extract the coordinates of the orange nodes from the arc
spline approximated linestrings.

2. Use the arc parameters to compute tangents at these
nodes.

3. Enforce the resulting positions and tangents as equality
constraints in the merging step.

This approach is applicable to all merge types: for Type
A–B–A (both (1) and (2)), constraints are applied only to the
Type A clusters; for Type A–B, the constraint is applied only
to the single Type A cluster.

2) Re-Parameterization of Adjacent Clusters with Con-
straints: Using the additional constraints, we reapply the arc
spline approximation framework (Section III-D) exclusively
to the directly connected linestrings at cluster boundaries, as
illustrated in Block 2 of Fig. 2. For example, in the Type A–A
case, only linestrings l1 and l2 are re-optimized. The objective
function follows the original formulation but is augmented
with the additional G0 and G1 continuity constraints derived
in Section V-B1. The same strategy is applied to all Type A–B
merging scenarios.

3) Avoiding Full Map-Scale Optimization: This local re-
parameterization strategy guarantees global G1 continuity
without requiring re-optimization of the full map. Once merg-
ing is performed for all adjacent cluster pairs, the entire map
satisfies the continuity condition. Consequently, the merging
process becomes highly scalable, significantly reducing com-
putational cost and enabling efficient updates and extensions
of the map.

C. Saving and Recovering Parameterized Map Data

1) Saving Parameterized Map Data: After merging all
linestring clusters, the resulting arc spline approximated map
must be stored for visualization and future use. Rather than
saving the signed-distance parameter k directly—which would
require a new map format—we propose storing each arc
segment using three points: the two arc nodes and the midpoint
N, computed from the rational Bézier formulation.

Remark. One might wonder why the midpoint N is stored
instead of the control point C. There are two main reasons: (1)
Saving C and converting the arcs into polylines would distort
the geometry during visualization. (2) In low-curvature arcs,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

the large distance between C and the arc nodes can cause
numerical instability during storage or loading.

As discussed in Section III-B, each arc segment can be rep-
resented using a rational Bézier curve. Given control point C,
arc segment endpoints A1, A2, and signed-distance parameter
k, the arc is parameterized as:

d =
1

2
∥A1 −A2∥2, w =

d√
d2 + k2

y(s) =
(1− s)2A1 + 2s(1− s)wC+ s2A2

(1− s)2 + 2s(1− s)w + s2
, 0 ≤ s ≤ 1

(7)
The midpoint N can then be computed by evaluating y(s)

at s = 0.5:

N =
1
2A1 + wC+ 1

2A2

w + 1
(8)

Thus, each arc is stored as an alternating sequence of
arc nodes and midpoints in the conventional polyline-based
format.

2) Recovering Parameterized Map Data: To recover the arc
parameters from saved data, we first compute the arc center
Xc using the three saved points: A1, A2, and the midpoint
N. Once Xc is obtained, we apply the inverse formulation of
the center point based on the signed-distance parameter k, as
derived below:

d =
1

2
∥A1 −A2∥2

v =
1

2d

[
0 −1
1 0

]
(A2 −A1)

Xc =
1

2
(A1 +A2)−

d2

k
v

(9)

Given the computed arc center Xc, we can rearrange the
equation to solve for the signed-distance parameter k as
follows:

(
1

2
(A1 +A2)−Xc

)⊤

v =
d2

k
v⊤v =

d2

k
(∵ ∥v∥2 = 1)

∴ k =
d2(

1
2 (A1 +A2)−Xc

)⊤
v

(10)

D. Application to Map Updates and Extensions

The proposed clustering and merging framework enables
efficient arc spline parameterization not only for initial map
generation but also for future updates and extensions.

For map updates, if a linestring requires adjustment,
only the corresponding cluster and adjacent clusters are re-
parameterized using the merging process in Section V-B2,
eliminating the need to reprocess the entire map.

For map extensions, newly added regions are incorporated
by clustering the affected linestrings and applying local re-
parameterization. This modular approach makes the frame-
work scalable, flexible, and robust to updates—overcoming
the limitations of conventional parameterization and graph
partitioning methods discussed in the Introduction.

Table II
RESULTS OF LINESTRING CLUSTERING AND MERGE TYPE CLASSIFICATION

Maps BS QT ON HV
Number of Linestrings 9273 6253 6311 4078

Number of Type A Clusters 1333 793 805 460
Number of Type B Clusters 1144 751 958 460
Number of A - A Merging 1213 802 482 411

Number of A - B - A (1) Merging 962 553 773 320
Number of A - B - A (2) Merging 2 13 11 5

Number of A - B Merging 176 185 168 135
Number of Isolated Type B Clusters 4 0 6 0

BS indicates Boston-Seaport, QT indicates Queenstown, ON indicates One
North, and HV indicates Holland Village Lanelet Maps.

VI. EXPERIMENTAL VALIDATION

In this section, we validate our proposed road network
decomposition method (Section IV) in combination with the
cluster merging strategy (Section V), both of which build upon
the multiple-linestring arc spline approximation framework
introduced in Section III. The evaluation is conducted using
several real-world, large-scale, and geometrically complex
map datasets.

A. Configuration

A recent study [30] introduced a method for converting
nuScenes HD maps into the Lanelet2 format [4]. The nuScenes
dataset provides four distinct map regions: Queenstown, One-
North, and Holland Village in Singapore, as well as Boston
Seaport in the USA. Accordingly, we evaluate our framework
using these four Lanelet2-converted nuScenes maps.

To emulate real-world data collection using Mobile Map-
ping Systems (MMS), we increased the point density along
each linestring and added white Gaussian noise. Additional
points were inserted to ensure an average point spacing of
approximately 20 cm, in accordance with typical MMS config-
urations using LiDAR and camera sensors for lane detection.

All components of the proposed framework—including arc
spline approximation, road network decomposition, and cluster
merging—were implemented in MATLAB. Road network ex-
traction from the Lanelet2 maps was performed using Python.
All experiments were conducted on a desktop computer with
an Intel i7-12700 processor and 32 GB of RAM.

B. Results

1) Road Network Decomposition and Merging: Table II
presents the results of the proposed decomposition and merg-
ing methods applied to the four Lanelet2 maps. Linestrings
were clustered into Type A or Type B (Section IV), and the
merge types were determined based on their configurations
(Section V). A representative visualization of the cluster
distributions is provided in Fig. 13.

2) Arc Spline Approximation Results (Qualitative): In addi-
tion to linestring clustering and merge type classification, we
present arc spline approximation results for the four Lanelet2
maps, based on the linestring cluster merge types listed in
Table II.

2https://github.com/wjswlsghks98/Efficient-Arc-Spline-Approximation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Figure 13. Distribution of Type A and Type B linestring clusters in the Queenstown region of the nuScenes map, based on the road network decomposition
described in Section IV. All linestrings are arc spline approximated through the proposed decomposition and merging process. Type A clusters are primarily
found in intersection areas, while Type B clusters correspond to simpler segments connecting those intersections. Map visualizations for other regions are
available in our GitHub repository2.

Figure 14. Exemplary arc spline approximation result (gray dash line)
of complexly interconnected roundabout in the Queenstown region of the
nuScenes HD map.

Fig. 1 and 14 illustrates the arc spline approximation applied
to a section of the One-North and Queenstown lanelet map
respectively, showcasing the successful parameterization of
lane markings in complex intersection regions, interconnected
roundabouts, as well as in high-curvature road sections. The
arc spline approximation results of all four maps are avail-
able at our GitHub repository2 and can be visualized using
MATLAB’s interactive figure viewer.

3) Arc Spline Approximation Results (Quantitative): For
the quantitative evaluation of our proposed arc spline approxi-
mation framework, we assessed both the approximation accu-
racy and the reduction in data storage achieved by representing
lane markings with arc splines.

To evaluate approximation accuracy, we first define the error

Figure 15. Measurement of arc spline approximation error. The Euclidean
distance between data point Pi and its closest point on the arc segment Pv

i
is used as the arc spline approximation error.

between each data point and its corresponding arc segment. As
illustrated in Fig. 15, the error is computed as the Euclidean
distance between a data point and its closest point on the
associated arc segment. This closest point is obtained by
determining the intersection between the arc segment and a
line connecting the data point and the arc center.

Based on these error values, we compute the Root Mean
Square Error (RMSE) and the Average Precision (AP)
of the approximation. Precision is defined as the fraction of
data points with approximation error below a given threshold,
and AP is calculated by averaging precision over a set of
predefined thresholds.

While prior works on online HD map prediction [8], [31]
have used standard error thresholds of {0.5, 1.0, 1.5} meters,
this study adopts more refined thresholds of {0.03, 0.05,
0.07} meters to better assess the geometric fidelity of the
approximation. Table III presents the precision values at each
threshold, the resulting AP, and the RMSE for all four maps.
In addition, Table IV compares the data storage requirements
of conventional polyline-based representations with those of
our arc spline-based framework.

Analyzing the quantitative results in Table III, we observe



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Table III
EVALUATION OF ARC SPLINE APPROXIMATION ACCURACY

Metrics P0.03 P0.05 P0.07 AP RMSE(m)
BS 45.123 79.697 94.390 73.064 0.0426
QT 45.744 77.452 92.952 72.049 0.0416
ON 45.593 78.067 93.545 72.401 0.0419
HV 45.408 78.557 93.718 72.561 0.0410

Pt indicates precision value for error threshold of t meters. BS indicates
Boston-Seaport, QT indicates Queenstown, ON indicates One North, and
HV indicates Holland Village Lanelet Maps.

Table IV
DATA STORAGE COMPARISON: POLYLINES VS PROPOSED ARC SPLINES

BLACK: POLYLINES, BLUE: PROPOSED ARC SPLINES

Maps BS QT ON HV
Number of Linestrings 9273 6253 6311 4078

Number of Points 662523 430789 460630 297042
Storage Size (Points) 1325046 861578 921260 594084

Number of Arc Nodes 16360 11271 10658 7312
Number of Arc Segments 17439 12037 11195 7690

Storage Size (Arcs) 67598 46616 43706 30004
Storage Ratio(Points/Arcs) 19.602 18.483 21.079 19.800

BS indicates Boston-Seaport, QT indicates Queenstown, ON indicates One
North, and HV indicates Holland Village Lanelet Maps.

that the precision values across multiple thresholds remain
consistent across different maps, indicating the robustness
of the proposed arc spline approximation framework. The
distribution of approximation errors closely follows a normal
distribution, without noticeable bias. Furthermore, the RMSE
values show that our method achieves an average approxi-
mation error of approximately 4.2 cm, demonstrating high
accuracy for lane-level map representation.

In Table IV, the storage size is defined as the number of
parameters required to store each representation. For polyline
formats, this corresponds to two parameters per point (for
2D coordinates). In our method, both 2D arc nodes and arc
midpoints are stored, resulting in a total parameter count equal
to twice the number of arc nodes plus twice the number of
arc segments. Based on the storage ratio presented in the
table, our framework achieves an average reduction in storage
of approximately 1

20 compared to the conventional polyline
representation.

It is important to note that a direct comparison with
existing methods across multiple evaluation metrics is
not feasible, as no previous work has proposed a scalable
and generalizable framework for parameterizing large-scale,
complex lane-level maps.

4) Comparison of Road Network Decomposition: To eval-
uate the effectiveness of our proposed road network de-
composition, we applied the multiple linestring arc spline
approximation framework (Section III-D) to road networks
partitioned by various graph-based methods. Across all four
maps, our method completed the full parameterization pro-
cess in under 45 minutes. In contrast, two classical par-
titioning algorithms—Graph Components and the Louvain
Method [32]—were unable to complete within 24 hours and
were terminated prematurely.

The superior performance of our approach is attributed to

its ability to localize the arc spline approximation process. By
ensuring that linestring clusters are connected only through
simple linear regions, our method avoids the need for full map-
scale optimization during the merging step (Sections IV-A
and V-A).

While we do not claim that our method universally out-
performs conventional graph partitioning algorithms across
all domains, it is specifically designed to ensure global G1

continuity during the parameterization of lane-level road maps
with complex connectivity. In this setting, traditional partition-
ing approaches— which do not consider geometric continuity
between connected linestrings—still require full map-scale
optimization during the merging phase. As a result, their
computational cost remains comparable to, or even higher
than, that of the Graph Components and Louvain methods.

Therefore, our key contribution lies in designing a decom-
position strategy (Section IV) that ensures cluster connectivity
through linear segments only, enabling efficient merging (Sec-
tion V) when integrated with our arc spline approximation
algorithm for multiple linestrings (Section III-D). Although
our experiments were conducted on Lanelet2-format maps,
the framework can be extended to other large-scale lane-level
maps by adapting the road network extraction step.

VII. CONCLUSION

This paper presents: (1) a novel arc spline approximation
framework for multiple linestrings in complex road networks,
and (2) a new road network decomposition and merging
strategy that significantly improves the efficiency of arc spline
approximation.

To the best of our knowledge, no prior work has addressed
the parameterization of large-sized, complex lane-level road
networks. As such, direct comparison for contribution (1)
was not feasible due to the lack of relevant baselines. For
contribution (2), our decomposition and merging framework
reduced computational cost by clustering linestrings such that
adjacent cluster connections satisfy properties conducive to lo-
calized re-optimization. The proposed methods were validated
using Lanelet2 maps derived from the nuScenes dataset, and
qualitative results are available on our GitHub repository.

Future research directions include extending this framework
to support online map updates and extensions, as well as
exploring downstream applications such as arc spline-based
localization, motion planning, and other ADAS functionalities.

ACKNOWLEDGMENT

This work was funded by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIT)
(No. RS-2024-00346702); the Ministry of Trade, Industry and
Energy (MOTIE, Korea) and Korea Evaluation Institute of In-
dustrial Technology (KEIT) under Grant 20014983, 20018181,
and 20023815.

REFERENCES

[1] “TomTom HD Map with RoadDNA,”
https://www.tomtom.com/products/hd-map/, 2018, accessed: 2024-
09-09.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[2] “Here HD Live Map - On the Road Towards Autonomous Driving,”
https://www.here.com/platform/HD-live-map, 2018, accessed: 2024-09-
09.

[3] M. Haklay and P. Weber, “OpenStreetMap: User-Generated Street
Maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[4] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt,
and M. Mayr, “Lanelet2: A high-definition map framework for the
future of automated driving,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), 2018, pp. 1672–1679.

[5] E. Héry, S. Masi, P. Xu, and P. Bonnifait, “Map-based curvilinear
coordinates for autonomous vehicles,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1–7.

[6] G.-P. Gwon, W.-S. Hur, S.-W. Kim, and S.-W. Seo, “Generation of
a Precise and Efficient Lane-Level Road Map for Intelligent Vehicle
Systems,” IEEE Transactions on Vehicular Technology, vol. 66, no. 6,
pp. 4517–4533, 2017.

[7] C. Guo, K. Kidono, J. Meguro, Y. Kojima, M. Ogawa, and T. Naito,
“A Low-Cost Solution for Automatic Lane-Level Map Generation
Using Conventional In-Car Sensors,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 8, pp. 2355–2366, 2016.

[8] L. Qiao, W. Ding, X. Qiu, and C. Zhang, “End-to-End Vectorized HD-
Map Construction With Piecewise Bezier Curve,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2023, pp. 13 218–13 228.

[9] T. Zhang, S. Arrigoni, M. Garozzo, D. ge Yang,
and F. Cheli, “A lane-level road network model with
global continuity,” Transportation Research Part C: Emerging
Technologies, vol. 71, pp. 32–50, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0968090X16301012

[10] K. Jo and M. Sunwoo, “Generation of a Precise Roadway Map for
Autonomous Cars,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 3, pp. 925–937, 2014.

[11] D. Bétaille and R. Toledo-Moreo, “Creating Enhanced Maps for Lane-
Level Vehicle Navigation,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 11, no. 4, pp. 786–798, 2010.

[12] B. Gallazzi, P. Cudrano, M. Frosi, S. Mentasti, and M. Matteucci,
“Clothoidal Mapping of Road Line Markings for Autonomous Driving
High-Definition Maps,” in 2022 IEEE Intelligent Vehicles Symposium
(IV), 2022, pp. 1631–1638.

[13] J. A. Rodrigues da Silva, I. P. Gomes, D. F. Wolf, and V. Grassi, “Sparse
road network model for autonomous navigation using clothoids,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp.
885–898, 2022.

[14] S. Zhang, R. Wang, Z. Jian, W. Zhan, N. Zheng, and M. Tomizuka,
“Clothoid-based reference path reconstruction for hd map generation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 1,
pp. 587–601, 2024.

[15] A. Schindler, G. Maier, and F. Janda, “Generation of high precision
digital maps using circular arc splines,” in 2012 IEEE Intelligent Vehicles
Symposium, 2012, pp. 246–251.

[16] S. Brummer, F. Janda, G. Maier, and A. Schindler, “Evaluation of a
mapping strategy based on smooth arc splines for different road types,”
in 16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013), 2013, pp. 160–165.

[17] J. Jeon, Y. Hwang, and S. B. Choi, “Reliability-based G1
continuous arc spline approximation,” Computer Aided Geometric
Design, vol. 112, p. 102363, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167839624000979

[18] Association for Standardization of Automation and Measuring Systems
(ASAM), Open Dynamic Road Information for Vehicle Environment,
v1.8.0, Nov. 2023, accessed: 9 Sept 2024. [Online]. Available:
https://www.asam.net/standards/detail/opendrive/

[19] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[20] P. Sanders and D. Schultes, “Engineering highway hierarchies,” in
European Symposium on Algorithms. Springer, 2006, pp. 804–816.

[21] Z. Zhou, S. Lin, and Y. Xi, “A dynamic network partition method for
heterogenous urban traffic networks,” in 2012 15th International IEEE
Conference on Intelligent Transportation Systems, 2012, pp. 820–825.

[22] T. Anwar, C. Liu, H. Le Vu, and C. Leckie, “Spatial partitioning of large
urban road networks.” in EDBT, 2014, pp. 343–354.

[23] Q. Yu, W. Li, D. Yang, and H. Zhang, “Partitioning
urban road network based on travel speed correlation,”
International Journal of Transportation Science and Technology,
vol. 10, no. 2, pp. 97–109, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2046043021000034

[24] K. Otsuki, Y. Kobayashi, and K. Murota, “Improved max-
flow min-cut algorithms in a circular disk failure model with
application to a road network,” European Journal of Operational
Research, vol. 248, no. 2, pp. 396–403, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221715006694

[25] J. Clark and D. A. Holton, A First Look at
Graph Theory. World Scientific, 1991. [Online]. Available:
https://api.semanticscholar.org/CorpusID:60507276

[26] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, p.
P10008, oct 2008. [Online]. Available: https://dx.doi.org/10.1088/1742-
5468/2008/10/P10008

[27] J. Hoschek, “Circular splines,” Computer-Aided Design, vol. 24, no. 11,
pp. 611–618, 1992.

[28] The MathWorks Inc., “lsqnonlin : Nonlinear Least Squares Solver,”
Natick, Massachusetts, United States, 2023. [Online]. Available:
https://kr.mathworks.com/help/optim/ug/lsqnonlin.html

[29] X. Song, M. Aigner, F. Chen, and B. Jüttler, “Circular spline fitting
using an evolution process,” Journal of Computational and Applied
Mathematics, vol. 231, no. 1, pp. 423–433, 2009.

[30] A. Naumann, F. Hertlein, D. Grimm, M. Zipfl, S. Thoma, A. Rettinger,
L. Halilaj, J. Luettin, S. Schmid, and H. Caesar, “Lanelet2 for nuScenes:
Enabling Spatial Semantic Relationships and Diverse Map-Based An-
chor Paths,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2023, pp.
3247–3256.

[31] B. Liao, S. Chen, Y. Zhang, B. Jiang, Q. Zhang, W. Liu, C. Huang, and
X. Wang, “Maptrv2: An end-to-end framework for online vectorized hd
map construction,” International Journal of Computer Vision, pp. 1–23,
2024.

[32] L. G. S. Jeub, M. Bazzi, I. S. Jutla, and P. J. Mucha, “A generalized
Louvain method for community detection implemented in MATLAB,”
https://github.com/GenLouvain/GenLouvain (2011-2019), July 2019.

Jinhwan Jeon received the B.S. degree in Mechan-
ical Engineering from Korea Advanced Institute of
Science and Technology(KAIST), Daejeon, Korea,
and M.S.in Mechanical Engineering from the Ko-
rea Advanced Institute of Science and Technology
(KAIST), in 2021 and 2023, respectively. Since
2023, he is currently pursuing the Ph.D. degree in
Mechanical Engineering at KAIST. His research in-
terests include multi-modal sensor fusion, automatic
lane-level map generation and update algorithms.

Seibum B. Choi received his B.S. in Mechanical
Engineering from Seoul National University, Seoul,
South Korea, M.S. in Mechanical Engineering from
KAIST, Daejeon, South Korea, and Ph.D. in control
from the University of California, Berkeley, CA,
USA, in 1993. From 1993 to 1997, he was involved
in the development of automated vehicle–control
systems at the Institute of Transportation Studies,
University of California. Until 2006, he was with
TRW, Livonia, MI, USA, where he was involved
in the development of advanced vehicle control

systems. Since 2006, he has been a member of the faculty of the Me-
chanical Engineering Department, KAIST, South Korea. His current research
interests include fuel-saving technology, vehicle dynamics and control, and
active safety systems. Prof. Choi is a Member of the American Society of
Mechanical Engineers, Society of Automotive Engineers, and Korean Society
of Automotive Engineers.


