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Abstract

This paper introduces an algorithm for approximating a set of data points with
G1 continuous arcs, leveraging covariance data associated with the points. Prior
approaches to arc spline approximation typically assumed equal contribution
from all data points, resulting in potential algorithmic instability when out-
liers are present. To address this challenge, we propose a robust method for
arc spline approximation, taking into account the 2D covariance of each data
point. Beginning with the definition of models and parameters for single-arc
approximation, we extend the framework to support multiple-arc approxima-
tion for broader applicability. Finally, we validate the proposed algorithm using
both synthetic noisy data and real-world data collected through vehicle exper-
iments conducted in Sejong City, South Korea.
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1. Introduction1

Various approaches have been developed to analyze point data geometry2

or to smooth sequences of points using different curve families. These tech-3

niques find applications in fields such as numerically controlled (NC) machin-4

ing [1–3], curve reconstruction [4], and road lane data parameterization [5–7].5
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Numerous curve types have been proposed for these purposes [8–10], among6

which the use of arcs for data approximation stands out due to its simplicity7

and translation/rotation invariant properties.8

1.1. Literature Review and Problem Statement9

Significant research has been conducted on arc spline approximation uti-10

lizing biarcs[11–15]. For instance, in the study by [15], a single 3D arc was pa-11

rameterized by a position vector (R3), two length-related parameters (R), and12

ZXZ-Euler angles to form a rotational matrix ∈ SO(3). With these parameters,13

a single arc could be optimized through unconstrained optimization. By em-14

ploying biarc interpolation between two arcs, [15] successfully parameterized15

data points into multiple arc segments, avoiding the need for constrained opti-16

mization. However, this approach had its limitations. When data points closely17

approximated a line, the length parameter became infinitesimally small, lead-18

ing to near-singularity issues during Gaussian step computation. Additionally,19

when performing approximation using [15], on average, one arc segment was20

allocated for every 4 data points, which did not effectively fulfill the original21

objective of compact data representation.22

Some studies encountered algorithmic instability due to data noise. While23

RANSAC[16] is a common method for removing outlier or noisy points[6], it has24

drawbacks: no time limit for robust regression and no assurance of complete25

outlier removal. Other approaches like [7, 14, 17] defined tolerance channels26

as lateral offsets of data points. These studies generated arc splines that were27

kept within the tolerance channels but assumed accurate data (low noise lev-28

els). Moreover, since tolerance channels applied equal lateral offsets to all data29

points, noise can significantly compromise algorithm performance and stabil-30

ity.31

1.2. Overview of Our Approach32

Our goal is to address arc spline approximation challenges with noisy data33

in a compact and robust manner. To overcome limitations in existing approaches,34

we emphasize the varying importance of each data point in the approximation35

process. By incorporating 2D covariance information for each data point, we36

devised an optimization problem reflecting this notion.37

The paper is structured as follows: Section 2 details our method for single38

arc approximation, including parameter definitions and cost function model-39

ing. We evaluate this approach using both synthetic and real-world datasets. In40

Section 3, we extend the single-arc models to the multiple-arc approximation41

2



Middle Node

Arc Node

Figure 1: 3 Points are set as parameters(optimization variables) to define a single arc

framework. From arc parameter initialization, cost function for optimization42

and validation/update procedure will be discussed. Next, in Section 4, evalu-43

ation of the multiple-arc approximation framework using generated and real-44

world data is presented. Finally, Section 5 explores potential applications and45

future research directions.46

1.3. Contributions47

Our main contributions are as follows:48

• Cost function/constraint models for Single Arc Approximation49

• Arc parameter initialization for Multiple Arc Approximation50

• Cost function/constraint models for Multiple Arc Approximation51

• Arc parameter validation/update for Multiple Arc Approximation52

2. Single Arc Approximation53

In this section, an algorithm for single-arc approximation is discussed. We54

define arc parameters and introduce a novel cost function and constraint model,55

which will later be adapted for multiple-arc approximation with modifications.56

2.1. Parameters for Single Arc57

Various parameter combinations exist to represent a single arc [7, 10, 15,58

17]. To ensure stable and accurate convergence in our nonlinear optimization59

problem for data approximation, it is crucial to have optimization variables on60

similar numerical scales. Extreme discrepancies in variable scales can lead to61

significant numerical errors, potentially causing algorithm divergence or re-62

duced accuracy.63
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Figure 2: Anchor Model for Single Arc Approximation: Arc Nodes (A1,A2) are matched with first
and last data points (P1,Pn) respectively. Middle node is not included in the anchor model.

Thus, we define an arc with three points as optimization variables, as shown64

in Figure 1. These points—two red points representing arc nodes and a blue65

point representing the middle node—have similar numerical scales. By refin-66

ing their positions during optimization, we aim to achieve the best-fit single arc67

for the given data points and covariance.68

2.2. Optimization Models69

To accurately approximate data points using arc parameters(Figure 1), a70

well-modeled cost function is crucial.In this section, we present three models71

that form the complete cost function for single arc approximation.72

2.2.1. Single Arc Anchor Model73

The first cost function model, the anchor model, is essential for stabiliz-74

ing optimization by aligning the arc nodes with the first and last data points,75

as shown in Figure 2. Assuming ordered data points, it matches the first and76

second arc nodes with the first and last data points, respectively. The model77

cost is calculated as the sum of squared, weighted Euclidean distances between78

matched points, which can be written as follows:79

LAC =∥P1 −A1∥2
ΣAC

+∥Pn −A2∥2
ΣAC

=(P1 −A1)⊤ΣAC
−1(P1 −A1)+ (Pn −A2)⊤ΣAC

−1(Pn −A2)
(1)

P1 and Pn are the first and the last points in the dataset, A1 and A2 stand for the80

first and second arc nodes respectively. The notation ∥·∥2
Σ = (·)⊤Σ−1(·) denotes81

the squared Mahalanobis Distance, which can be thought of as the square of82

weighted Euclidean distance. The weight is reflected in the cost by additionally83
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(a) Case 1 (b) Case 2

Figure 3: Anchor Model showcasing two scenarios with varying anchor covariance.

multiplying the inverse of the covariance matrix ΣAC to the squared 2-norm of84

the original residual vectors P1 −A1 and P2 −A2, as shown in equation 1.85

86

Remarks on Anchor Model Covariance ΣAC87

The anchor model cost, controlled by the covariance matrixΣAC in Equation88

1, can be adjusted to influence the optimization process. For instance, start-89

ing with an identity matrix for ΣAC1 (Case 1 in Figure 3), increasing its diagonal90

terms to 100 (Case 2) reduces the cost by a factor of 1
100 due to the inverse rela-91

tionship in Equation 1. This adjustment allows arc nodes to move further from92

matched data points without significantly increasing the cost. Notably, the ex-93

clusion of the middle node (labeled N1 in Figure 2) from the anchor model cost94

ensures its flexibility during optimization, essential for determining the arc’s95

radius accurately.96

2.2.2. Single Arc Measurement Model97

The second cost function model, the arc measurement model minimizes98

the discrepancy between data points and the arc approximation by adjusting99

the middle node’s position, refining the arc shape.100

101

Cost Computation102

The process of computing the arc measurement model cost is as follows.103

Refer to Figure 4 for graphical understanding.104
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Figure 4: Arc Measurement Model for Single Arc Approximation: Residual is computed by ob-
taining the difference of the data point Pi and matched virtual point Pv

i . Point M is the middle
point of A1 and A2, which will be used when explaining the third cost model.

1. Compute the position of arc center XC from the positions of two Arc Nodes105

and the Middle Node, using simple geometry.106

2. Set loop variable i to iterate from 1 to n (data size). For example, point Pi107

is chosen for explanation.108

3. Find the intersection of line Pi XC and arc ÜA1N1 A2, and set this point as109

the virtual point Pv
i .110

4. Arc measurement model residual ri
ME is defined as the difference between111

data point Pi and virtual point Pv
i : ri

ME = Pv
i −Pi .112

5. Using the covariance Σi
ME of point Pi obtained beforehand, residual ri

ME113

is weighted (squared Mahalanobis distance).114

6. Steps 3 to 5 are repeated for the whole dataset(i iterating from 1 to n).115

The arc measurement model sums up all the costs computed in step 5.116

The arc measurement residual introduced above is derived algebraically as:117

ri
ME =Pv

i −Pi

=Xc + rest
Pi −Xc

∥Pi −Xc∥
−Pi

=
(

rest

∥Pi −Xc∥
−1

)
(Pi −Xc )

(2)

where, rest (estimated arc radius), Xc are computed using two arc nodes and118

the middle node. Finally, with the derived residual ri
ME for each data point Pi ,119

we can compute the cost function for the arc measurement model as follows:120
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LME =
n∑

i=1
∥ri

ME∥
2
Σi

ME

n∑
i=1

∥Pv
i −Pi∥2

Σi
ME

=
n∑

i=1
∥ri

ME (A1,A2,N1,Pi )∥2
Σi

ME

(3)

Since the virtual point Pv
i is derived from A1,A2,N1 and point Pi , we can write121

the residual ri
ME as a function of A1,A2,N1 and point Pi in equation 3. Here, the122

squared Mahalanobis Distance is used again for weighting each residual with123

covariance matrix Σi
ME. Also, note that all the data points have different covari-124

ance matrices Σi
ME, and therefore the arc will be optimized so that approxima-125

tion error can be reduced further for data points with higher reliability.126

2.2.3. Single Arc Equality Constraint 1: Middle Node127

The final model included in the cost function is an equality constraint that128

restricts the relative positions of optimization variables A1,A2,N1. Other than129

the two arc nodes that represent both ends of the arc, we have set the middle130

point of the arc as one of the arc parameters (optimization variable). The mid-131

dle node N1 should lie on the perpendicular bisector of line segment A1A2. This132

can be implemented by taking the inner product of vectors
−−−→
A1A2 and

−−−→
MN1 in133

Figure 4, and equating the result to zero.134

rEq1 = (A2 −A1)⊤ (N1 −M) = (A2 −A1)⊤
(

N1 − 1

2
(A1 +A2)

)
(4)

The equality constraint (equation 4) will be added to the original cost function135

together with the Lagrange multiplier during optimization.136

2.3. Single Arc Approximation: Augmented Cost Function and Optimization137

Wrapping up the proposed cost function models and equality constraint138

model, we can rewrite the optimization problem as follows.139

min
A1,A2,N1

L =LAC +LME

= ∥P1 −A1∥2
ΣAC

+∥Pn −A2∥2
ΣAC

+
n∑

i=1
∥rME (A1,A2,N1,Pi )∥2

Σi
ME

s.t. rEq1 = 0

(5)
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Equation 5 is the final cost function with an equality constraint, and the opti-140

mization variables are the two arc nodes A1,A2 and the middle node N1. This141

type of optimization problem can be classified as a typical constrained nonlin-142

ear least squares(CNLS) optimization problem. Note that the cost function in143

equation 5 can be balanced by controlling the anchor model covariance ΣAC.144

2.3.1. Typical Method of Solving Nonlinear Least Squares (NLS) Problem145

Before solving the constrained version of nonlinear least squares, we first146

introduce briefly on solving unconstrained nonlinear least squares.147

148

Unconstrained Nonlinear Least Squares149

Let f : Rn 7→ Rm be a vector function with m ≥ n. The main objective is to150

minimize ∥f∥, or equivalently to find151

x∗ = argminx F (x) (6)

where152

F (x) = 1

2

m∑
i=1

(
fi (x)

)2 = 1

2
∥f(x)∥2 = 1

2
f(x)⊤f(x) (7)

The detailed derivation of the well-known Gauss-Newton method for solv-153

ing unconstrained NLS problems is introduced in [18]. For each iterative opti-154

mization, the optimization variable (vector) x is updated as155

xk+1 = xk +αhk
gn (8)

The equation above describes the variable update at kth iteration. Here, α is156

the step size, which is set as 1 in the classical Gauss-Newton method. For other157

advanced methods, various line search methods are used for finding the value158

of α. Other than the Gauss-Newton method, Levenberg-Marquardt method,159

and Powell’s Dog-Leg method are most widely used when solving general un-160

constrained NLS problems. The core difference between these three algorithms161

lies in how the update vector h is calculated.162

2.3.2. Solving Constrained Nonlinear Least Squares (CNLS) Problem163

Equality or inequality constraints are added to the previously introduced164

NLS to form the CNLS problem. For solving CNLS, advanced techniques such165

as Barrier / Penalty method, Broyden - Fletcher - Goldfarb - Shanno(BFGS) Hes-166

sian Approximation and Lagrange Multiplier are needed.167

8



-400 -300 -200 -100 0 100 200 300 400 500

Global X

-400

-300

-200

-100

0

100

200

300

G
lo

ba
l Y

Single Arc Optimization

Data Points
Single Arc Approximation
Arc Node
Middle Node
Outliers

Figure 5: Single Arc Approximation Example 1 (Generated Data Points with Outliers)

Returning to our original problem introduced in equation 5, optimization168

variables for single arc approximation are the two arc nodes A1,A2 and the mid-169

dle node N1. These arc parameters are augmented as a column vector x, and170

will be iteratively updated in the CNLS solver. The optimal solution of the pro-171

posed CNLS problem in equation 5 is obtained using ’lsqnonlin.m’ of MATLAB172

optimization toolbox [19].173

2.4. Single Arc Approximation: Examples174

Before moving on to multiple arc approximation, we test the proposed sin-175

gle arc approximation with generated data points and covariance. For data gen-176

eration, white Gaussian noise was added to true points on the arc. The covari-177

ance matrix for each data point Σi
ME was set to have random diagonal elements178

from 12 to 302. Moreover, covariance of anchor model was set to have diagonal179

elements of 0.012 throughout this paper.180

As we can observe from Figure 5, noisy generated data points with varying181

covariance and even outlier points are well-fitted into a single arc. We assumed182

here that the outlier points have large covariance values (502 to 2002, low reli-183

ability). Other than generated data, the single arc approximation is also tested184

with real-world collected data points.185
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Figure 6: Single Arc Approximation Example 2 (Real-World collected data points from vehicle
experiment in Sejong city, South Korea)

Data points introduced in Figure 6 are computed by fusing vehicle trajec-186

tory and lane detection results, in Sejong city, South Korea. The detailed pro-187

cess of obtaining data point covariance is introduced in [20]. While single arc188

approximation seems to be acceptable for cases (a), it is quite obvious that data189

approximation with only one arc is not enough for cases (b), (c) and (d). In or-190

der to tackle the limits of single-arc approximation, reliability-based multiple-191

arc approximation will be covered in Section 3.192
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Figure 7: Multiple-Arc Approximation framework: (Phase 1) Initialization of arc parameters,
(Phase 2) Obtaining the set of arc parameters that satisfies the approximation error condition.

3. Multiple Arc Approximation193

In this section, we extend the concept of the single-arc approximation to194

multiple-arc approximation. Although the idea seems straightforward, there195

are several more key factors to consider, as shown below.196

• Parameters of arc segments should be initialized for stable convergence.197

• Arc nodes overlap for adjacent arc segments.198

• (Data point - arc segment) matching is needed for optimization.199

• All arc segments should satisfy G1 continuity.200

• A validating process of arc parameters is needed.201

• A determination process of when to end the approximation is needed.202

The multiple-arc approximation framework will be designed in a way that203

reflects all the arguments mentioned above. Modified cost functions / con-204

straints will be explained, and the proposed framework will be tested on real-205

world collected data points and covariance.206
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3.1. Multiple Arc Approximation Framework207

The overall framework for multiple-arc approximation is presented in Fig-208

ure 7. The data approximation process can be divided into 2 phases.209

In phase 1, the initial number of arc segments is determined, and corre-210

sponding arc parameters (arc nodes and middle nodes) are initialized by utiliz-211

ing single-arc approximation discussed in Section 2. The purpose of initializa-212

tion is to obtain initial parameter values of adequate quality to avoid divergence213

during the optimization step in phase 2.214

Then in phase 2, CNLS optimization is performed based on several cost215

function and constraint models. The main difference between single-arc and216

multiple-arc approximation occurs directly after the arc parameter optimiza-217

tion. While the single-arc approximation ends right away, the multiple-arc ap-218

proximation framework performs additional arc parameter validation using arc219

approximation errors and covariance of each data point. If the current arc pa-220

rameter (arc nodes and middle nodes) set is acceptable after the validation pro-221

cess, optimization ends. If not, the number of segments is increased by one and222

the parameter optimization step is repeated until all the arc segments are valid.223

3.2. Multiple Arc Approximation Phase 1: Parameter Initialization224

In the phase 1: parameter initialization step, the initial number of arc seg-225

ments needed is computed. Using this information, the arc parameters are ini-226

tialized separately using single-arc approximation proposed in Section 2.227

3.2.1. Recursive Linear Approximation of Data Points228

To determine the initial number of arc segments for approximating data229

points, the rough shape of the given points should be known. Assuming that230

the points are well ordered, we perform recursive linearization to approximate231

data points into polylines(i.e. multiple connected lines). Here, the divide-and-232

conquer algorithm is implemented for the recursive data point linearization.233

A brief explanation of the algorithm is as follows. We assume that there are234

a total of n data points.235

Step 1. Set initial interval of interest as [1, n]236

Step 2. Connect the first index and the last index data point with a single line.237

Step 3. Find the index of the point(Idx) with the largest linear fit error.238

Step 4. Check if the largest error is above the threshold (Yes/No).239

Step 5. (a) (Yes) Divide intervals into [1, Idx], [Idx, n] and repeat from Step 2.240

(b) (No) Return current intervals (Will be propagated back)241
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Figure 8: Example of Recursive Linearization: Tested on sample data points (from (a) to (d))

A sample result of recursive linear approximation is shown in Figure 8. As a242

result of recursive linear approximation, data point intervals for piecewise lin-243

ear approximation can be obtained. Since these linear approximation intervals244

contain the rough shape of given data points, we can now determine the initial245

number of arc segments(i.e. the number of arc nodes and middle nodes needed246

for creating the initial optimization variable).247

3.2.2. Determining Initial Number of Arc Segments248

To determine the initial number of arc segments, we iteratively merge previ-249

ously obtained linear approximation intervals and evaluate the validity of single-250

arc approximations (explained in Section 3.4). This process, depicted in Figure251

9, utilizes vertical lines to mark boundaries of linear approximation indices,252

with lb and ub denoting the lower and upper bounds of data, respectively.253

Initially, at step (a), data points between lb and ub form a single line. By po-254

13



lb ub

. . .

lb ub

lb ub

lb ub

. . .

. . .

. . .

(a) Initial

(b) Find maximum valid upper bound

(c) Merge line approximation intervals

(d) Repeat steps (b) ~ (c)

Figure 9: Merge Linear Approximation Intervals for Single Arc Approximation

sitioning the middle node (N1) close to the midpoint of the two arc nodes (A1,255

A2), our single-arc approximation creates an arc segment resembling a line, en-256

suring the approximation’s validity for the initial interval [lb, ub]. Subsequently,257

at step (b), the upper bound ub is incremented along the linear approximation258

interval boundaries until the single-arc approximation becomes invalid for the259

data points between lb and ub. When this occurs, ub returns to the most re-260

cently valid boundary index. In step (c), the linear approximation intervals261

from lb to ub are merged, indicating that these data points will be fitted as a262

single arc during the initialization phase.263

Steps (b) to (c) are repeated until ub reaches the final data point. This itera-264

tive process computes the initial number of arc segments and the initial arc ap-265

proximation intervals required to represent the given data points. Such an ap-266

proach prevents algorithmic inefficiencies by avoiding fixed initialization with267

a single arc segment.268

3.2.3. Multiple Arc Parameter Initialization269

After obtaining initial intervals for multiple arc approximation, we initialize270

arc parameters (arc nodes and middle nodes) for each segment via single-arc271

approximation. For adjacent segments, overlapping arc nodes are addressed272
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Figure 10: Parameter Initialization for Multiple Arcs: To consider two arcs as a single set of arc
parameters, the common arc node (green point) is defined to be shared between two arcs.

by assigning a common arc node. This common node’s position is determined273

by averaging the positions of the overlapping nodes. For example, Figure 10274

illustrates this, where 3 arc nodes (2 original, 1 common) and 2 middle nodes275

are initialized as optimization variables. Subsequently, these parameters will be276

optimized based on the cost/constraint models for multiple-arc approximation277

in phase 2.278

3.3. Multiple Arc Approximation Phase 2: Parameter Optimization279

Moving on to multiple-arc approximation framework phase 2, as shown in280

Figure 7, the initialized arc parameters from phase 1 will be optimized with281

modified cost function models and constraints, and will also be validated using282

arc approximation error and each data point’s covariance matrix. If all the arc283

segments are acceptable after evaluation, the optimization loop ends. On the284

other hand, if there are some invalid arc segments, the number of arc segments285

is increased by one, and the optimization loop is repeated. Here, note that the286

number of arc segments is fixed within the arc parameter optimization process287

(left top block of phase 2 in Figure 7).288

Focusing on cost function models, slight modifications were made to the289

original cost function models and equality constraint introduced in Section 2.290

Moreover, 2 more constraint models were added due to the properties of the291

multiple-arc approximation framework.292
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Figure 11: Data Association for 3 Arcs: (1) Find the closest data point to each arc node (marked
green) (2) Data points between index Idx i to Idx i+1 are matched to arc segment number i . For
example, points between PIdx1 and PIdx2 are matched to the first arc segment. (3) After each op-
timization iteration, the optimization variables A1, A2, and so forth, are updated. Subsequently,
the association process from step (1) to step (2) is reiterated.

3.3.1. Data Association293

Before moving on to the cost function and constraint model explanation,294

we first handle data association, which is the process of matching data points295

and arc segments. Unlike single-arc approximation, where all the data points296

are matched to one arc, the matching relationship between data points and297

multiple arc segments may become ambiguous during the multi-arc approxi-298

mation. Therefore, for a particular arc segment, we need to decide which data299

points are going to be matched to the arc segment in the data association step.300

For example in Figure 11, since there are 3 arc segments, we need to divide data301

points into 3 groups during data association. Assuming that the data points302

are well-sorted, fast data association can be performed by using the index of303

data points (will be written as Idx) that are closest to arc nodes. In the case of304

starting (A1) and ending (A4) arc nodes, the first and the last data points will be305

used (Index number 1 and n) respectively. As a result, as shown in Figure 11,306

data points that have indices between Idx(1) (= 1) and Idx(2) are linked to the307

first arc segment. This is the same for the remaining two arc segments. Other308

than the example addressed previously, the same logic can be applied to vari-309

ous cases with different numbers of arc segments.310

The result of data association will be used in the extended cost function311

and constraint models. Note that data association matching results may criti-312

cally affect the approximation performance, especially in the arc measurement313

model. Approximation using wrong data points will lead to convergence fail-314
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ure, instability, and large approximation errors.315

316

Remarks on Data Association317

In phase 2 parameter optimization step, the positions of multiple arc nodes318

and middle nodes are changed for each optimization iteration. Since data as-319

sociation is done based on the positions of arc nodes, it is necessary to perform320

data association after every optimization iteration.321

3.3.2. Anchor Model322

The structure of the anchor model for multiple-arc approximation mirrors323

that of single-arc approximation: the positional difference between an arc node324

and the matched data point is weighted by a covariance matrix. The first two325

terms in Equation 9 fix the first and last arc nodes to the first and last data326

points, respectively, while the remaining terms anchor the remaining arc nodes327

to their corresponding data points found via Data Association. To ensure sta-328

bility, small covariance values ΣAC1 constrain the initial and final arc nodes,329

while larger covariance values ΣAC2 are assigned to the remaining arc nodes to330

accommodate potential variations during optimization, allowing them to ex-331

plore the solution space more freely. With m arc segments yielding m + 1 arc332

nodes, the anchor model cost function is expressed as:333

LAC = ∥PIdx(1) −A1∥2
ΣAC1

+∥PIdx(m+1) −Am+1∥2
ΣAC1

+
m∑

i=2
∥PIdx(i ) −Ai∥2

ΣAC2
(9)

In Equation 9, P denotes the data point vector and Idx(i ) represents the334

data point index obtained from Data Association. Specifically, Idx(1) = 1 and335

Idx(m +1) = n, where n is the total number of data points.336

3.3.3. Arc Measurement Model337

For the arc measurement model in multiple-arc approximation, equation338

3 derived in the single-arc approximation is repeatedly computed for multiple339

arcs. In general, for arc segment i , the arc measurement model cost is com-340

puted for data points of index Idx(i ) to Idx(i +1), using arc nodes Ai ,Ai+1, and341

middle node Ni . The arc measurement model cost for multiple arcs is written342

below.343

LME =
m∑

i=1

Idx(i+1)∑
j=Idx(i)

∥rME
(
Ai ,Ai+1,Ni ,P j

)∥2

Σ
j
ME

(10)
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In equation 10, note that the covariance matrixΣ j
ME is uniquely defined for each344

data point (pre-computed).345

3.3.4. Equality Constraint 1: Middle Node346

Expanding the equality constraint introduced in single-arc approximation347

(2.2.3) to accommodate multiple arc segments, we compute Equation 4 for348

each segment in the multiple-arc framework. Specifically, for segment i , in-349

volving arc nodes Ai ,Ai+1, and middle node Ni , the middle node equality con-350

straint is formulated as follows:351

rEq1(i ) = (Ai+1 −Ai )⊤
(

Ni − 1

2
(Ai +Ai+1)

)
, for i = 1 : m (11)

Here, rEq1 of sizeRm is constrained as a zero vector during parameter optimiza-352

tion.353

3.3.5. Equality Constraint 2: G1 Continuity354

Middle Node

Arc Node

Arc Center

Figure 12: Equality Constraint for G1 Continuity

When there are multiple arc segments, ensuring G1 continuity between each355

adjacent pair of segments is necessary. Figure 12 illustrates that the two adja-356

cent arc segments are not G1 continuous. To achieve G1 continuity between357

these segments, the following conditions must be met.358

• (Orthogonality between Blue Vectors)359

Tangential vector of arc segment 2 at A2 is orthogonal to vector
−−−→
Xc1 A2360

• (Orthogonality between Green Vectors)361

Tangential vector of arc segment 1 at A2 is orthogonal to vector
−−−→
Xc2 A2362
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However, since the satisfaction of either of the two conditions automatically363

leads to the satisfaction of the remaining condition, we opted for ensuring G1
364

continuity by enforcing orthogonality between the blue vectors. Extending the365

case introduced in Figure 12, if we consider the G1 continuity constraint be-366

tween i th and (i + 1)th arc segment, arc nodes Ai ,Ai+1, and Ai+2 correspond367

to A1,A2, and A3 in Figure 12 respectively. Then, the condition above can be368

expressed as follows.369

vb1 =
[

(Ai+1)y −
(
Xci

)
y ;

(
Xci

)
x − (Ai+1)x

]
vb2 =

[
(Ai+1)x −

(
Xci+1

)
x ; (Ai+1)y −

(
Xci+1

)
y

]
rEq2(i ) = vb1

⊤vb2 , for i = 1 : m −1

(12)

In the equation, (v)x and (v)y denote the x and y components of vector v re-370

spectively. The inner product vb1
⊤vb2 represents orthogonality between blue371

vectors. For m arc segments, the equality constraint residual vector rEq2 is con-372

strained to be a zero vector during optimization, with a size of Rm−1.373

3.3.6. Inequality Constraint 1: Minimum Arc Length374

Middle Node

Arc Node

Arc Length
Arc Length Approx. 

Figure 13: Inequality Constraint for Minimum Arc Length: The true arc length is approximated
with the length of orange lines. Ai Ni +Ni Ai+1 ≥ Lmin is set as the inequality constraint.

The final constraint model enforces the arc segments to have a minimum375

length of Lmin. The model aims to prevent arc segments from collapsing to a376

single point(i.e. 2 arc nodes and the middle node converging to the same point),377

which causes singularity problems during the optimization process.378

For example in Figure 13, if we compute the true arc length of segment i379

using Ai ,Ai+1, and Ni , the value would be severely nonlinear. Setting the true380

arc length to be larger than Lmin would cause the CNLS solver to slow down, or381

even fail in extreme cases. A way around this problem is to find some simple382

approximation of the arc length. One method is to approximate the arc length383

19



by summing the lengths of Ai Ni and Ni Ai+1, as shown in Figure 13. Note that384

the true arc length is always greater than the sum of the length of two line seg-385

ments Ai Ni and Ni Ai+1 geometrically. Therefore if we set ∥Ai −Ni∥+∥Ni −Ai+1∥386

to be larger than Lmin, the true arc length will be constrained to have larger387

value than Lmin. The inequality constraint residual vector of size Rm is written388

as follows.389

rInEq1(i ) = 1− ∥Ai −Ni∥+∥Ni −Ai+1∥
Lmin

, for i = 1 : m (13)

The inequality above is computed for all the arc segments (from i = 1 to m).390

When performing optimization, the inequality constraint residual vector rInEq1391

is constrained to be less than or equal to a 0 vector.392

3.3.7. Multiple Arc Approximation: Augmented Cost Function and Constraints393

Merging the cost function models and equality/inequality constraint mod-394

els, we obtain the full CNLS problem structure. Assuming we have m arc seg-395

ments, the augmented cost function can be written as follows.396

min
A1,···Am+1,N1,···Nm

L =LAC +LME

= ∥P1 −A1∥2
ΣAC1

+∥Pn −Am+1∥2
ΣAC1

+
m∑

i=2
∥PIdx(i ) −Ai∥2

ΣAC2

+
m∑

i=1

Idx(i+1)∑
j=Idx(i)

∥rME
(
Ai ,Ai+1,Ni ,P j

)∥2

Σ
j
ME

s.t. rEq1 = 0, rEq2 = 0, rInEq1 ≤ 0

(14)

Similar to single-arc optimization, the cost function balancing can be done397

by tuning covariance matrixΣAC1 ,ΣAC2 . Having initialized arc nodes and middle398

nodes (computed in 3.2) as the input to the CNLS solver, the output will be the399

optimized positions of arc nodes and middle nodes. The CNLS problem given400

as equation 14 is solved by using the interior point method [21] implemented in401

’lsqnonlin.m’ of MATLAB optimization toolbox. The mathematical procedure402

for attaining the optimal solution mirrors the explanation provided in section403

2.3.404
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Middle Node

Arc Node

Arc Center

Virtual Point
Confidence Ellipse

(a) (b)

Figure 14: Determining the validity of arc approximation: Assuming that we are performing
analysis on arc segment no. 1 and data point Pi , we check if the virtual point Pv

i (marked green)
is inside the confidence ellipse. This validation is done for all the data points and their matched
arc segments. Figures (a) Inside: Valid Approximation (b) Outside: Invalid Approximation

3.4. Multiple Arc Approximation Phase 2: Parameter Validation405

While many curve-fitting/approximation algorithms use simple RMSE for406

evaluating approximations, naively using the RMSE value is an inappropriate407

approach if covariance matrices of data points are given. In our research, in-408

stead of RMSE, Chi-squared
(
χ2

)
test[22] is conducted for all data points to de-409

termine whether the arc approximation of each arc segment is acceptable or410

not. The validation steps for an arc segment are:411

Step 1. For an arc segment, obtain the matched data point indices from the412

data association process.413

Step 2. Compute arc measurement residual (section 2.2.2) for each data point.414

For arc segment i and point index j , rME
(
Ai ,Ai+1,Ni ,P j

)
is computed.415

Step 3. Compute the squared Mahalanobis distance using the residual from416

Step 2 and test whether this value is larger than the Chi-squared test417

threshold (Larger/Smaller).418

Step 4. (a) (Larger) Arc approximation is invalid for the data point P j .419

(b) (Smaller) Arc approximation is valid for the data point P j .420

Step 5. If the total number of invalid arc approximations exceeds the threshold421

N , the corresponding arc segment is considered invalid.422

Typically, 99% confidence level is chosen for the Chi-squared test threshold423

value. This means that the arc approximation is considered invalid, only if it is424

placed outside of the 99% confidence ellipse(drawn using covariance matrix),425

as shown in Figure 14.426
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Halve invalid segment

Figure 15: Parameter update process: (a) After optimization with n arc segments, i th segment
is the most invalid segment(green dash). (b) Halve the i th arc segment to create the initial
parameter values for optimization with n +1 arc segments.

Ultimately, in order to assess the validity of the approximated arc segment,427

we count the number of invalid data point approximations for each arc seg-428

ment (Step 5). If the total number of invalid data point approximations sur-429

passes the threshold N , a tuning variable, the present arc segment is deemed430

invalid. It is crucial to note that the value of N requires careful tuning. If N is431

set too high, arc segments with substantial approximation errors might be ac-432

cepted. Conversely, if N is set too low, a greater number of arc segments may433

be necessary to accurately approximate data points.434

3.5. Multiple Arc Approximation Phase 2: Parameter Update435

The parameter update step is performed if there exists any invalid arc seg-436

ment after the Parameter Validation (3.4) step. We increase the number of437

arc segments by halving the arc segment with the most number of invalid data438
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point approximations, as shown in Figure 15. Original arc nodes and the mid-439

dle node are used to generate the arc nodes and the middle node of the newly440

generated arc segment without changing the cost function value. Starting from441

the updated initial parameters in Figure 15-(b), optimization is then performed442

for n +1 arc segments.443

It is important to note that due to the low anchor covariance values, the444

initially halved two arc segments will be adjusted appropriately during the op-445

timization steps. Therefore simply halving the invalid segment will not cause446

stability problems.447

3.6. Simple Proof on Iterative Convergence of the Proposed Framework448

Based on the parameter update process, we can show that our framework449

ensures that the arc parameters will iteratively converge to a local minimum.450

Let us denote X f
n = [A1, · · · ,An+1,N1, · · · ,Nn] as the arc parameters after opti-451

mization with n arc segments and Xo
n+1 =

[
Ã1, · · · , Ãn+2,Ñ1, · · · ,Ñn+1

]
as the arc452

parameters before optimization with n+1 arc segments. Then the parameters453

in Figure 15-(a) are X f
n and the parameters in Figure 15-(b) are Xo

n+1.454

Even though Xo
n+1 includes an additional arc segment, the augmented cost455

function L
(
Xo

n+1

)
remains identical to L

(
X f

n

)
due to the consistent geometry,456

as shown in Figure 15. If further cost reduction is possible after increasing the457

number of arc segments, the CNLS solver (Section 3.3.7) adjusts node positions,458

gradually approaching the local minima. Notably, the CNLS solver only accepts459

updates that reduce the cost function L .460

The relationship of the cost function values across iterations is as follows:461

· · ·L (
Xo

n

)>L
(
X f

n

)
=L

(
Xo

n+1

)>L
(
X f

n+1

)
= ·· · (15)

Since the cost function value monotonically decreases with increasing number462

of arc segments, we have proved the iterative convergence of our multiple-arc463

approximation framework.464
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4. Numerical Examples and Comparison465
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Figure 16: Multiple Arc Approximation of various data: (a) Two perpendicular lines are ap-
proximated using three arcs. (b) The sharp corner in (a) is approximated by employing an arc
segment with a small radius. (c) Zig-zag lines(with outliers) and (d) spiral curve are approxi-
mated with 7 and 10 arc segments, respectively.

Integrating four blocks—parameter initialization (Chapter 3.2), optimiza-466

tion (Chapter 3.3), validation (Chapter 3.4), and update (Chapter 3.5)—in the467

multiple-arc framework (Figure 7), we evaluate its performance using two types468

of datasets. We first evaluate with several noisy, generated data point sets. Sub-469

sequently, the framework is tested on real-world lane data from a test drive in470

Sejong City [20].471

4.1. Multiple Arc Approximation of Generated Noisy Data Points472

We initiate our framework evaluation by using various generated data points,473

including smooth ones, alongside datasets containing outliers or sharp geome-474

tries, as depicted in Figure 16. Remarkably, we observe effective management475
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Figure 17: Multiple Arc Optimization Example 1 (Same data points as Figure 6)

of sharp corners using arc segments with small radii. Moreover, outlier points476

of low reliability are disregarded without compromising the approximation per-477

formance.478

4.2. Multiple Arc Approximation of Real-World Collected Data Points479

The multiple-arc optimization framework is applied to the same examples480

as in the single-arc optimization. Figure 17 demonstrates the optimization pro-481

cess for all data points using two or more valid arc segments. Notably, achiev-482

ing a lower Root Mean Square Error (RMSE) doesn’t always indicate a superior483

approximation, as it may accompany a higher number of invalid Chi-squared484

test samples. Employing pre-computed covariance matrices for all data points485

enables evaluation based on Chi-squared tests, which is considered more rea-486

sonable than solely relying on the RMSE for each arc segment.487

4.3. Multiple Arc Approximation Application: Lane Map Parameterization488

Finally, we introduce the multiple-arc approximation results of the left and489

right ego lanes of a vehicle trip in Sejong City, South Korea. The real-world490
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Figure 18: Multiple Arc Optimization Example 2 (Full data points from vehicle trip)

examples introduced at single-arc optimization and multiple-arc optimization491

previously in Figures 6 and 17 were partially sampled from this whole trip. In492

Figure 18, the left/right lane data points and arc nodes were drawn together,493

but optimized separately.494

Direction Total Arc Segment Length Total Number of Segments

Left 1185.10 m 27
Right 1163.73 m 23

Table 1: Summary of Left and Right Ego Lane Arc Parameterization

A total of 1152 data points were parameterized into several arc segments for495

each left/right ego lane. A summary of multiple-arc approximation results is496

listed in table 1. If we analyze the results, 1152 data points from the left ego497

lane can be simply represented with 55 control points(i.e. 27 middle nodes + 28498

arc nodes = 55 control points) and the right ego lane can be represented with499
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Figure 19: Multiple Arc Approximation of data points in Figure 16 by algorithm [15]

47 control points while obeying the reliability conditions(Section 3.4).500

4.4. Comparison501

For a meaningful comparison among methods capable of handling both502

noisy and outlier data points, we have selected the approximation algorithm503

proposed in [15]. As our primary focus in this paper is robust arc spline ap-504

proximation, it is imperative that the data points used for evaluation contain505

noise and even outliers. Consequently, to the best of our knowledge, most arc506

spline approximation algorithms would fail under such conditions, underscor-507

ing the suitability of reference [15] for comparison with our framework in terms508

of algorithm robustness.509

In Figure 19, the data point sets from Figure 16 serve as the basis for eval-510

uating the comparison algorithm proposed by Song et al. [15]. For the sharp511

geometry case (a), our proposed framework utilizes 4 arc segments compared512

to Song et al.’s 7 arcs. In the case of zig-zag lines (c), both methods employ 7513
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arc segments, yet our approach yields a smaller error. Similarly, for the spiral514

geometry (d), our method employs 10 arc segments while Song et al. used 19515

arcs. Notably, our algorithm demonstrates superior performance by reducing516

the number of arcs required to approximate the same data points. Addition-517

ally, Song et al.’s algorithm exhibits instability when the density of data points518

varies within the dataset. Given that raw data points are directly sampled for519

initial arc generation, datasets with significant noise or outliers pose substan-520

tial challenges for the comparison algorithm [15].521

4.5. Analysis522

Before concluding our research, we analyze the advantages and the possible523

limitations of our reliability-based arc spline approximation framework.524

525

Advantages526

• Robust to noisy data points527

• Compact data approximation by multiple arcs528

Limitations529

• Data points should be well-ordered (sorted)530

• Covariance for data points should be accurate531

• Optimized arc parameters may be sub-optimal solutions532

Note that the first and second drawbacks of the proposed framework can be533

mitigated by other pre-processing algorithms. For example, sorting unorga-534

nized points can be done by applying the ’moving least squares method’ intro-535

duced in [4].536

5. Conclusion537

In this study, we propose novel optimization frameworks for single and mul-538

tiple arc approximations. Departing from traditional methods focused on min-539

imizing RMSE, our approach aims at determining statistically optimal arc pa-540

rameters using data points and their covariance matrices. Evaluation across541

various datasets validates the effectiveness of our approach.542
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As demonstrated in Section 4.3, a possible application of our multiple-arc543

approximation framework is vehicle lane mapping. Considering that existing544

digital maps represent lane data using points and line segments, we antici-545

pate notable improvements in data storage and management. Moreover, our546

reliability-based approach facilitates updating lane segment information fol-547

lowing data collection from overlapping trips, presenting a distinct advantage548

over conventional arc spline methods. Therefore, future research will involve549

implementing and evaluating multiple-arc approximation across wider regions550

of Sejong City.551
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