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A B S T R A C T

To enhance the effectiveness of active safety control, the tire–road friction coefficient (TRFC) must be precisely
estimated, and the longitudinal tire stiffness coefficient is an important vehicle dynamic parameter to estimate
TRFC. In this research, we present an observer that improves the performance of longitudinal tire stiffness
coefficient estimation by applying tire dynamics that were previously applied in the lateral direction to the
longitudinal direction. To begin, we model longitudinal tire dynamics using the relaxation length concept
and validate the model using vehicle braking tests. We develop an observer that estimates the longitudinal
tire stiffness coefficient by integrating the proposed tire dynamics and vehicle dynamics. The observer, which
is based on an extended Kalman filter, can be applied to nonlinear systems and successfully removes noise
from wheel speed measurement. The observer’s estimation performance is verified using CarSim simulation
and vehicle tests, and the results are compared to existing approaches that do not account for longitudinal
tire dynamics. Even in the transient section when the vehicle begins accelerating, the difference between the
estimate and the reference value is about 0.3% using the proposed method, but if tire dynamics are not taken
into account, the estimate is 6.5% lower than the reference value.
. Introduction

.1. Research background and motivation

The vehicle interacts with the road surface through its tires only.
ires support the weight of the vehicle and generate longitudinal and

ateral forces to control vehicle motion. The maximum force that the
ire can transmit is determined by the tire–road friction coefficient
TRFC). The TRFC means the limit of the force that can be transmitted
hrough the tire. Therefore, the vehicle stability can be identified
hrough the TRFC. In addition, the TRFC is especially important when
esigning active safety systems like Adaptive Cruise Control (ACC),
nti-lock Braking System (ABS), Traction Control System (TCS), and
lectronic Stability Control (ESC) since the vehicle dynamic perfor-
ance is physically limited by the friction coefficient. Without friction

nformation, active safety systems must be operated conservatively to
ake account of the safety margin. However, unfortunately, the TRFC is
ot generally given in real-time, and estimation is also challenging [1].

A representative method among TRFC estimation studies is to use
he relationship between friction coefficient and longitudinal slip ratio,
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Fig. 1. Slip is the difference between wheel speed and vehicle speed,
and longitudinal slip ratio is calculated by dividing slip by vehicle
speed. When the longitudinal slip ratio is small, it is reasonable to
assume that the friction coefficient and the longitudinal slip ratio
have a linear relationship, and the proportional constant is known as
the longitudinal tire stiffness. The TRFC-slip ratio curve has different
shapes depending on the condition of the road surface and tires. In
Fig. 1, when the TRFC is large, the curve’s initial slope and peak
value are large, but when the road surface is relatively slippery, the
curve’s initial slope and peak value are small. Therefore, the TRFC
can be estimated using the property that the longitudinal tire stiffness
coefficient changes depending on driving conditions. Sensors embedded
in mass-produced vehicles have low accuracy and are highly affected
by driving noise [2], so it is difficult to guarantee the performance of
estimating the longitudinal tire stiffness.

Previous studies on longitudinal tire stiffness estimation commonly
use a static tire model. However, the lag effect occurs in the force
transmitted to the road surface as a result of the dynamic character-
istics of tire. If the tire is a rigid body, the tire force is transmitted
vailable online 22 December 2023
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Fig. 1. Tire–road friction coefficient, wheel slip ratio, and longitudinal tire stiffness.

immediately when wheel torque occurs, but the tire actually has elastic
properties. When torque is applied to the wheel, the tire gradually
deforms and transmits the force. Longitudinal tire dynamics can be
modeled using the concept of relaxation length, which is a property
of pneumatic tires that describes the lag effect of the steady-state
tire force, and the purpose of this study is to improve the real-time
longitudinal tire stiffness estimation performance by taking such tire
dynamic characteristics into account.

1.2. Literature review

The TRFC estimation have been actively studied in the field of
vehicle dynamics. First, there is a method for estimating the TRFC
by evaluating the road surface with a vision sensor [3] and another
method for determining the degree of moisture content of the road
surface with an optical sensor [4]. Using these approaches, the friction
coefficient can be estimated in real-time without being limited to
driving or braking, and road surface information can be predicted in
advance before the vehicle reaches the road surface. Nonetheless, there
are limitations, such as the requirement for an additional sensor, a
high reliance on sensor performance, and sensitivity to ambient light
conditions. The approach of determining the icy road by detecting the
ambient temperature has the same problem.

A strain gauge is attached to the tire tread and tire deformation
between the center and end of the tire tread is also used to estimate the
road friction coefficient [5]. However, it is difficult to implement due
of numerous practical concerns such as price, reliability, power supply,
signal processing, and wireless sensor connection. The wheel slip-based
estimating method avoids the need for extra sensors. However, due to
the substantial error in the data collected from the on-board sensor,
the estimation performance cannot be guaranteed. As a result, research
has been carried out to overcome these difficulties by employing addi-
tional sensors such as a global positioning system (GPS) or an inertial
measurement unit (IMU) [6–8].

When the longitudinal slip ratio is small, the TRFC tends to be
proportional to the longitudinal slip ratio. The initial slope of the
TRFC-slip ratio graph is the longitudinal tire stiffness. As a result,
attempts have been made to estimate the friction coefficient using the
tire stiffness. Most of the studies for estimating the tire stiffness were
conducted using the least-squares method based on wheel dynamics
and vehicle longitudinal dynamics [1,9–12].

If the tire stiffness is obtained through the linear estimation algo-
rithm [13], the accuracy of the estimation result cannot be guaranteed
because it is sensitive to measurement error and road noise [14].
Similarly, the Gauss–Newton method cannot guarantee the conver-
gence of the nonlinear model. Even increasing the number of algorithm
iterations does not allow for the correction of all random measurement
2

errors [2]. Therefore, methods for minimizing measurement error by
applying a filter or designing an observer were studied [15]. The
method using the Kalman filter shows consistent estimation perfor-
mance by minimizing the effect of noise or disturbance. However, if a
model including dynamics is not used, the effect is the same as low-pass
filtering [14]. In particular, the degradation of estimation performance
in transient regions is noticeable.

1.3. Research objectives and contributions

While research has been conducted in the direction of using ad-
ditional sensors or minimizing measurement error, robust estimation
has not been performed. Despite variances in specific methodologies,
prior research generally used a static tire model [16–19]. In reality,
when a tire is deformed, it does not immediately reach a steady-state,
but exhibits dynamic characteristics. Accordingly, a lag effect occurs
in the force transmitted from the tire to the road. Longitudinal tire
dynamics can be modeled using the concept of relaxation length [20,
21], and this study aims to improve the real-time longitudinal tire stiff-
ness coefficient estimation performance by considering such dynamic
characteristics of the tire.

We propose the real-time estimation of the longitudinal tire stiffness
strategy, including the lag effect of the tire force due to the tire carcass
stiffness. The goal is to reduce the error of the initial estimate in the
transient response region with small longitudinal slip ratio, as well as
to develop the estimation logic so that the estimate quickly converges
to the true value. Through the enhancements made in this study re-
garding tire stiffness estimation performance, we anticipate achieving
the accurate estimation of TRFC, thereby enhancing the performance
of active safety control systems.

1.4. Paper structure

The rest of this paper is organized as follows. Section 2 deals
with tire dynamic characteristic analysis and tire dynamics modeling
through experiments. Section 3 introduces the design of the observer
for estimating the longitudinal tire stiffness. In Section 4, the observer’s
performance is verified through CarSim simulation and experiment.
Finally, Section 5 concludes the paper.

2. Modeling of longitudinal tire dynamic characteristics

When a longitudinal force is applied to the tire, the sidewall of the
tire is deformed according to the carcass stiffness, but the static tire
model does not take these behaviors into account (e.g., Brush model,
[22]). The force applied to the tire deforms the carcass which is the part
that forms the tire skeleton inside the tread. In this Section, the dynamic
properties of tires are modeled and its accuracy is verified considering
the carcass stiffness.

2.1. Tire dynamic characteristics

In the conventional static tire model, it is assumed that the longi-
tudinal force due to the deformation of the tire occurs immediately.
However, since the tire is indeed not a rigid body, it has dynamic
characteristics [23]. Fig. 2 shows the relationship between the friction
coefficient and wheel slip ratio when the vehicle accelerates and de-
celerates in the CarSim simulation. According to the static model, the
slip ratio and friction coefficient have a one-to-one correspondence.
However, since the slip ratio and friction coefficient do not correspond
to one-to-one, it can be expected that there is a dynamic characteristic
in the transient section. Because longitudinal deformation occurs in
the carcass during vehicle driving and braking, there is a distinction
between wheel slip and tread slip in contact with the road surface.

If the deformation appearing in the carcass is ℎ, the longitudinal
deformation rate can be expressed as the difference between the wheel

slip and the tire tread slip (see Fig. 3). The longitudinal force can
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Fig. 2. Effect of tire dynamic characteristics.

e defined in two ways: first, as the product of the longitudinal tire
tiffness coefficient and the slip ratio, and second, as the product of the
ongitudinal carcass stiffness coefficient and the carcass deformation
ength [24]. Combining these relationships, a first-order differential
quation for the carcass deformation is derived as follows [25].

𝑥,𝑠 = 𝑅𝑒𝜔 − 𝑉𝑥 (1)

𝑑ℎ𝐿

𝑑𝑡
= 𝑉𝑥,𝑠 − 𝑉 𝐿

𝑥,𝑠 (2)

where 𝑉𝑥,𝑠, 𝑅𝑒, 𝜔, 𝑉𝑥, and ℎ are the longitudinal wheel slip speed, the
tire effective rolling radius, the wheel speed, the vehicle longitudinal
speed, and the carcass deformation. The rate of the carcass deformation
𝑑ℎ𝐿∕𝑑𝑡 is expressed as the difference between wheel slip speed (𝑉𝑥,𝑠)
and tire tread slip speed (𝑉 𝐿

𝑥,𝑠), which includes the dynamic character-
istics due to the stiffness of the carcass. That is, the time lag effect
between tire–road contact surface and wheel is considered in 𝑉 𝐿

𝑥,𝑠. The
superscript 𝐿 denotes including lag effect.

The longitudinal force applied to the tire can be computed as
follows.

𝐹𝐿
𝑥 = 𝐶𝑥𝜆

𝐿 (3)

𝜆𝐿 =
𝑉 𝐿
𝑥,𝑠

𝑉𝑥
(4)

where 𝐹𝑥, 𝐶𝑥, and 𝜆 are the tire longitudinal force, the longitudinal tire
stiffness, and the wheel slip ratio. In Eq. (3), 𝐹𝐿

𝑥 is the longitudinal force
hat causes the lag effect due to the stiffness of the carcass. In general,
he linear relationship holds only when the slip rate is small [22]. The
ire longitudinal force can also be expressed as the longitudinal stiffness
oefficient of the tire carcass and the carcass deformation.
𝐿
𝑥 = 𝐾𝑥ℎ

𝐿 (5)

where 𝐾𝑥 is the longitudinal tire carcass stiffness. ℎ𝐿 represents the car-
cass deformation, including the lag effect caused by the tire’s dynamic
characteristics.

Now, the following equations can be derived by rearranging
Eqs. (1)–(5).

𝑑ℎ𝐿

𝑑𝑡
+

𝐾𝑥
𝐶𝑥

𝑉𝑥ℎ𝐿 = 𝑉𝑥,𝑠 (6)

𝜎 =
𝐶𝑥
𝐾𝑥

∶ relaxation length (7)

𝜎 𝑑ℎ𝐿 + ℎ𝐿 =
𝐶𝑥 𝑉𝑥,𝑠 =

𝐶𝑥𝜆 =
𝐹𝑥 (8)
3

𝑉𝑥 𝑑𝑡 𝐾𝑥 𝑉𝑥 𝐾𝑥 𝐾𝑥
Fig. 3. Tire Carcass compliance Model.

The relaxation length is defined as the value obtained by dividing
the longitudinal tire stiffness coefficient by the longitudinal carcass
stiffness coefficient in the first differential equation for carcass defor-
mation ℎ. The relaxation length is the distance traveled by the vehicle
from the start of the tire’s deformation to the steady state. In the first-
order differential equation, dividing the relaxation length by the vehicle
speed results in a time constant. Since the carcass stiffness coefficient,
𝐾𝑥 is an inherent characteristic of a tire, it can be considered as a
constant. The longitudinal tire stiffness coefficient 𝐶𝑥 is a variable
because the relation of the longitudinal force to wheel slip varies
depending on the road condition. Eq. (8) can be simplified using a time
constant 𝜏 and expressed as Eq. (9) below.

𝜏 𝑑ℎ
𝐿

𝑑𝑡
+ ℎ𝐿 =

𝐹𝑥
𝐾𝑥

, 𝜏 = 𝜎
𝑉𝑥

(9)

According to Eq. (5), the dynamics for the longitudinal force can be
expressed as follows.

𝜏
𝑑𝐹𝐿

𝑥
𝑑𝑡

+ 𝐹𝐿
𝑥 = 𝐹𝑥, 𝜏 = 𝜎

𝑉𝑥
(10)

Because of the aforementioned dynamics, longitudinal forces are not
transferred immediately in driving and braking situations. As a result,
when a static tire model is used, the estimation error will be large. In
contrast, the developed model in (10) can consider a such lag effect of
the pneumatic tires, resulting in the improvement model accuracy.

2.2. Model verification

Through the vehicle experiments, the dynamic characteristics of the
tire under braking conditions were analyzed in this subsection. The
Hyundai Tucson was utilized as a test vehicle. The longitudinal slip
ratio was calculated by measuring the longitudinal speed of the vehicle
using RT3002 and the angular velocity of the driving wheel using ABS
wheel sensor, and the friction coefficient was calculated by measuring
the longitudinal force and vertical load applied to the tire using a wheel
force transducer.

𝜇 =
𝐹𝑥
𝐹𝑧

(11)

where 𝜇 and 𝐹𝑧 are the TRFC and the tire vertical load.
The scenario is set up so that the vehicle travels straight at 70

km/h before decelerating to 0.7 g. The vehicle used in the experi-
ment is a front-wheel-drive system. The transfer function between the
longitudinal force and the slip ratio can be expressed as follows.

𝐹𝐿
𝑥 (𝑠)
𝜆(𝑠)

=
𝐶𝑥

𝜎
𝑉𝑥

𝑠 + 1
(12)

The relaxation length was calculated using the measured values of
𝐹𝑥 and 𝜆, and it was found that 𝜎 = 0.5 m. And the friction coefficient
(longitudinal force) data were corrected using the time constant 𝜏 =
𝜎∕𝑉𝑥 that varies according to the speed. A linear regression method is

𝐶 is the normalized value
used to minimize cost function 𝐽 (13), and 𝑥
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Fig. 4. Estimation result using static model.

Fig. 5. Estimation result using the developed dynamic tire model.

by dividing 𝐶𝑥 by the tire vertical load. 𝐶𝑥 is a constant indepen-
dent of tire vertical load, and the longitudinal tire stiffness coefficient
estimated in this study is 𝐶𝑥 rather than 𝐶𝑥. The longitudinal tire
stiffness coefficient 𝐶𝑥 is calculated from the initial slope of the friction
oefficient–slip ratio graph.

= (𝜇 − 𝐶𝑥𝜆)2 (13)

In Fig. 4, the slope is obtained by applying the least squares method
to the friction coefficient and wheel slip ratio calculated using only the
measured values without correction by tire dynamics. The red solid line
(LS) is the result of applying the least squares method to all data in the
transient region until the slip ratio reaches the steady state. The yellow
dashed line (Initial) is the result of applying the least squares method
only to data with a small slip ratio, and the purple dash-single dotted
line (End) is the result of applying the least squares method only to the
data with a large slip ratio. The most notable point is that the difference
between the LS slope and the Initial slope is large, while the LS slope
and the End slope is similar. If dynamics does not exist, the LS slope,
the Initial slope, and the End slope should be similar regardless of the
range of the slip ratio.

In Fig. 5, the slope is obtained by applying the least squares method
to the friction coefficient corrected by tire dynamics modeled above
and wheel slip ratio. It can be seen that the difference between LS
4

Table 1
Tire dynamics effect verification experiment results.

𝐶𝑥 RMSE 𝑅2

w/o Tire dynamics 20.3 0.1065 0.827

w/ Tire dynamics 21.92 0.0859 0.853

slope 21.92 and Initial slope 20.2 is relatively small compared to
Fig. 4, and the LS slope and end slope are almost identical. Therefore,
it can be concluded that the initial estimation performance of longi-
tudinal tire stiffness coefficient can be improved by considering tire
dynamics. It also can be seen that the data convergence for the linear
regression-estimated straight line has improved.

In Table 1, the estimated normalized longitudinal tire stiffness
increases by 7.98% from 20.3 to 21.92 before and after considering
tire dynamics. Root mean square error (RMSE) measures prediction
accuracy by calculating the square root of the average squared dif-
ferences between predicted and actual values. Lower RMSE values
indicate better model performance. 𝑅2 is a statistical measure that
represents the proportion of the variance in the dependent variable
that is explained by the independent variables in a regression model. It
ranges from 0 to 1, with higher values indicating a better fit of the
model to the data. Before considering the tire dynamics, the 𝑅2 for
the estimated straight line was 0.827, but after considering the tire
dynamics, the 𝑅2 for the estimated straight line is 0.853, which is
slightly larger. Consequently, the RMSE decreases as well, from 0.1065
to 0.0859. If the tire stiffness coefficient can be accurately estimated
from the low slip section, the data from the transient region can be
used to determine road friction.

3. System modeling

In this study, it is postulated that vehicle specifications, such as ve-
hicle mass, wheelbase, width, and aerodynamic coefficients, as well as
the vehicle’s center of gravity, are known. Because there are limitations
to estimating brake torque accurately, this study focuses solely on the
driving situation [26]. In the case of regenerative braking in an electric
vehicle, it is possible to design an estimation logic in a braking situation
because the braking torque can be found through the motor torque.

3.1. Longitudinal vehicle and tire dynamics

̇ =
𝑇 − 𝑅𝑒𝐹𝑥 −𝑀

𝐼
(14)

𝑚�̇�𝑥 = 2𝐹𝑥 − 𝑏𝑉𝑥
2 − 𝐹𝑟𝑟 (15)

𝜎
𝑉𝑥

𝑑𝐹𝐿
𝑥

𝑑𝑡
+ 𝐹𝐿

𝑥 = 𝐹𝑥 (16)

where 𝑇 , 𝐼 , 𝑀 , 𝑚, 𝑏, and 𝐹𝑟𝑟 are the wheel torque, the wheel moment of
inertia, the loss torque due to rolling resistance, the vehicle mass, air
resistance related coefficient, and the rolling resistance. In the above
equations, wheel dynamics, vehicle longitudinal dynamics, and tire
dynamics are represented in the order given. The TRFC and the wheel
slip ratio are calculated as shown in Eqs. (17) and (18).

𝜇 =
𝐹𝑥
𝐹𝑧

= 𝐶𝑥𝜆 (17)

𝜆 =
𝑅𝑒𝜔 − 𝑉𝑥

𝑉𝑥
(18)

The tire vertical load 𝐹𝑧 is expressed in consideration of the load
transfer due to the acceleration of the vehicle. The vertical load on the
vehicle’s right front tire is depicted in Eq. (19) [27].

𝐹𝑧,𝐹𝑅 = 𝑚𝑔

(

𝑙𝑟 −
ℎ𝑐𝑔 2𝐹𝑥,𝐹𝑅 − 𝑏𝑉 2

𝑥 − 𝐹𝑟𝑟
)

𝑑𝑙 −
𝑏𝑉 2

𝑥 (19)

𝐿 𝐿𝑔 𝑚 𝐷 𝐿
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𝑥

Fig. 6. Side view and front view showing the vehicle parameters from the center of
gravity.

Fig. 7. Overview of the estimation strategy.

Fig. 8. Estimation result of 𝐶𝑥 (simulation, 𝜇 = 1).

where 𝐿, 𝐷, and ℎ𝑐𝑔 are the wheel base, the vehicle width, and the
vehicle center of gravity height. The vehicle’s center of gravity is
shown in Fig. 6. Since the longitudinal tire stiffness coefficient changes
due to load transfer, a normalized value (𝐶𝑥) is used by dividing the
longitudinal tire stiffness coefficient by the tire vertical load.

Plant modeling is done using the three mentioned above dynamics,
and it is modeled as a nonlinear system. The three states are the
longitudinal tire stiffness coefficient 𝐶𝑥, TRFC 𝜇𝐶 corrected by tire
dynamics, and TRFC 𝜇𝑀 calculated from measured values [28,29]. The
output values measured by the sensor are the wheel slip ratio 𝜆 and the
TRFC 𝜇𝑀 (dynamics are not taken into account).

3.2. Tire stiffness estimation strategy

From the wheel slip ratio 𝜆 =
𝑅𝑒𝜔 − 𝑉𝑥

𝑉𝑥
, the effective rolling radius

𝑅𝑒 is calculated to satisfy the relationship 𝑉𝑥 = 𝑅𝑒𝜔 when the vehicle is
moving at a constant velocity. The state vector of the system is defined
as 𝑥 ∈ R3, where 𝑥 consists of 𝐶𝑥, 𝜇𝐶 , and 𝜇𝑀 . This is a form of
augmented observer that includes the parameter to be estimated in
the state. It is a kind of adaptation that performs parameter estimation
5

using a known model structure. 𝜆 is included in output 𝑦 because 𝐶𝑥
can be accurately estimated only when noise included in the wheel
slip ratio is effectively removed by filtering. The system is nonlinear
and is denoted by f(x) and h(x). Here, 𝑤 and 𝑣 are the process and
measurement noises and both are zero-mean additive white Gaussian
noise. The system form is the following Eqs. (20).

̇ = 𝑓 (𝑥) +𝑤
𝑦 = ℎ(𝑥) + 𝑣

𝑥 =
⎡

⎢

⎢

⎣

𝐶𝑥
𝜇𝐶

𝜇𝑀

⎤

⎥

⎥

⎦

𝑦 =
[

𝜆
𝜇𝑀

]

(20)

When 𝑥1 = 𝐶𝑥, 𝑥2 = 𝜇𝐶 , 𝑥3 = 𝜇𝑀 , 𝑓 (𝑥) and ℎ(𝑥) can be expressed as
follows.

𝑓 (𝑥) =

⎡

⎢

⎢

⎢

⎣

0
0

𝐾𝑥𝑉𝑥
𝐹𝑧

𝑥2 − 𝑥3
𝑥1

⎤

⎥

⎥

⎥

⎦

ℎ(𝑥) =
⎡

⎢

⎢

⎣

𝑥2
𝑥1
𝑥3

⎤

⎥

⎥

⎦

(21)

Changes in carcass stiffness coefficient due to tire wear or hardening
are not considered. As a state observer, an Extended Kalman Filter
(EKF) is used because the plant model is a time-varying nonlinear
system [30]. Fig. 7 shows an overview of the longitudinal tire stiffness
coefficient estimation strategy using the extended Kalman filter.

In the CarSim simulation or vehicle experiment, the torque applied
to the driving wheels (front wheels) is the system input. The wheel
angular velocity, the vehicle longitudinal speed, and the longitudinal
vehicle acceleration are measured through the Anti-lock Braking Sys-
tem (ABS) wheel sensor, Global Positioning System (GPS), and built-in
accelerometer. Since the system is nonlinear as in (21), it is necessary
to linearize 𝑓 (𝑥) and ℎ(𝑥) to update the Kalman gain and calculate
the error covariance in real-time. The 𝐹 and 𝐻 matrices refer to the
Jacobian of 𝑓 (𝑥) and ℎ(𝑥), respectively.

𝐹 =
𝜕𝑓 (𝑥)
𝜕𝑥

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0

−𝐶1
𝑥2
𝑥21

+ 𝐶1
𝑥3
𝑥21

𝐶1
𝑥1

−
𝐶1
𝑥1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶1 =
𝐾𝑥𝑉𝑥
𝐹𝑧

(22a)

𝐴 = 𝐼 + 𝐹 × 𝑇 (22b)

𝐻 =
𝜕ℎ(𝑥)
𝜕𝑥

=
⎡

⎢

⎢

⎣

−
𝑥2
𝑥21

1
𝑥1

0

0 0 1

⎤

⎥

⎥

⎦

(22c)

where the matrix 𝐴 is the result of discretizing matrix 𝐹 with a
sampling time interval 𝑇 . The extended Kalman filter’s algorithm is
shown below [30].

�̂�−𝑘 = 𝑓 (�̂�𝑘−1) (23a)

𝑃−
𝑘 = 𝐴𝑃𝑘−1𝐴

𝑇 +𝑄 (23b)

𝐾𝑘 = 𝑃−
𝑘 𝐻𝑇 (𝐻𝑃−

𝑘 𝐻𝑇 + 𝑅)−1 (23c)

�̂�𝑘 = �̂�−𝑘 +𝐾𝑘(𝑧𝑘 − ℎ(�̂�−𝑘 )) (23d)

𝑃𝑘 = 𝑃−
𝑘 −𝐾𝑘𝐻𝑃−

𝑘 (23e)

where 𝑃 is the error covariance and 𝐾 is the Kalman gain, which is
adjusted at every step. ‘-’ means prediction and ‘∧’ means estimation.

4. Test results

4.1. Simulation

The simulation proceeds with CarSim, which reflects the real vehi-
cle’s dynamic properties well. The target vehicle is a front-wheel-drive
vehicle, and all vehicle specifications required by the estimation logic
are assumed to be known. The scenario is set up in such a way that the
vehicle accelerates while driving straight on flat ground. The maximum
coefficient of friction on the road is set to one (i.e., dry asphalt). The
sampling time is set to 10 ms, and the acceleration magnitude is fixed
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𝑥

Fig. 9. Estimation result of 𝐶𝑥 (simulation, 𝜇 = 0.5).

Table 2
Vehicle parameters used in the experiment.

Symbol Description Value

𝑚 Vehicle mass 1,614 kg
𝑅𝑒,𝑓𝑟𝑜𝑛𝑡 Effective rolling radius of the drive wheel 0.3086 m
𝐿 Wheel base 2.57 m
𝐷 Vehicle width 1.56 m
ℎ𝑐𝑔 Vehicle center of gravity height 0.565 m
𝐾𝑥 Carcass longitudinal stiffness coefficient 140,000 N/m

at 0.15 g. To reflect the real-world drivings, Random white noise is
applied with a maximum error of 1% for wheel angular speed and
vehicle speed, and a maximum error of 5% for vehicle acceleration.
Fig. 8 is the result of estimating the 𝐶𝑥 using the extended Kalman filter
designed in Section 3. The true value of 𝐶𝑥 in the simulation is 26.93,
which is revealed by the simulations with the same vehicle model in
CarSim.

In Fig. 8, KF is the result of estimating the longitudinal tire stiffness
coefficient by applying the Kalman filter to the linear system without
considering the tire dynamics [14]. The error range of KF is −2.3
to +1.56%, which is larger than the error range of EKF(including
tire dynamics) −1.15 to 0%. It can be seen that the EKF has higher
estimation accuracy and faster convergence speed compared to the KF.
In EKF considering tire dynamics, relaxation length 𝜎 = 0.9m and
𝐾𝑥 = 100, 000N/m from 𝜎 =

𝐶𝑥
𝐾𝑥

.
Fig. 9 is the estimation result when 𝜇 = 0.5 and is similar to Fig. 8,

the estimation result when 𝜇 = 1. In this low 𝜇 case, the true value of 𝐶𝑥
is 23.22, which is relatively small because the road friction coefficient
is reduced. However, the fact that the EKF shows better performance
than the KF does not change.

4.2. Experiment

In this section, experiment is conducted to verify whether the pro-
posed 𝐶𝑥 estimation method can be applied to real vehicles. In Fig. 11,
the Kia Soul EV which is a front-wheel-drive electric vehicle was
utilized as a test vehicle. The parameters of this vehicle are shown in
Table 2. The vehicle’s position, speed, and acceleration are acquired us-
ing RT-3002, and wheel speed is measured using an ABS wheel sensor.
The motor torque is measurable and the torque applied to the driving
wheel can be calculated. Vehicle specifications required for estimation
logic are known values, such as vehicle mass, effective rolling radius
of front wheels, the center of gravity information, air resistance-related
coefficients, and wheel moment of inertia. The experiment is conducted
on the flat ground and a road surface with a sufficiently large TRFC
(High 𝜇). The sampling time is set to 10 ms. The experimental scenario
is a situation in which a driving torque is constantly applied to a vehicle
traveling in a straight line. The magnitude of the acceleration is about
0.1 g, which is the degree that general drivers smoothly accelerate in
driving daily. The test data are shown in Fig. 10. The steering wheel
6

Fig. 10. Vehicle experiment data. (a) longitudinal acceleration; (b) longitudinal
velocity; (c) angular velocity of the drive wheel; (d) longitudinal wheel slip ratio.

Fig. 11. Experimental set-up. (a) Test vehicle; (b) RT-3002 for verification.

is neutral and only longitudinal slip occurs. The vehicle accelerates
from about 40 km/h to 80 km/h, and the vehicle’s acceleration is
almost constant at 1 m/s2. Slip ratio measurements are noisy and this
limitation must be overcome with proper filter design.

When estimating without taking tire dynamics into account, the
Kalman filter (KF) is used, as it was in the previous simulation. The
plant model of the Kalman filter can be expressed as Eq. (24) below.

̇ = 𝐹𝑥 +𝑤
𝑦 = 𝐻𝑥 + 𝑣

𝑥 =
[ 1
𝐶𝑥

]

𝑦 = 𝜆 =
𝜇

𝐶𝑥

= 𝜇𝑥 (24)

The reciprocal of the longitudinal tire stiffness coefficient is set as a
state variable, and measurements of the TRFC and wheel slip ratio are
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Fig. 12. Estimation result of longitudinal tire stiffness coefficient (experiment).

Fig. 13. Estimation performance for the initial phase.

ed into the Kalman filter. When tire dynamics are taken into account,
he plant model becomes non-linear, as shown in Eq. (21), and the
RFC is corrected when a transient response appears via the relaxation

ength concept included in the extended Kalman filter (EKF). In both
ases, the estimated results are compared and shown in Fig. 12.

In addition to EKF and KF, the results for the least squares method
LS) and the recursive least squares method (RLS) are also presented
s alternative estimation strategies in Fig. 12 and Fig. 13 [30]. The LS
s the result of applying the least squares method to all data until the
heel slip reaches a steady state, and is obtained off-line to minimize

13) by measuring 𝜇 and 𝜆. Therefore, LS is not a true value, but a
eference value for comparison with the estimated value. The LS is the
verage slope in the 𝜇 − 𝜆 curve. The average slope is less than the
nitial slope of the 𝜇 − 𝜆 curve due to the nonlinearity of the curve
Fig. 1). As a result, the actual longitudinal tire stiffness coefficient is
xpected to be greater than the longitudinal tire stiffness coefficient
alculated using the LS. The RLS is a recursive version of LS, and is a
ethod applicable to sequential data measured in real time. At steady

tate, the convergence value of the RLS is similar to that of the LS.
n RLS, a design factor is a forgetting factor which is a value between

and 1. In order to reduce the influence of past data and to be able
o react sensitively to current data, the forgetting factor should be set
mall. Conversely, in order to reduce the change in the estimated value
ue to the current data noise, the forgetting factor should be set large.
herefore, it is important to set the forgetting factor appropriately, and

t is usually set to a value between 0.98 and 1. The RLS estimates 𝐶𝑥 so
that (13) is minimized, and the formulas are shown as (25) and (26).

𝐺 (𝑘) = 1
𝑝

[

𝐺 (𝑘 − 1) −
𝐺2 (𝑘 − 1) 𝜆2(𝑘)

𝑝 + 𝐺 (𝑘 − 1) 𝜆2(𝑘)

]

(25)

�̂�𝑥(𝑘) = �̂�𝑥(𝑘 − 1) + 𝐺(𝑘 − 1)𝜆(𝑘)(𝜇(𝑘) − �̂�𝑥(𝑘 − 1)𝜆(𝑘)) (26)

where 𝐺 and 𝑝 are the update gain and the forgetting factor. When
7

comparing the estimation results in the above Fig. 13, the obvious
difference is the initial estimate immediately after acceleration. In
the case of the KF using the TRFC calculated by measurement, the
initial longitudinal tire stiffness coefficient estimate is 46.17. The initial
longitudinal tire stiffness coefficient is 49.51 based on the EKF with the
TRFC corrected by tire dynamics. The difference between the estimated
longitudinal tire stiffness coefficient before and after considering tire
dynamics is 6.75%. Comparing the initial estimate of KF 46.17 with
the convergence value of KF 49.39, there is a difference of 6.50%.
Comparing the EKF initial estimate 49.51 with the convergence value
of EKF 49.36, there is a difference of only 0.3%. EKF outperforms KF in
terms of convergence. Taking into consideration tire dynamics allows
for the enhancement of the estimation performance of the longitudinal
tire stiffness coefficient. As a result, by improving the performance of
estimating the longitudinal tire stiffness coefficient at the initial stage
of acceleration, the TRFC will be obtained quickly and accurately. In
order to more reliably verify the estimated performance of the proposed
observer, the actual value of the longitudinal tire stiffness coefficient
must be obtained. If it is shown that vehicle control performance can be
improved using the estimated results, the practical value will become
more certain.

5. Conclusion

In the case of acceleration/deceleration, deformation occurs in the
sidewall of the tire due to the inertia of the wheel. The relaxation
length, which is the distance traveled by the vehicle until the tire’s
deformation reaches a steady state, is used to model tire dynamics. The
linearity of the initial data of the TRFC-slip ratio curve increases as the
modeled tire dynamics are applied to vehicle braking experiment data.
When the longitudinal tire stiffness coefficient is obtained by applying
the least-squares method, the RMSE is also reduced.

The observer is intended to effectively remove the noise contained
in the wheel slip ratio. The extended Kalman filter is employed as an
observer to estimate the longitudinal tire stiffness coefficient since the
plant model is nonlinear and has a property that varies in real-time.
The performance of the designed observer is verified through CarSim
simulation and vehicle experiment, and compared with the method not
considering tire dynamics. The proposed method has the advantage of
being faster to estimate and has better convergence. The estimated tire
stiffness is expected to improve the performance of the active safety
control.
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