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Satisfactory Driving Mode Classification based on
Pedal Operation Characteristics
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Abstract—Since the vehicle’s response according to the driver’s
gas pedal operation varies greatly depending on the driving
mode, the selection of the driving mode significantly affects the
driver’s satisfaction. This paper presents a satisfactory driving
mode classification that enhances the driver’s satisfaction by
providing a suitable driving mode to the driver. Unlike the
conventional algorithm based on driving style recognition, the
proposed approach determines the changes required for the
current driving mode, such as mode-up, -stay, and -down.
Features suitable for classification are extracted from the driver’s
pedal operation characteristics during specific situations, such as
launch and acceleration while driving. The performance of the
proposed algorithm is evaluated through nested cross-validation
and compared with conventional algorithms based on driving
style recognition, demonstrating its superiority and generality.
The proposed algorithm is event-based and operates in real-
time while driving. As a result, it provides a more reliable and
effective solution for enhancing driver satisfaction by providing
an appropriate driving mode.

Index Terms—Classification, driving behavior, driving mode,
driving style

I. INTRODUCTION

INTELLIGENT vehicles (IVs) have emerged as a promis-
ing and attractive area of research within the automotive

domain [1]. Within this domain, research topics that focus on
human drivers, such as personalization, human-machine inter-
action, and human-like systems, have garnered considerable
attention due to their potential to enhance driver satisfaction
and overall driving experience [2]–[4]. In particular, in the
case of personalization, driving satisfaction can be signifi-
cantly enhanced by reflecting the individual driver’s driving
characteristics to the system. Consequently, efforts are being
made to apply personalization to driving assistance systems,
including safe driving systems, driver monitoring systems, and
in-vehicle information systems [5], [6].

This paper addresses the topic of personalization for driving
mode. Production vehicles offer different driving modes such
as eco, comfort, and sport, each with a distinct response to the
gas pedal operation. For instance, sport mode generates greater
driving torque and faster response compared to other modes
when the same pedal is applied. Since each driving mode
has different characteristics, the satisfactory driving mode is
different for each driver. Here, the satisfactory driving mode
is the most comfortable and preferred mode for drivers to
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control the vehicle with the gas pedal. If a satisfactory driving
mode is not provided to the driver, the driver feels that the
vehicle shows an excessive or insufficient response and is
dissatisfied with the vehicle. Therefore, it is crucial to provide
a suitable driving mode to the driver because it can improve the
driver’s satisfaction. However, current production vehicles rely
on direct driver selection of the mode, which is less frequently
utilized due to drivers’ unfamiliarity with each mode and the
inconvenience of switching modes. Consequently, there is a
need for an algorithm that can analyze driver behavior based
on driving data and provide a satisfactory driving mode.

To the authors’ knowledge, studies on providing a satis-
factory driving mode have yet to be conducted. The most
straightforward and intuitive approach is to utilize driving
style recognition to determine the driver’s driving style and
select a suitable driving mode accordingly. For instance, sport
mode may be suggested for aggressive drivers, while eco
mode may be recommended for mild drivers. Since driving
style recognition can be applied to various fields within IVs,
its importance is growing [7], [8]. Driving style recognition
can be categorized into three types: rule-based, supervised
learning, and unsupervised learning. In rule-based methods,
the driving style is recognized based on thresholds for statistics
of driving data [9] or through a fuzzy inference system [10],
[11]. However, these methods are limited in their applica-
tion and require substantial effort in parameter tuning. In
supervised learning approaches, collected data is labeled with
driving style categories, such as aggressive, moderate, and
mild, based on surveys or expert evaluations [12], [13]. A
machine learning-based classifier is trained using this labeled
data and features representing driving style. These features
include descriptive statistics for velocity, acceleration, jerk,
and relative distance and coefficients for Fourier and wavelet
transforms [14]–[16]. Other features that can be considered
are the driver’s dynamic demand based on the vehicle model
[17] and the vector encoding of multivariate time series [18].
Machine learning-based classifiers like support vector machine
(SVM) [19], Gaussian hidden Markov process [20], random
forest (RF) [21], and k-nearest neighbor (kNN) [22] are
employed for classification.

In unsupervised learning methods, data is labeled based on
clustering results using algorithms such as hierarchical clus-
tering analysis (HCA) [23], Gaussian mixture model (GMM)
[24], and k-means. The driving style is then recognized using
Euclidean distance or a learned classifier [25], [26]. However,
since driving style recognition based on clustering is highly
influenced by the distribution of driving style among partic-
ipants and the distribution of drivers’ driving styles is close
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to a continuous normal distribution, clustering-based methods
may not be a clear solution.

Previous studies face limitations in two aspects: 1) labeling
for driving style and 2) feature extraction. Firstly, these studies
classify data into abstract categories such as aggressive or mild
based on participant surveys or expert evaluations. However,
since each individual has a different classification criterion
for driving style and comparing own driving style with other
drivers is impossible, it is impossible to determine which driver
belongs to which of the discrete categories. Therefore, this
labeling method lacks objectivity. For example, even if a driver
claims to be aggressive, it cannot be sure that their driving
style is aggressive compared to other drivers. If there is a
significant difference in the criteria for driving style, even this
aggressive claimed driver’s style may be closer to mild. Thus,
this labeling method provides an estimated value rather than an
actual value. Therefore, a new approach is needed to provide
a satisfactory driving mode.

Secondly, most studies extract features for the entire driv-
ing scenarios [27]. However, driving data contains redundant
information, and many situations do not exhibit driving style,
such as maintaining a constant speed. Therefore, the methods
were proposed to categorize driving events into situations
like stop, acceleration, deceleration, and maintenance and
extract features for each situation [28], [29]. Although most
studies use descriptive statistics of velocity and acceleration
as features, which also apply to research on driving condition
recognition [30]–[32], these features are strongly influenced
by driving conditions such as congested, urban, and highway
scenarios. Consequently, these features primarily reflect the
characteristics of the driving scenario rather than the driving
characteristics of the driver [33]. Utilizing these features
results in learning specific scenarios and does not guarantee
performance in unseen driving scenarios. Hence, extracting
features that reflect the driver’s driving characteristics is nec-
essary for classification.

In addition, to change the driving mode based on the driving
style recognition, additional study is needed to determine the
relationship between the classified driving style and driving
mode. As the characteristics of the driving mode differ among
vehicle types in production vehicles, the method of changing
the driving mode based on driving style has low applicability.

This paper proposes a classification algorithm for determin-
ing a satisfactory driving mode based on the driver’s gas pedal
operation characteristics. The main contributions of this paper
are threefold.

1) Suggesting a novel approach for providing a satisfactory
driving mode.

2) Obtaining simple and practical features based on ana-
lyzing the driver’s pedal operation characteristics.

3) Developing a more robust and accurate satisfactory driv-
ing mode classification algorithm than a conventional
algorithm based on driving style recognition.

The above contributions are described in more detail as
follows. Firstly, as shown in Fig. 1, a new approach is
proposed to provide a satisfactory driving mode directly to
the driver instead of providing a driving mode based on
driving style recognition. The proposed algorithm classifies
the required changes for the current driving mode, such as
mode-up, -stay, and -down. To achieve this, participants in the
experiment complete a survey after experiencing all driving
modes, and the driving data is labeled based on the most
satisfactory driving mode. Labeling driving style is considered
an estimation because it is determined by an individual’s
subjective criterion for abstract categories. In contrast, the
proposed approach provides an actual value based on the
experience of existing driving modes. This change in approach
transforms the problem of assessing the driving style of group
members into the problem of judging individual satisfaction
and dissatisfaction.

Secondly, features suitable for this new approach are ex-
tracted to reflect driving characteristics. Different driving be-
haviors are identified by specifying situations, and the driving
characteristics of the driver who controls the longitudinal
behavior of the vehicle using the gas pedal are analyzed.
The proposed features are validated to be suitable for the
proposed approach based on the results of the boxplot analysis.
Finally, a classification algorithm is developed using super-
vised learning-based classifiers and evaluated using nested
cross-validation. The performance of the proposed algorithm
is analyzed by comparing it with a conventional algorithm
based on driving style recognition. Unlike the conventional
algorithm, the proposed algorithm exhibits high classification
accuracy even for unseen driving scenarios.

Fig. 1. Comparison between conventional algorithm and proposed algorithm
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Fig. 2. Driving circuit

The remainder of this paper is organized as follows. Section
2 describes the experimental configuration and data labeling
to determine the satisfactory driving mode. Section 3 presents
an analysis of the driving data and feature extraction meth-
ods reflecting driving characteristics. Section 4 proposes a
satisfactory driving mode classification algorithm for driver
satisfaction and analyzes the classification results. Finally,
Section 5 presents the conclusion of the paper.

II. EXPERIMENTAL SETUP AND DATA LABELING

In this section, we introduce the experimental setup to
acquire the data used in this paper and a novel approach to
improve the limitations of existing driving style recognition-
based methods.

The data used in this paper was obtained through the
Controller Area Network (CAN) of the Kia Soul EV. The
data include measurements for in-vehicle sensors such as
longitudinal velocity, acceleration, pedal rate, and base torque.
Base torque refers to the torque accessible from the Motor
Control Unit (MCU) and is obtained through a map between
the gas pedal and traction torque. Each measured value is
sampled at 100 Hz.

The driving experiment was conducted at the Hyundai
Namyang Research Center in Korea on a driving circuit that
depicts city driving. The circuit is divided into five routes,
as shown in Fig. 2, with a total mileage of 2.3 km. The
driving scenario consisted of a launch-driving-stop process for
each route. The maximum length of the route is 860m, and
the minimum length is 282m. Data from all routes, except
for Route 0, aimed at adapting to the driving mode, are
analyzed. As shown in Table I, participants experienced all
driving modes, including eco, comfort, and sport. The rate
limit for the base torque and the torque gain, which is a
coefficient between the gas pedal and traction torque, are
changed depending on the mode. As the torque gain increases,
the traction torque increases for the same pedal input. As the
rate limit increases, the response of traction torque becomes
faster for the same change in base torque. Even if the driver
performs the same pedal operation, the longitudinal behavior
of the vehicle is entirely different depending on the driving
mode. A total of seven drivers participated in the experiment,
and the experiment was conducted after one preliminary run.

After the experiment, the drivers were asked to complete a
questionnaire about their most satisfied driving mode. Based

TABLE I
EXPERIMENT CONFIGURATION

Test
number 1 2 3 4 5 6 7 8 9

Driving
mode E C S E C S E C S

(*) E : Eco, C: Comfort, S: Sport

(a)

(b)
Fig. 3. (a) Comparison between conventional algorithm and proposed
algorithm in terms of labeling (b) Comparison between conventional algorithm
and proposed algorithm in terms of the problem to solve

on the questionnaire results, the data for each driving mode is
labeled as mode-up, mode-stay, or mode-down. For instance,
if a driver answered that he/she was most satisfied with the
comfort mode, the corresponding driver’s comfort mode data
is labeled as mode-stay. Data for the eco mode is labeled as
mode-up, while data for the sport mode is labeled as mode-
down.

This novel approach differs from providing a satisfactory
driving mode based on the existing driving style recognition,
as shown in Fig. 3. The existing approach for labeling driving
styles as mild, moderate, and aggressive is based on a survey
of drivers or expert evaluation. In this method, drivers are
asked to categorize their driving style, or experts determine it
based on their criteria. However, this method lacks objectivity
since each individual has different criteria for driving style.
Even if a driver claims their driving style to be mild or an
expert determines that a driver is mild, it is uncertain whether
the driver truly belongs to the mild category. The exclusion of
comparisons with other drivers further reduces the objectivity
of the existing approach. The proposed system, in contrast,
does not have these limitations because the driver decides
their preferred mode based on their experience with all driving
modes. As a result, whereas the labeling of driving styles only
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provides an approximated value, the proposed method provides
an actual value.

The novel approach changes the problem to be solved.
The existing driving style recognition-based method aims
to determine the driving style category to which a driver
belongs. Therefore, it is crucial to extract features that ex-
press differences in driving style among drivers. However, as
mentioned earlier, the labeling of the driving style is unclear,
and the extracted features do not show a clear separation
by category. Consequently, conventional algorithms rely on
classifier learning. Due to the excessive learning for experi-
mental scenarios, they have low generality and applicability. In
contrast, the proposed algorithm determines whether the driver
is satisfied or dissatisfied with the current driving mode and
identifies which mode change is required. Therefore, extracting
features that express individual satisfaction and dissatisfaction
is essential. The conventional algorithm requires additional
research on the correlation between the classified driving style
and driving mode. Even if a driver’s driving style is classified
as aggressive, it is not sure that the driver will be satisfied
with the sport mode. Additionally, since the characteristics of
the driving mode vary for each vehicle type, the conventional
algorithm has low applicability to production vehicles. In con-
trast, the proposed algorithm directly contributes to providing
a satisfactory driving mode without additional work because
it determines the satisfaction of the current driving mode.

III. ANALYSIS OF DRIVING DATA AND FEATURE
EXTRACTION

This section explains the analysis of the collected data and
the extracted features. First, we specify the situations that
require analysis since not all moments of driving data are
meaningful. After that, we analyze the driving characteristics
of drivers in these situations and extract features based on
this analysis. We confirm that the features based on the pedal
operation characteristics show significant differences for each
category.

A. Determining the situation for data analysis

Previous studies have focused on extracting features for
the entire driving scenario or micro-trip between two starting
points and training the classifier. However, there are many
situations where driving characteristics are not revealed, such
as when speed is maintained in the driving data. These
situations disturb extracting features for accurate classification.
Furthermore, algorithms that rely on long-driving data may not
be suitable for the target algorithms, which require real-time
mode changes. Thus, we must specify the situations in which
driving characteristics are revealed and develop an event-based
classification algorithm through data analysis.

Satisfaction with the current driving mode and driving
style is closely related. Therefore, it is essential to analyze
data demonstrating driving style differences among drivers.
The difference index is defined as follows.

Fig. 4. Difference index for Driver 1 and Driver 5

Xdiff,ij(dk) =
|mean(Xi(dk))− mean(Xj(dk))|

std(Xi(dk)) + std(Xj(dk))
(1)

Xi (dk) represents the measured value at distance k (dk)
of the (i)-th driver. These measurements include longitudinal
velocity (v), longitudinal acceleration (a), and pedal rate (θp).
Since each driver spends a different amount of time driving
the circuit, a difference index is defined for the distance
domain to enable comparison between drivers. This index
demonstrates how different the driving of two drivers is using
the mean and standard deviation of the measured values. A
comparison of the difference index for all driver combinations
revealed that longitudinal velocity has the highest value on
average, followed by longitudinal acceleration and pedal rate
in that order. Since velocity is an integral value of acceleration,
when the difference between the two drivers in acceleration is
accumulated, the difference in velocity is naturally high. Also,
since velocity is more greatly affected by the driving condition
than the driver’s driving characteristics, it is inappropriate to
use it to determine the satisfactory driving mode. Hence, data
analysis for acceleration is required. The acceleration situation,
such as launch and acceleration while driving, is where the
difference index for acceleration is high, as shown in Fig. 4.
Drivers generally judge satisfaction with a vehicle when their
control is significantly involved, such as in an acceleration
situation in which a pedal is operated.
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Launch and acceleration while driving occur repeatably. The
criterion for the launch is defined as follows.

Xl(t) = {X(t) | t1 < t < t2}
t1 = {t[k] | θp[k] > 0 & v[k] ≃ 0}
t2 = argmax

t
(a(t)), t1 < t < t3

t3 =

{
t[k] | θ̇p[k] < 0 & θ̇p[k + 1] ≥ 0

&
c1 − θp[k]

c1
> c2

}
c1 = max(θp(t))

c3 = max(a(t)), t1 < t < t3

(2)

X(t) means driving data for each route and c2 indicate
parameter that determine the situation. Launch refers to the
time from when the vehicle starts to the point at which
it reaches its maximum acceleration. The definition of t3
includes conditions for excluding small perturbations. Next,
the criterion for the acceleration while driving is defined as
follows.

Xd(t) = {X(t) | ā(t) > c4 & ∆t = te − ts > c5}

ā(t) =
a(t)

c3

(3)

ts and te mean the start and end time of the acceleration while
driving. This represents a situation where moderate accelera-
tion has occurred for a sufficient time. Since each driver has a
different scale for acceleration, normalized acceleration using
the maximum acceleration at launch is utilized. The terms c4
and c5 indicate parameters that determine the situation and are
set through tuning.

B. Features for launch and acceleration while driving

The driving characteristics are analyzed using boxplots
to visualize data distribution. Boxplots consist of the data’s
median, first quartile, third quartile, maximum, minimum, and
outliers. The interquartile range (IQR), which is the size of
the box, is determined using the first and third quartiles. The
maximum and minimum values are obtained based on the IQR
and are drawn as whiskers. The box size will appear small if
the data is distributed over a narrow range.

Fig. 5 shows a boxplot based on the maximum acceleration
at launch. The x-axis represents each driver, and a boxplot
is obtained. Since each boxplot has a different distribution, it
indirectly shows that participants with various driving styles
were recruited. In particular, Driver 5 and Driver 7 show
significant differences in driving style. Fig. 6 shows the
acceleration and pedal rate distribution for each driving mode
for drivers 1, 3, and 5. As shown in Fig. 6, the acceleration
distribution for each driver is not affected by the driving mode,
but the distribution of the pedal rate changes significantly.
The driver’s pedal rate decreases when changing from eco
mode to sport mode. These results suggest that the driver has
the desired acceleration at launch and controls the pedal to
reach the desired value. Moreover, since the pedal operation
changes the most according to the change in the driving mode,

1 2 3 4 5 6 7
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Fig. 5. Distribution of maximum acceleration for all drivers
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Fig. 6. Distribution of acceleration and pedal rate for drivers

it is necessary to analyze the pedal operation characteristics
to determine the driver’s satisfaction with the driving mode.

Since drivers have different desired accelerations, the nor-
malized acceleration, ā(t), utilized in Eq. 3, is introduced
for comparison. ā has a range of 0 to 1. Fig. 7 shows the
pedal operation distribution of drivers to reach the desired
acceleration for all drivers’ launch data. Each color represents
a different category, such as mode-up, -stay, and -down. The
solid line represents the data median, similar to a boxplot, and
the dotted line represents the first and third quartiles. Each
colored patch contains 50% of the data for each category. As
shown in Fig. 7, the distribution of each category is separated
from the other. To further illustrate this point, Fig. 8 shows
the boxplot of each category for the point where ā = 0.8.
Similarly, the distribution of each category is disjoint.

As drivers have different driving styles and preferred driving
modes, it can be challenging to determine individual satisfac-
tion using the entire dataset. However, as demonstrated in Fig.
7, even when all drivers’ data are included, the distribution of
each category is disjoint. Thus, features extracted from the ā-
θp domain can effectively contribute to providing a satisfactory
driving mode. Based on the above observations, the features



6

Fig. 7. Pedal operation distribution for all drivers’ launch data
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Fig. 8. Pedal operation distribution for ā = 0.8

are obtained as follows.

Pedal feature = {θp (ā) | ā = 0.1, 0.2, · · · 1} (4)

Also, Fig. 7 suggests that drivers are satisfied with the
proper pedal operation range for generating acceleration. Usu-
ally, if a vehicle’s longitudinal response is frustrating, the
driver tends to step on the pedal more. Conversely, drivers
tend to adjust the pedal more carefully if the car overreacts.
Therefore, the driver’s satisfaction with the driving mode
appears through pedal control. As shown in Fig. 7, each
category is separated at higher ā values than at lower ā
values. Since a high ā represents a situation where the driver’s
control is almost complete, this pedal feature indicates overall
satisfaction with driving.

Several studies aim to minimize jerk, the derivative of
acceleration, as an index for driver satisfaction during vehicle

Fig. 9. Time distribution of Driver 3 for the launch
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Fig. 10. Time distribution of Driver 3 for ā = 0.4

control [34], [35]. Fig. 9 shows the data distribution for Driver
3. The x-axis represents normalized acceleration, and the y-
axis shows time. It indicates jerk as it shows the time required
to generate ā. Each color represents a category, such as mode-
up, -stay, and -down. The solid line indicates the median of
the data corresponding to each category, and the dotted line
indicates the first and third quartile, where 50% of the data
for each category is distributed within each colored patch. Fig.
10 displays a boxplot of time for each category at the point
where ā = 0.4.

Unlike the previous pedal feature, the distribution of each
category is separated at low ā. As soon as the driver op-
erates the pedal, if the vehicle responds quickly, the driver
is surprised and stops operating the pedal. However, if the
vehicle responds slowly even though the driver operates the
pedal, the driver applies more pressure on the pedal. As a
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Fig. 11. Normalized time distribution for all drivers’ launch data

result, when the driver applies the pedal, there is an expected
acceleration response: a satisfied jerk level. The driver satisfies
the driving mode that meets this expectation. The driver’s
expected response is the gray area in Fig. 9. If the vehicle’s
response is faster than this expectation, that is, if it takes
a short time to generate ā, the driver wants to mode-down.
Conversely, the driver wants to mode-up if the vehicle’s slow
response takes a long time to generate ā. Therefore, as shown
in Fig. 9, the distribution of each category is separated at low
ā, and the features extracted from this ā-time domain represent
immediate satisfaction.

However, the features extracted from ā-time domain cannot
be immediately utilized since drivers have different satisfied
jerk levels. Additionally, as depicted in Fig. 7, the separation
of distributions for all drivers’ data needs to be confirmed.
Hence, the features are defined as follows through z-score
normalization.

Normalized time feature

=

{
t (ā)− µj (ā)

σj (ā)
| ā = 0.1, 0.2, · · · 1

}
(5)

Here, σj and µj represent the mean and standard deviation
of the data for the Driver j’s mode-stay. Information about
the driver’s mode-stay is assumed to be known in advance.
The validity of this assumption is further explained in the
classifier’s results later. The distribution of this normalized
time feature for all drivers’ data is illustrated in Fig. 11.
Despite the data from drivers with different driving styles
and preferred modes, the distribution of each category is
noticeably separated. Therefore, the normalized time feature
can effectively contribute to providing a satisfactory driving
mode.

Fig. 12. Features for acceleration while driving

Next, the feature for acceleration while driving is extracted
from the existence of an appropriate pedal operation range
that the driver is satisfied with when generating acceleration.
Since the map between pedal and traction torque varies with
velocity, the feature for acceleration during driving is defined
as follows.

Driving feature = {v (td) , ā (td) , θp (td)}

td =
ts + te

2

(6)

ts and te represent the start and end points of the acceleration
while driving. According to Eq. 3, this situation appears as
several subsequences for one micro-trip, with each point of
subsequence having a redundant meaning. Therefore, the value
located at the center of the subsequence is used as the feature.
Fig. 12 displays the scatter plot for driving feature. As each
category is distributed differently, this feature can be used to
provide a satisfactory driving mode.

IV. SATISFACTORY DRIVING MODE CLASSIFICATION

This section focuses on the satisfactory driving mode clas-
sification algorithm based on the extracted features. The algo-
rithm’s hyperparameter selection and performance evaluation
are conducted through nested cross-validation. The proposed
algorithm’s results are compared with conventional algorithms
based on driving style recognition.

A. Feature sets construction

This paper proposes three features for providing satisfactory
driving modes: the pedal and normalized time feature at launch
and the driving feature at acceleration while driving, each with
distinct characteristics. Launch features are extracted once
for one micro-trip while the driving feature can be extracted
multiple times for one micro-trip according to Eq. 3. The
acceleration while driving occurs from a minimum of 0 to a
maximum of 4 times for one micro-trip in the collected data.
The normalized time feature is only available when the driver’s
satisfied jerk level is known. Since these proposed features
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TABLE II
LABELING FOR CONVENTIONAL ALGORITHM

Preferred mode Driving style Current
driving mode

Driving mode
changes

Eco Mild
Eco Mode-stay

Comfort Mode-down
Sport Mode-down

Comfort Moderate
Eco Mode-up

Comfort Mode-stay
Sport Mode-down

Sport Aggressive
Eco Mode-up

Comfort Mode-up
Sport Mode-stay

have different characteristics, three feature sets are composed
as follows: Set 1 includes pedal feature, Set 2 includes pedal
and normalized time features, and Set 3 includes driving
feature. A classifier is constructed for each feature set, and
the resulting classification results are analyzed.

Conventional algorithms utilize driving style recognition,
composed of features expressing driving style and labeling
of driving style. The features are extracted based on micro-
trip, including the mean and standard deviation of velocity,
acceleration, and jerk [19]. Table II shows the labeling process
of driving style and driving mode change for the conventional
algorithm. The data is labeled as driving styles, such as mild,
moderate, and aggressive, based on the preferred driving mode.
For example, if drivers prefer eco mode, their data is labeled
as mild. Based on these features and labeling, driving style
recognition is constructed, named Set 4 - style. Regarding the
change of driving mode, the data is classified into mode-up,
-stay, and -down compared to the current driving mode based
on the classification result of this driving style recognition. For
example, if a driver’s driving style is classified as moderate
and the data used is eco mode data, it is determined as mode-
up. The result of changing the driving mode through this
conventional algorithm is named Set 4 - mode.

B. Algorithm structure and design

The classification algorithm for each feature set is con-
structed using a supervised learning-based classifier. The ac-
curacy of classification dramatically depends on the hyperpa-
rameters’ settings. Nested cross-validation is used for hyper-
parameter tuning and performance evaluation. Nested cross-
validation comprises an outer loop and an inner loop. The
inner loop cross-validation evaluates various hyperparameters’
performance, selecting the optimal classifier. The outer loop
cross-validation is used to evaluate the selected classifier’s
performance.

The paper applies the classification algorithm structure as
shown in Fig. 13. The entire dataset is divided into folds based
on the experimental scenario route. Each route has a different
velocity profile, as shown in Fig. 14. Route 1 and Route 3 have
similar profiles, while Route 2 has different velocity profiles.
This route-based data partitioning enables the cross-validation
results to show performance for unlearned driving scenarios.
This method can verify the classification algorithm’s generality

Fig. 13. Structure of classification algorithm based on nested cross-validation

Fig. 14. Velocity profiles of each route for Driver 1

and production vehicle applicability. The classifiers utilized in
this paper are the Gaussian kernel classifier, k-nearest neighbor
(KNN), linear classifier, and support vector machine (SVM).

Feature extraction suitable for classification is the most
crucial task in constructing a classification algorithm using
machine learning. Therefore, a simple classifier to verify per-
formance proves the proposed feature’s superiority based on
the driver’s pedal operation characteristics. The hyperparam-
eters of each classifier are selected through inner loop cross-
validation. The selected classifier’s performance is evaluated
through outer loop cross-validation. Classifier learning and
performance evaluation are implemented through MATLAB.

C. Classification performance evaluation

Fig. 15 displays the classification results obtained through
nested cross-validation. The proposed algorithm produces
three different results depending on the feature set used, as
shown in Fig. 15a. The conventional algorithm, as demon-
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Fig. 15. (a) Cross-validation results for the proposed algorithm (b) Cross-
validation results for the conventional algorithm

strated in Fig. 15b, produces a classification result for driving
style and another for change in driving mode. Each bar
in the graph represents a classifier type, and the average
cross-validation result is plotted with error bars based on the
standard deviation.

Set 1 in Fig. 15a shows the classification result using only
the pedal feature of launch, and Set 2 presents the classification
result using the normalized time feature of launch and the
pedal feature. The classification result using Set 2 is more
accurate and has a lower standard deviation than Set 1. This
result is achieved because the normalized time feature provides
additional information. The pedal and normalized time features
have different properties, as shown in Fig. 7 and Fig. 11. The
pedal feature displays a separation of categories at high ā,
while the normalized time feature separates into categories at
lower ā. As these two features have separate meanings, the
normalized time feature can provide additional information in
classification. However, the driver’s satisfied jerk level must
be known to extract the normalized time feature. The classifi-
cation result using Set 1, which does not include this feature,
has a high accuracy of nearly 80%. Therefore, after obtaining
the driver’s satisfied jerk level through Set 1, an algorithmic

TABLE III
CROSS-VALIDATION RESULT FOR SELECTED MODELS

Accuracy [%]
Proposed algorithm Conventional algorithm

Set 1 Set 2 Set 3 Set 4
- style

Set 4
- mode

Classifier KNN SVM KNN KNN KNN
Fold 1 (Route 1) 87.30 87.30 76.19 82.54 87.30
Fold 2 (Route 2) 80.95 84.13 79.09 47.62 63.49
Fold 3 (Route 3) 77.78 85.71 71.43 85.71 92.06
Fold 4 (Route 4) 77.78 88.89 80.90 76.19 85.71

Mean 80.95 86.51 76.90 73.02 82.14
SD* 4.49 2.05 4.13 17.39 12.72

*SD: Standard deviation

structure that secures higher classification accuracy can be
constructed through Set 2.

Set 3 in Fig. 15a is a classification result using the driving
feature of acceleration while driving. The classification result
using Set 3 shows a relatively lower accuracy than that of Set
1 and Set 2. However, Set 1 and Set 2 can only be obtained
once for one micro-trip, while Set 3 can be obtained many
times. Therefore, the launch classifier with high accuracy can
complement the acceleration while driving the classifier with
lower accuracy but higher frequency. The ensemble of these
two classifiers can improve the accuracy in production vehicle
applications.

Fig. 15b shows the classification result of the conventional
algorithm. The accuracy for driving mode change classification
is higher than for driving style classification because the
category for driving mode change has a more comprehensive
meaning, as shown in Table II. For instance, if a driver has a
mild driving style and is currently in sport mode, the labeling
for a change in driving mode would be mode-down. If the
classifier judges the driving style as moderate, the driving style
would be incorrectly classified, but the driving mode change
would be correctly classified as mode-down.

Both cases of this conventional algorithm have lower accu-
racy and higher standard deviation than the proposed method.
A high standard deviation means that it is inappropriate to
apply this algorithm to unlearned driving scenarios, and the
generality of the algorithm is not secured. Also, the proposed
algorithm is less affected by the type of classifier, unlike the
conventional algorithm. In the case of the proposed algorithm,
even though simple classifiers are used, the accuracy of
each classifier is high, and the accuracy difference between
classifiers is slight. It means that the features used in the
proposed algorithm are very effective for classification.

Table III shows the classification results for the classifier
with the highest accuracy in each set of Figure (fig. cv
result). In the applied nested cross-validation, the classification
accuracy for each fold is obtained because the outer loop
is divided into folds according to the route. In the case of
set 2, which uses the pedal and normalized time feature of
launch, it shows an average accuracy of 86.51% and a standard
deviation of 2.05% based on SVM. The proposed algorithm
shows better classification performance than the conventional
algorithm. In addition, set 1 and set 3 show an accuracy
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of 80.95% and 76.9%, respectively, with significantly lower
standard deviation than conventional algorithms.

The high standard deviation of the conventional algorithm
is due to its low accuracy for Route 2. As shown in Fig.
14, Route 2 has a distinctly different profile from other
routes. Since Route 1 and Route 3 have a similar shape, it
is possible to respond to the rest if one is used for learning.
Therefore, the classification accuracy for Routes 1 and 3 in the
conventional algorithm is relatively high. From these results, it
can be inferred that conventional algorithms are vulnerable to
unlearned scenarios. On the other hand, since the accuracy of
the proposed algorithm remains mostly the same depending
on the route, it can correctly classify new driving scenarios
that have not been learned. That is, the proposed algorithm
is suitable for production vehicle applicability. This result
is possible because the proposed algorithm extracts features
for specific situations, such as launch and acceleration while
driving, instead of using the entire driving scenario and uses
the proposed features that separate each category. In addition,
the conventional algorithm works when the data for one micro-
trip is accumulated, whereas the proposed algorithm is event-
based classification, so it operates in real-time while driving
and has high production vehicle applicability.

V. CONCLUSION

This paper presents a satisfactory driving mode classifica-
tion algorithm based on the pedal operation characteristics
of the driver. Providing a suitable driving mode can enhance
driver satisfaction because the vehicle’s longitudinal response
to the driver’s pedal input varies depending on the driving
mode. Based on driving style recognition, the conventional
algorithm suffers from unclear labeling and does not reflect
driving characteristics in the features used for classification. To
address this issue, we propose a new approach that determines
which changes are necessary for the driver’s satisfaction, such
as mode-up, -stay, and -down for the current driving mode.
According to the new approach, experiments are designed for
acquiring data, and the collected data are analyzed.

The situation requiring data analysis is specified, which
includes launch and acceleration while driving. Unlike the
conventional algorithm that utilizes simple statistics, three
types of interpretable features, such as pedal features, nor-
malized time features, and driving features, are extracted
based on the driver’s pedal operation characteristics. Even
though the data of drivers with different driving styles are
gathered, the extracted features separate individual satisfaction
and dissatisfaction.

The proposed algorithm undergoes hyperparameter tuning
and performance evaluation through nested cross-validation.
The cross-validation results for each feature set show that the
proposed algorithm has higher classification accuracy than the
conventional algorithm, even for unlearned driving scenarios.
In addition, the proposed algorithm is less affected by the
type of classifier and shows consistently high classification
accuracy, even for simple classifiers, unlike the conventional
algorithm. This indicates that the proposed feature significantly
contributes to providing a satisfactory driving mode. Using the

pedal and normalized time features for launch, the proposed
algorithm shows an average classification accuracy of 86.5%
and a standard deviation of 2.05% based on SVM.

Additionally, the proposed algorithm is highly applicable
in production vehicles, as it can classify satisfactory driving
modes in real-time while driving and directly contribute to
providing satisfactory driving modes without analyzing the
correlation between driving style and driving mode.
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