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Abstract—Highly autonomous driving technology is expected to
improve driving safety and convenience, and collision avoidance
technology is essential for fully autonomous driving. Planning a
collision-free trajectory that includes velocity and path is one of
the most challenging objectives. Optimization-based trajectory
planners have been proposed in many previous studies because
they offer a high degree of freedom and can handle various
situations. However, most previous trajectory planners used
nonlinear programming due to the nonlinearity or non-convexity
of the optimization problem. These methods come with a high
computational load. The trajectory planner requires the real-
time ability to cope with dynamically changing environments.
This paper focuses on the trajectory planning of autonomous
vehicles through quadratic programming (QP), which requires
a low computational load. To achieve this, we introduce the
longitudinal-lateral decomposition method. In addition, collision-
free constraints are expressed as linear constraints through
proposed ingenious dual functions. The proposed weak duality
optimization problem has a QP form and optimized trajectory
and obstacle avoidance timing through only one QP problem.
This study verified that the proposed trajectory planner could
plan smooth collision-free maneuvers for several driving situa-
tions by simulations.

Index Terms—Autonomous vehicle, Model predictive control
(MPC), Quadratic programming (QP), Trajectory planning,
Weak duality.

I. INTRODUCTION

INTELLIGENT vehicles are attracting attention with ad-
vances in sensor and control technology [1]. Advanced

autonomous driving technology transfers control to the ve-
hicle and improves driving safety and convenience [2]. These
technologies have received considerable attention in academia,
industry, and the military over the past few decades. Recent
studies from the DARPA Grand and Urban challenge [3] to
Google cars [4] and Tesla [5] have shown admirable au-
tonomous driving performance. Nevertheless, some challenges
remain to be addressed for a fully autonomous vehicle. One
of these challenges is trajectory planning technology, essential
for ensuring vehicle stability and safety during autonomous
driving [6], [7]. Planning a trajectory that includes the path and
velocity for dynamically changing vehicles and environments
is a complicated challenge [8]. Trajectory planning techniques
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need to meet the driving purpose and offer a collision-free
path and velocity. Furthermore, real-time implementation is
necessary for the commercialization of autonomous vehicles
[9].

Trajectory planning is mainly divided into sampling-based
approaches and optimization-based approaches. Sampling-
based approaches select the best path among finite collision-
free path candidates [10]. Cubic splines [11] and quintic
polynomials [12] have been used to generate path candidates.
Recently, trajectory planning algorithms have been studied to
plan the vehicle velocity simultaneously with the path [13].
The sampling-based approach is relatively inexpensive due to
the characteristic of predetermining candidate paths. However,
since the shape of paths is predetermined, there is a limit
to expressing various driving maneuvers. While it may not
be a problem for smooth maneuvers such as overtaking, it
can pose significant challenges for more complex maneuvers
like obstacle avoidance. In other words, these approaches are
judged infeasible if there is no collision-free path among the
predetermined paths, even if avoidance is possible. Therefore,
these sampling-based approaches have limitations in terms of
feasibility [14].

The optimization-based approaches have the advantage of
having a higher degree of freedom than the sampling-based
approach because the path is not predetermined. This advan-
tage allows trajectory planning of various driving maneuvers.
These approaches plan a path and velocity that satisfy the
constraints and optimize the cost function. The cost function
is set to the cost for ride comfort [15] and ego vehicle velocity
[16]. Obstacle avoidance has usually been handled through
constraints. In previous studies, obstacles were represented
by constraints in the shape of circles [17] and ellipses [18].
However, these studies included non-convex cost functions or
nonlinear constraints. Due to nonlinearity, nonlinear program-
ming (NP), which has a significant computational load, has
been used. The usage of NP has the fatal disadvantage of not
guaranteeing the real-time implementation of the optimization-
based approach. Therefore, reducing the computational load
for real-time trajectory planning is essential [19].

Recently, some studies proposed optimizing trajectory
through quadratic programming (QP) rather than NP [20],
[21]. QP has a significantly lower computational load than NP.
Therefore, it is attracting attention as a technology that can im-
prove real-time implementation ability. One of the challenges
is to express the conditions for obstacle avoidance using the
QP form. Previous studies expressed obstacles as a quadratic
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Fig. 1. Collision-free region for obstacle avoidance. (a) Nonlinear constraints.
(b) Linear approximation constraints [20]. (c) Proposed constraints.

cost function and linear constraints. In [21], the modified cost
function, which increased as the distance to the obstacle was
closer, has been proposed for obstacle avoidance. However, the
initial modified cost function did not ensure complete obstacle
avoidance. Therefore it involved checking, modifying, and
iterating until obstacle avoidance. These iterating processes
had an enormous computational load than general QP. It also
had a limitation in that it could harm the essence of the
optimization cost function. In [20], obstacles were expressed
as linear constraints, as shown in Fig. 1(b). This expression
had advantages in terms of computational load, but linear
constraints predetermined by Lx and Ly could cause fatal
limitations. First, setting an overly conservative collision-
free region could produce an unusual trajectory. Second,
several tricks have been used because trajectory planning for
overtaking obstacles by changing lanes was impossible with
predetermined linear constraints, as shown in Fig. 1(b). Thus,
expressing obstacles with linear constraints was an original
concept, but several problems needed to be resolved.

We propose a trajectory planning algorithm through QP
form. The cost function was not modified, and the obstacles
were expressed as linear constraints. The proposed algorithm
ensured a high degree of freedom and feasibility, as shown
in Fig. 1(c). The longitudinal-lateral decomposition method
was utilized for precise trajectory planning while maintaining
the QP form [22]. This method separates and analyzes the
collision-free region into two domains, time-longitudinal and
time-lateral, rather than a longitudinal-lateral domain. In this
case, obstacle avoidance timing, which means when to over-
take obstacles, is an important parameter. In [23], a hybrid
trajectory panning algorithm that analyzes longitudinally by
optimization and laterally by sampling was proposed. Since the
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Fig. 2. Transformation into curvilinear coordinates.

lateral candidate path was predetermined, obstacle avoidance
timing was also predetermined. However, since multiple lon-
gitudinal model predictive control (MPC) for multiple lateral
paths was used, the computational load was significant. In
[24], an optimization-based approach to both longitudinal
and lateral paths was applied. Their algorithm predefined
obstacle avoidance timing through several assumptions and
applied MPC to each longitudinal and lateral path. However,
the obstacle avoidance timing determines the optimality and
smoothness of the trajectory. The analysis of this aspect has
been inadequate, and the optimization of obstacle avoidance
timing has not been addressed. Therefore, optimization of the
obstacle avoidance timing in longitudinal and lateral decom-
position is a task to be solved.

This study introduces a new optimization variable: infor-
mation on obstacle avoidance timing. Trajectory planning, in-
cluding obstacle avoidance timing, has usually been optimized
through NP [24] or mixed integer quadratic programming
(MIQP) [25] due to its nonlinearity. We propose a method
to transform the primal NP problem into a weak duality QP
problem. In a dual problem, all cost functions are expressed
in quadratic form, and constraints are expressed as a linear
combination of optimization variables. We provide the details
in Section III. Finally, we optimized the trajectory and obstacle
avoidance timing by only one QP. The main contributions of
this study are as follows: (1) A trajectory planning algorithm
through QP is proposed. (2) Weak duality linear constraints
for collision avoidance are proposed. (3) Obstacle avoidance
timings are simultaneously optimized with the trajectory. (4)
Extension for multiple obstacles and situations.

The rest of this paper is organized as follows. Section II
defines the problem and introduces the overall schematic of
the proposed trajectory planner. In Section III, we construct
the primal optimization problem for trajectory planning and
propose weak duality QP. The performance validation results
of the simulations are provided in Section IV. The conclusion
and future work are presented in Section V.

II. PROBLEM STATEMENT

A. Curvilinear Coordinate

In this study, the station-lateral offset coordinate, denoted as
the S�Q coordinate, was employed to describe the surround-
ing environment and obstacles. This framework facilitates the
representation of the ego-vehicle, environment, and obstacles
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as a lateral offset and station relative to the global path, as
shown in Fig. 2. The transition from the X � Y to the S�Q
coordinates has been methodically formulated and leveraged
in previous studies of trajectory planning [11], [13].

A noteworthy advantage of adopting the S �Q coordinate
system lies in its efficacy in planning trajectories for curved
roads. In real life, encountering curved roads is inevitable,
characterized by diverse curvatures. Under such circumstances,
the S �Q coordinate system emerges as a potent mechanism
for effectively capturing the intricacies of curvilinear roads.

B. System Dynamics

For optimization-based trajectory planning, we performed
a system dynamics analysis. Previous studies used the point
mass model, bicycle model, and planar car model as system
dynamics [26]. Among them, the point mass model has the
advantage of simplifying the vehicle model. Although it is less
accurate than other models, it is accurate enough for trajectory
planning [27]. Therefore, it has often been used in the previous
trajectory planning studies [28], [15]. Likewise, we focused on
trajectory planning using QP rather than developing a precise
vehicle model. Therefore, the following point mass kinematics
were used as vehicle models:

s(k + 1) = s(k) + vx(k)4t+ ax(k)
4t2

2
;

vx(k + 1) = vx(k) + ax(k)4t;

q(k + 1) = q(k) + vy(k)4t+ ay(k)
4t2

2
;

vy(k + 1) = vy(k) + ay(k)4t

(1)

where s and q are the station and lateral offset of the ego
vehicle, as shown in Fig. 2. vx and vy are the longitudinal
and lateral velocity relative to the global path, and ax and
ay are the longitudinal and lateral acceleration relative to the
global path, respectively. 4t is the sampling time.

Furthermore, a lagged system was introduced to consider the
difference between the point mass models and vehicle models.

ax(k + 1) = e
� 4t�l;x ax(k) +

�
1� e�

4t
�l;x

�
ax;d(k)

ay(k + 1) = e
� 4t�l;y ay(k) +

�
1� e�

4t
�l;y

�
ay;d(k)

(2)

where ax;d(k) and ay;d(k) are desired longitudinal and
lateral accelerations. �l;x and �l;y are time constants of longi-
tudinal and lateral dynamics. In this study, considering the
reactivity of articulated vehicles, �l;x and �l;y were set to
500ms each. The above model consists of the following state
space dynamics:

x(k + 1) = Ax(k) + Bu(k);

where x(k) =
�
s(k) vx(k) q(k) vy(k) ax(k) ay(k)

�T
;

u(k) =
�
ax;d(k) ay;d(k)

�T
;

A =

266666664

1 4t 0 0 4t2=2 0
0 1 0 0 4t 0
0 0 1 4t 0 4t2=2
0 0 0 1 0 4t
0 0 0 0 e

� 4t�l;x 0

0 0 0 0 0 e
� 4t�l;y

377777775
;

B =

264 04�2

1� e�
4t
�l;x 0

0 1� e�
4t
�l;y

375
(3)

The system was a linear time-invariant system. This prop-
erty had a significant advantage in terms of computational
load. For this reason, lagged point mass models have been
frequently used in trajectory planning.

Remark 1. The proposed trajectory planning algorithm used
the lagged point-mass model. This model, characterized by
its simplicity and linearity, offers advantages in computa-
tional efficiency. Furthermore, we considered the lagged ef-
fect to address disparities between this model and vehicle
dynamics. Nonetheless, this model may exhibit limitations in
accurately representing real-world vehicles—these modeling
errors, though present, are manageable.

In recent autonomous vehicle studies, trajectory planning
studies have adopted simplified models, while complex vehicle
dynamics are considered in the tracking control [29], [30].
Establishing a safety margin during trajectory planning is
crucial in these trajectory planning algorithms. The design
of the tracking controller is rigorously constrained to ensure
it operates within this safety margin, thereby guaranteeing
the overall safety of the autonomous vehicle. The proposed
algorithm used a safety margin of 50 cm on both sides. This
safety margin compensates for modeling errors from using
the point-mass model, enhancing the safety of the trajectory
planning process.

C. Model Predictive Control

MPC is a well-known optimization algorithm. Future inputs
are optimized based on predicted states of MPC. This method
can easily consider system constraints and is robust against
disturbance and model uncertainty due to the receding horizon
method [31]. Several MPCs, such as linear MPC [12], robust
MPC [32], and Laguerre MPC [33], have been applied in
autonomous driving studies, including trajectory planning. In
this study, the trajectory was planned and optimized based on
MPC. The general MPC formulation is as in (4). Terminal cost
(Pf ) is determined through an algebraic Riccati equation [34].

min
U

J =

Np�1X
m=0

kx(k +mjk)� xdes(k +m)kQ (4a)
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TABLE I
TUNING PARAMETERS OF MPC.

Symbol Parameter Value
4t Sampling time 100ms

�l;x; �l;y Time constants 500ms
Q Weight matrix for errors diag(0; 1; 1; 1; 100; 100)
R Weight matrix for input diag(100; 100)
Np Prediction horizon 50
Nc Control horizon 50

+

Nc�1X
m=0

ku(k +m)kR + kx(k +Npjk)kPf

s.t. x(k +m+ 1jk) = Ax(k +mjk) + Bu(k +m) (4b)
x(kjk) = x(k) (4c)
x(k +mjk) 2X; m = 1; � � � ; Np (4d)
u(k +m) 2 U; m = 0; � � � ; Nc � 1 (4e)

where x(k) represents the states observed or estimated at k
step, x(k+mjk) represents the predicted states at k+m step
from step k, u(k + m) represents the future input at time
k + m step, and U represents the optimized input sequence.
In addition, Q and R are covariance matrices that determine
the weights of tracking error, lagged input, and desired input.
Np and Nc are the prediction horizon and control horizon. The
tuning parameters are given in Table I. �U is the set of input
constraints, and �X is the set of state constraints. If U and X

are non-convex or nonlinear, the MPC problem is optimized
through NP. Conversely, if U and X are linear constraints, the
MPC problem is optimized through QP. In other words, for
trajectory planning using QP, it is essential to express obstacle
avoidance constraints as linear constraints.

The control input is the first element of the solution U� to
the problem (4) as follows:

u(k) = U�(1) (5)

The minimum cost function (Jmin), the optimized cost
function, is defined as follows:

Jmin = J
��
U=U�

(6)

In this study, two MPCs for lane-keeping and lane-change
were applied. Both MPCs shared the same cost function.
The driving mode with the lower Jmin was selected in the
judgment phase, and Jmin was actively utilized.

D. Overall Schematic

Fig. 3 shows the strategy of the proposed trajectory planner.
For a safe and realistic trajectory, trajectories for two situations
were planned: lane-keeping mode and lane-change mode.
Afterward, the planner selected the driving mode according
to minimum cost functions. In general, the lane-keeping mode
is preferred if there are no obstacles or there is a large gap
with the preceding vehicle. However, in some situations, it is
advantageous to adopt a lane-change mode.
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Fig. 3. Overall schematic of proposed trajectory planner.

� Overtaking: If the preceding vehicle is very slow relative
to the desired velocity, overtaking may be a strategy to
reduce the cost function.

� Static obstacle avoidance: An autonomous vehicle should
avoid static obstacles such as construction or lane reduc-
tion roads. The autonomous vehicle should overcome the
situation by adopting a lane-change mode.

� Emergency obstacle avoidance: An emergency situation
in which braking alone cannot avoid a collision. The
vehicle can avoid collision through the lane-change mode
by planning the path and velocity simultaneously.

The mode change decision for the above situations was
based on the minimum cost function of each MPC. Both MPCs
shared the same cost function. Therefore, the mode with a low
minimum cost function was judged to have a more optimal
trajectory. In conclusion, the trajectory planner selected the
trajectory with a lower minimum cost function.

III. TRAJECTORY PLANNING USING QUADRATIC
PROGRAMMING

Trajectory planning is an essential technology in au-
tonomous driving. This technology is responsible for planning
a collision-free trajectory based on the perception sensor and
handing it over to the tracking controller. We developed a lane-
keeping mode that played an advanced cruise control (ACC)
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role and a lane-change mode that avoided obstacles. The lane-
keeping mode, which considers only the longitudinal relative
distance and velocity to obstacles, has been proposed using
linear MPC in many previous studies [35], [36]. Similarly, we
designed the lane-keeping mode through linear MPC in this
study.

The most challenging problem is the lane change mode.
Simultaneously optimizing not only the path but also the ve-
locity while avoiding obstacles is still challenging. In previous
studies, algorithms were proposed through NP [24] and MIQP
[25]. These algorithms had the limitation of having a massive
computational load. Our proposed novel obstacle constraint
processing algorithm maintains QP form while simultaneously
considering longitudinal and lateral trajectories in lane-change
mode. For this purpose, we used the longitudinal-lateral de-
composition method. We also propose a weak duality problem
that converts nonlinear constraints to linear constraints by
introducing weakly dual functions. The proposed algorithm
optimizes trajectory and obstacle avoidance timing by only
one QP.

A. Cost Functions and General Constraints

This section defines the cost function and sets general
constraints for vehicle safety. These apply equally to all
driving situations. The lane-keeping mode and lane-change
mode are proposed by adding constraints on obstacles.

1) Cost Function: A cost function is defined for
optimization-based trajectory planning. The cost function is
as (4a). The desired states are as follows:

xdes(k +m) =

8><>:
h
� vx;des 0 0 0 0

iT
: Lane-keepingh

� vx;des �D 0 0 0
iT

: Lane-change

(7)

where D is the lane width, vx;des is the desired velocity or road
velocity limit. The cost function includes the difference with
the desired velocity, the lateral position error for the global
path, and the lateral velocity. In this study, the cost function for
the station was not defined; consequently, the desired station
was represented as a null value (�). For the lane-keeping mode,
the lateral position error is based on lane 1, and the lane-
change mode is based on lane 2. In addition, acceleration and
desired acceleration were considered by adding cost for ax,
ay and u. That was a cost function for ride comfort.

Remark 2. The cost function encompasses a weighted sum-
mation of vehicle state values and inputs. The determination
of these weights is contingent upon the weight matrix for
errors (Q) and the weight matrix for inputs (R). Tuning these
matrices is a crucial task and is imperative to consider the
following physical considerations. Regarding the matrix Q,
its second diagonal element embodies the weight associated
with longitudinal tracking, while the third and fourth diagonal
elements correspond to the lateral tracking weight. Should
expedited acceleration be desired, elevating the value of the
second diagonal element is recommended. An enormous value
for the third and fourth diagonal elements can facilitate swifter
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Fig. 4. Grip circle and linearized grip circle.

lane changes. The fifth and sixth diagonal elements of Q
are equated to those of R. Within R, the first and second
diagonal components signify the weights for longitudinal and
lateral accelerations. Analogously, the weighting can be ad-
justed for the longitudinal and lateral directions by tuning
these components. The magnitude of Q and R governs the
relationship between tracking error and input effort. A larger
Q enables fast acceleration and lane changes, and a larger R
enables smooth and comfortable driving. This way, selecting
appropriate weight matrices can achieve the desired purpose.

2) Constraints for Vehicle Stability: Longitudinal and lat-
eral accelerations are limited due to constraints imposed by
tire grip and engine power capabilities as follows:

ax;d(k +m) � axq
ax;d(k +m)2 + ay;d(k +m)2 � amax;

for m = 0; � � � ; Nc � 1

(8)

Where the maximum longitudinal acceleration of the vehi-
cle, denoted as ax, is set to 3m=s2, the combined maximum
acceleration, denoted amax, is set to 8m=s2. The graphical
representation of (8) is shown in Fig. 4, where it appears in a
light gray shade.

These constraints encompass quadratic components, thereby
significantly elevating the computational intricacy. It is note-
worthy, however, that the grip circle constraints exhibit convex
characteristics. As a result, the expression (8) can be reformu-
lated to following linearized constraints:

ax;d(k +m) � ax

Constn :

�
sin (

n� 1

6
�)� sin (

n� 2

6
�)

�
ay;d(k +m)

+

�
cos (

n� 1

6
�)� cos (

n� 2

6
�)

�
ax;d(k +m) � amax

2

for n = 1; � � � ; 8; m = 0; � � � ; Nc � 1
(9)

We also set constraints for lanes. We assumed the situation
of avoiding obstacles by moving to the right lane. Therefore,
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the constraint that the vehicle should be located inside the
current and right lanes was set as follows:

�D � w
2

�D � y(k +m) � D � w
2

; m = 1; � � � ; Np
(10)

where w is the ego vehicle width. We assumed the situation of
avoiding obstacles by moving to the right lane. Furthermore,
avoiding obstacles by moving to the left lane or to off-road
conditions can be easily applied.

B. Lane-keeping Mode

Lane-keeping mode played the role of ACC for the preced-
ing vehicle. This mode did not consider obstacle avoidance
in the lateral direction. In other words, through longitudinal
trajectory planning, the ego vehicle kept close to the desired
velocity while maintaining a certain distance from the preced-
ing vehicle or moving obstacle. The cost function was the same
as (4a). The obstacle’s future trajectory was predicted by its
current position (sO(k)) and its current longitudinal velocity
(vO(k)) as follows:

sO(k +m) = sO(k) + vO(k)(m4t) (11)

The relative distance constraints to the target obstacle are
as follows:

s(k +m) � sO(k +m)� s;
s = s0 + vx(k)tH

(12)

where s0 is the standstill distance and tH is the time headway.
The above relative distance formula has been used in several
ACC studies [37]. Based on previous studies, s0 = 5m and
tH = 2 sec were set.

In conclusion, the optimization problem for trajectory plan-
ning for lane-keeping mode is as follows:

min
U

(4a); s.t. (4b); (8); (10); (12) (13)

(13) had a QP form that can be optimized through a general
QP solver. The minimum cost function when selecting the
lane-keeping mode is as follows:

Jmin;LK = (4a)
��
U=U�LK

(14)

where U�LK is the optimized input sequence of (13). Jmin;LK
was compared with the minimum cost function of lane-change
mode to determine whether to change mode.

C. Lane-change Mode: Primal Optimization Problem

Lane-change mode is a situation that includes lateral move-
ment to avoid collision with obstacles. In general driving, lane
keeping is preferred, but lane change is essential in situations
such as overtaking and obstacle avoidance. This section intro-
duces the primal optimization problem for optimization-based
lane change trajectory planning.

Ego

vehicle

Obstacle (Preceding vehicle or static obstacle)

Collision-free

region

Collision

region
𝐒

𝐐

𝑶𝒇

𝑶𝒂𝒇𝑶𝒂𝒓
Planned trajectory

Phase 1 Phase 2 Phase 3

Fig. 5. Collision-free region, collision region, and obstacles.

The collision-free region can be expressed as CF set, as
shown in Fig. 5. Collision-free constraints are expressed as:

(s(k +m); q(k +m)) 2 CF; m = 1; � � � ; Np (15)

where CF is the set of the collision-free region as shown in
Fig. 5. The primal optimization problem for lane-change mode
is defined as follows:

min
U

(4a); s.t. (4b); (8); (10); (15) (16)

Due to nonlinear collision-free constraints, the primal opti-
mization problem should be optimized via NP [24] or MIQP
[25]. NP or MIQP causes excessive computational load. These
limitations are a significant weakness in the real-time imple-
mentation of autonomous driving technology.

D. Strategy of Proposed Algorithm

This section introduces the concept of converting method
trajectory planning in lane-change mode to QP form. The
proposed trajectory planning algorithm, expressed in QP form,
guaranteed a lower computational load than previous studies
such as NP or MIQP. We propose our algorithm on the basis
of the longitudinal-lateral decomposition method. Unlike pre-
vious studies, this study simultaneously optimized trajectory
and obstacle avoidance timing (NOAT;s; NOAT;e). For this, we
introduced ingenious dual functions and added an optimization
variable with information about NOAT;s; NOAT;e. Finally, a
weak duality QP problem is proposed.

1) Considered obstacles: Distinct from the lane-keeping
mode, which solely accounts for the preceding vehicle, the
lane-change mode encompasses an all-encompassing assess-
ment of proximate obstacles. As shown in Fig. 5, this study
considered various obstacles: front obstacle within the same
lane (Of ), rear obstacle in the different lane (Oar), and front
obstacle in the different lane (Oaf ). The requisite information
for each obstacle is as (17). Furthermore, for algorithmic
simplicity, we assumed that obstacles are positioned at the
precise center of each respective lane. It can readily be rectified
when such is not central alignment through a straightforward
adjustment of obstacle width.

sO;(�) : Initial stations of obstacles
lO;(�) : Lengths of obstacles

vO;(�) : Initial velocities of obstacles
wO;(�) : Widths of obstacles

(17)



7

Fig. 6. Collision-free constraints using longitudinal-lateral decomposition
method. (a) Longitudinal constraints. (b) Lateral constraints.

2) Longitudinal-lateral Decomposition:The longitudinal-
lateral decomposition algorithm planned the trajectory in the
T-S (time-longitudinal) and T-Q (time-lateral) coordinate sys-
tems instead of the S-Q coordinate system [23], [24], as
shown in Fig. 6. The light gray regions in Fig. 6 represent
collision-free constraints. Longitudinal and lateral constraints
are mathematically expressed according to phase as:

� Phase 1: Pre region (Before lane change initiation),m =
1; � � � ; NOAT;s

�1 � s(k + m) � sO;f (k + m);

� D +
w + wO;or

2
� q(k + m) � 1

(18)

� Phase 2: Peri region (During lane change execution),m =
NOAT;s ; � � � ; NOAT;e

sO;ar (k + m) � s(k + m) � sO;f (k + m) (19)

� Phase 3: Post region (Upon lane change completion),
m = NOAT;e ; � � � ; Np

sO;ar (k + m) � s(k + m) � sO;af (k + m);

�1 � q(k + m) � �
w + wO;f

2

(20)

Here,NOAT;s NOAT;e are the obstacle avoidance timings.
Given NOAT; ( �) , a collision-free region can be expressed with
linear constraints as in (18)-(20). Therefore, determining and
optimizing NOAT; ( �) is essential to the longitudinal-lateral
decomposition method. In previous studies,NOAT; ( �) was
selected through multiple candidate paths or was used as a
�xed value through various assumptions. When using many
NOAT; ( �) candidates, the computational load was multiplied by
that much. Moreover, when usingNOAT; ( �) as a �xed value,
the planned trajectory might not be optimal. In this study,
we propose a weak duality QP problem that simultaneously
optimizes trajectory andNOAT; ( �) and maintains the QP form.

Fig. 7. Collision-free constraints of primal and dual optimization problems.
(a) Longitudinal constraints. (b) Lateral constraints.

3) Strategy of Proposed Algorithm:Fig. 7 shows the algo-
rithm's strategy in trajectory planning for obstacle avoidance
situations. The light gray area represents the collision-free
constraints of the primal optimization problem. The dark gray
area represents the dual collision-free constraints through the
proposed dual functions. Dual constraints are expressed as
follows:

NOAT;s !

(
s(k + m) � sO;ar (k + m) + hx;s (NOAT;s ; m)
q(k + m) � � D + wO;or + w

2 + hy;s (NOAT;s ; m)

NOAT;e !

(
s(k + m) � sO;f (k + m) + hx;e (NOAT;e ; m)
q(k + m) � � wO;f + w

2 + hy;e (NOAT;e ; m)

s(k + m) � sO;af (k + m)

form = 1 ; � � � ; Np
(21)

wherehx; ( �) (�; �) is the dual longitudinal constraint function,
hy; ( �) (�; �) is the dual lateral constraint function, andhx; ( �) (�; �)
andhy; ( �) (�; �) change according toNOAT; ( �) . The introduction
of the dual function makes it possible to express continuous
constraints rather than conditional constraints. Furthermore,
nonlinearity can be eliminated if those functions can be
expressed as linear constraints of optimization variables. This
study aimed to convert collision-free constraints, which were
nonlinear constraints, into linear constraints by introducing
hx; ( �) (�; �) and hy; ( �) (�; �). For the above strategy, proper se-
lection of hx; ( �) (�; �) and hy; ( �) (�; �) was essential. Next, we
analyzed the necessary conditions and proposed the function.

Remark 3. The dual functions, denoted ash( �) ;s and
h( �) ;e, encompass information corresponding toNOAT;s and
NOAT;e , and share analogous attributes. The driving scenario
predominantly involves the avoidance of a forward obstacle
within the same lane(Of ). Consequently, we �rst analyze the
characteristics ofh( �) ;e, which is a function forNOAT;e , and
propose a dual function based on this. After, we extended and
proposed the dual constraintsh( �) ;e for the rear obstacle of
the other lane.


