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Abstract—Highly autonomous driving technology is expected to
improve driving safety and convenience, and collision avoidance
technology is essential for fully autonomous driving. Planning a
collision-free trajectory that includes velocity and path is one of
the most challenging objectives. Optimization-based trajectory
planners have been proposed in many previous studies because
they offer a high degree of freedom and can handle various
situations. However, most previous trajectory planners used
nonlinear programming due to the nonlinearity or non-convexity
of the optimization problem. These methods come with a high
computational load. The trajectory planner requires the real-
time ability to cope with dynamically changing environments.
This paper focuses on the trajectory planning of autonomous
vehicles through quadratic programming (QP), which requires
a low computational load. To achieve this, we introduce the
longitudinal-lateral decomposition method. In addition, collision-
free constraints are expressed as linear constraints through
proposed ingenious dual functions. The proposed weak duality
optimization problem has a QP form and optimized trajectory
and obstacle avoidance timing through only one QP problem.
This study verified that the proposed trajectory planner could
plan smooth collision-free maneuvers for several driving situa-
tions by simulations.

Index Terms—Autonomous vehicle, Model predictive control
(MPC), Quadratic programming (QP), Trajectory planning,
Weak duality.

I. INTRODUCTION

INTELLIGENT vehicles are attracting attention with ad-
vances in sensor and control technology [1]. Advanced

autonomous driving technology transfers control to the ve-
hicle and improves driving safety and convenience [2]. These
technologies have received considerable attention in academia,
industry, and the military over the past few decades. Recent
studies from the DARPA Grand and Urban challenge [3] to
Google cars [4] and Tesla [5] have shown admirable au-
tonomous driving performance. Nevertheless, some challenges
remain to be addressed for a fully autonomous vehicle. One
of these challenges is trajectory planning technology, essential
for ensuring vehicle stability and safety during autonomous
driving [6], [7]. Planning a trajectory that includes the path and
velocity for dynamically changing vehicles and environments
is a complicated challenge [8]. Trajectory planning techniques
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need to meet the driving purpose and offer a collision-free
path and velocity. Furthermore, real-time implementation is
necessary for the commercialization of autonomous vehicles
[9].

Trajectory planning is mainly divided into sampling-based
approaches and optimization-based approaches. Sampling-
based approaches select the best path among finite collision-
free path candidates [10]. Cubic splines [11] and quintic
polynomials [12] have been used to generate path candidates.
Recently, trajectory planning algorithms have been studied to
plan the vehicle velocity simultaneously with the path [13].
The sampling-based approach is relatively inexpensive due to
the characteristic of predetermining candidate paths. However,
since the shape of paths is predetermined, there is a limit
to expressing various driving maneuvers. While it may not
be a problem for smooth maneuvers such as overtaking, it
can pose significant challenges for more complex maneuvers
like obstacle avoidance. In other words, these approaches are
judged infeasible if there is no collision-free path among the
predetermined paths, even if avoidance is possible. Therefore,
these sampling-based approaches have limitations in terms of
feasibility [14].

The optimization-based approaches have the advantage of
having a higher degree of freedom than the sampling-based
approach because the path is not predetermined. This advan-
tage allows trajectory planning of various driving maneuvers.
These approaches plan a path and velocity that satisfy the
constraints and optimize the cost function. The cost function
is set to the cost for ride comfort [15] and ego vehicle velocity
[16]. Obstacle avoidance has usually been handled through
constraints. In previous studies, obstacles were represented
by constraints in the shape of circles [17] and ellipses [18].
However, these studies included non-convex cost functions or
nonlinear constraints. Due to nonlinearity, nonlinear program-
ming (NP), which has a significant computational load, has
been used. The usage of NP has the fatal disadvantage of not
guaranteeing the real-time implementation of the optimization-
based approach. Therefore, reducing the computational load
for real-time trajectory planning is essential [19].

Recently, some studies proposed optimizing trajectory
through quadratic programming (QP) rather than NP [20],
[21]. QP has a significantly lower computational load than NP.
Therefore, it is attracting attention as a technology that can im-
prove real-time implementation ability. One of the challenges
is to express the conditions for obstacle avoidance using the
QP form. Previous studies expressed obstacles as a quadratic
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Fig. 1. Collision-free region for obstacle avoidance. (a) Nonlinear constraints.
(b) Linear approximation constraints [20]. (c) Proposed constraints.

cost function and linear constraints. In [21], the modified cost
function, which increased as the distance to the obstacle was
closer, has been proposed for obstacle avoidance. However, the
initial modified cost function did not ensure complete obstacle
avoidance. Therefore it involved checking, modifying, and
iterating until obstacle avoidance. These iterating processes
had an enormous computational load than general QP. It also
had a limitation in that it could harm the essence of the
optimization cost function. In [20], obstacles were expressed
as linear constraints, as shown in Fig. 1(b). This expression
had advantages in terms of computational load, but linear
constraints predetermined by Lx and Ly could cause fatal
limitations. First, setting an overly conservative collision-
free region could produce an unusual trajectory. Second,
several tricks have been used because trajectory planning for
overtaking obstacles by changing lanes was impossible with
predetermined linear constraints, as shown in Fig. 1(b). Thus,
expressing obstacles with linear constraints was an original
concept, but several problems needed to be resolved.

We propose a trajectory planning algorithm through QP
form. The cost function was not modified, and the obstacles
were expressed as linear constraints. The proposed algorithm
ensured a high degree of freedom and feasibility, as shown
in Fig. 1(c). The longitudinal-lateral decomposition method
was utilized for precise trajectory planning while maintaining
the QP form [22]. This method separates and analyzes the
collision-free region into two domains, time-longitudinal and
time-lateral, rather than a longitudinal-lateral domain. In this
case, obstacle avoidance timing, which means when to over-
take obstacles, is an important parameter. In [23], a hybrid
trajectory panning algorithm that analyzes longitudinally by
optimization and laterally by sampling was proposed. Since the
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Fig. 2. Transformation into curvilinear coordinates.

lateral candidate path was predetermined, obstacle avoidance
timing was also predetermined. However, since multiple lon-
gitudinal model predictive control (MPC) for multiple lateral
paths was used, the computational load was significant. In
[24], an optimization-based approach to both longitudinal
and lateral paths was applied. Their algorithm predefined
obstacle avoidance timing through several assumptions and
applied MPC to each longitudinal and lateral path. However,
the obstacle avoidance timing determines the optimality and
smoothness of the trajectory. The analysis of this aspect has
been inadequate, and the optimization of obstacle avoidance
timing has not been addressed. Therefore, optimization of the
obstacle avoidance timing in longitudinal and lateral decom-
position is a task to be solved.

This study introduces a new optimization variable: infor-
mation on obstacle avoidance timing. Trajectory planning, in-
cluding obstacle avoidance timing, has usually been optimized
through NP [24] or mixed integer quadratic programming
(MIQP) [25] due to its nonlinearity. We propose a method
to transform the primal NP problem into a weak duality QP
problem. In a dual problem, all cost functions are expressed
in quadratic form, and constraints are expressed as a linear
combination of optimization variables. We provide the details
in Section III. Finally, we optimized the trajectory and obstacle
avoidance timing by only one QP. The main contributions of
this study are as follows: (1) A trajectory planning algorithm
through QP is proposed. (2) Weak duality linear constraints
for collision avoidance are proposed. (3) Obstacle avoidance
timings are simultaneously optimized with the trajectory. (4)
Extension for multiple obstacles and situations.

The rest of this paper is organized as follows. Section II
defines the problem and introduces the overall schematic of
the proposed trajectory planner. In Section III, we construct
the primal optimization problem for trajectory planning and
propose weak duality QP. The performance validation results
of the simulations are provided in Section IV. The conclusion
and future work are presented in Section V.

II. PROBLEM STATEMENT

A. Curvilinear Coordinate

In this study, the station-lateral offset coordinate, denoted as
the S−Q coordinate, was employed to describe the surround-
ing environment and obstacles. This framework facilitates the
representation of the ego-vehicle, environment, and obstacles
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as a lateral offset and station relative to the global path, as
shown in Fig. 2. The transition from the X − Y to the S−Q
coordinates has been methodically formulated and leveraged
in previous studies of trajectory planning [11], [13].

A noteworthy advantage of adopting the S −Q coordinate
system lies in its efficacy in planning trajectories for curved
roads. In real life, encountering curved roads is inevitable,
characterized by diverse curvatures. Under such circumstances,
the S −Q coordinate system emerges as a potent mechanism
for effectively capturing the intricacies of curvilinear roads.

B. System Dynamics

For optimization-based trajectory planning, we performed
a system dynamics analysis. Previous studies used the point
mass model, bicycle model, and planar car model as system
dynamics [26]. Among them, the point mass model has the
advantage of simplifying the vehicle model. Although it is less
accurate than other models, it is accurate enough for trajectory
planning [27]. Therefore, it has often been used in the previous
trajectory planning studies [28], [15]. Likewise, we focused on
trajectory planning using QP rather than developing a precise
vehicle model. Therefore, the following point mass kinematics
were used as vehicle models:

s(k + 1) = s(k) + vx(k)△t+ ax(k)
△t2

2
,

vx(k + 1) = vx(k) + ax(k)△t,

q(k + 1) = q(k) + vy(k)△t+ ay(k)
△t2

2
,

vy(k + 1) = vy(k) + ay(k)△t

(1)

where s and q are the station and lateral offset of the ego
vehicle, as shown in Fig. 2. vx and vy are the longitudinal
and lateral velocity relative to the global path, and ax and
ay are the longitudinal and lateral acceleration relative to the
global path, respectively. △t is the sampling time.

Furthermore, a lagged system was introduced to consider the
difference between the point mass models and vehicle models.

ax(k + 1) = e
− △t

τl,x ax(k) +

(
1− e

− △t
τl,x

)
ax,d(k)

ay(k + 1) = e
− △t

τl,y ay(k) +

(
1− e

− △t
τl,y

)
ay,d(k)

(2)

where ax,d(k) and ay,d(k) are desired longitudinal and
lateral accelerations. τl,x and τl,y are time constants of longi-
tudinal and lateral dynamics. In this study, considering the
reactivity of articulated vehicles, τl,x and τl,y were set to
500ms each. The above model consists of the following state
space dynamics:

x(k + 1) = Ax(k) +Bu(k),

where x(k) =
[
s(k) vx(k) q(k) vy(k) ax(k) ay(k)

]T
,

u(k) =
[
ax,d(k) ay,d(k)

]T
,

A =



1 △t 0 0 △t2/2 0
0 1 0 0 △t 0
0 0 1 △t 0 △t2/2
0 0 0 1 0 △t

0 0 0 0 e
− △t

τl,x 0

0 0 0 0 0 e
− △t

τl,y


,

B =

 04×2

1− e
− △t

τl,x 0

0 1− e
− △t

τl,y


(3)

The system was a linear time-invariant system. This prop-
erty had a significant advantage in terms of computational
load. For this reason, lagged point mass models have been
frequently used in trajectory planning.

Remark 1. The proposed trajectory planning algorithm used
the lagged point-mass model. This model, characterized by
its simplicity and linearity, offers advantages in computa-
tional efficiency. Furthermore, we considered the lagged ef-
fect to address disparities between this model and vehicle
dynamics. Nonetheless, this model may exhibit limitations in
accurately representing real-world vehicles—these modeling
errors, though present, are manageable.

In recent autonomous vehicle studies, trajectory planning
studies have adopted simplified models, while complex vehicle
dynamics are considered in the tracking control [29], [30].
Establishing a safety margin during trajectory planning is
crucial in these trajectory planning algorithms. The design
of the tracking controller is rigorously constrained to ensure
it operates within this safety margin, thereby guaranteeing
the overall safety of the autonomous vehicle. The proposed
algorithm used a safety margin of 50 cm on both sides. This
safety margin compensates for modeling errors from using
the point-mass model, enhancing the safety of the trajectory
planning process.

C. Model Predictive Control

MPC is a well-known optimization algorithm. Future inputs
are optimized based on predicted states of MPC. This method
can easily consider system constraints and is robust against
disturbance and model uncertainty due to the receding horizon
method [31]. Several MPCs, such as linear MPC [12], robust
MPC [32], and Laguerre MPC [33], have been applied in
autonomous driving studies, including trajectory planning. In
this study, the trajectory was planned and optimized based on
MPC. The general MPC formulation is as in (4). Terminal cost
(Pf ) is determined through an algebraic Riccati equation [34].

min
U

J =

Np−1∑
m=0

∥x(k +m|k)− xdes(k +m)∥Q (4a)
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TABLE I
TUNING PARAMETERS OF MPC.

Symbol Parameter Value
△t Sampling time 100ms

τl,x, τl,y Time constants 500ms
Q Weight matrix for errors diag(0, 1, 1, 1, 100, 100)
R Weight matrix for input diag(100, 100)
Np Prediction horizon 50
Nc Control horizon 50

+

Nc−1∑
m=0

∥u(k +m)∥R + ∥x(k +Np|k)∥Pf

s.t. x(k +m+ 1|k) = Ax(k +m|k) +Bu(k +m) (4b)
x(k|k) = x(k) (4c)
x(k +m|k) ∈X, m = 1, · · · , Np (4d)
u(k +m) ∈ U, m = 0, · · · , Nc − 1 (4e)

where x(k) represents the states observed or estimated at k
step, x(k+m|k) represents the predicted states at k+m step
from step k, u(k + m) represents the future input at time
k +m step, and U represents the optimized input sequence.
In addition, Q and R are covariance matrices that determine
the weights of tracking error, lagged input, and desired input.
Np and Nc are the prediction horizon and control horizon. The
tuning parameters are given in Table I. Ū is the set of input
constraints, and X̄ is the set of state constraints. If U and X

are non-convex or nonlinear, the MPC problem is optimized
through NP. Conversely, if U and X are linear constraints, the
MPC problem is optimized through QP. In other words, for
trajectory planning using QP, it is essential to express obstacle
avoidance constraints as linear constraints.

The control input is the first element of the solution U∗ to
the problem (4) as follows:

u(k) = U∗(1) (5)

The minimum cost function (Jmin), the optimized cost
function, is defined as follows:

Jmin = J
∣∣
U=U∗ (6)

In this study, two MPCs for lane-keeping and lane-change
were applied. Both MPCs shared the same cost function.
The driving mode with the lower Jmin was selected in the
judgment phase, and Jmin was actively utilized.

D. Overall Schematic

Fig. 3 shows the strategy of the proposed trajectory planner.
For a safe and realistic trajectory, trajectories for two situations
were planned: lane-keeping mode and lane-change mode.
Afterward, the planner selected the driving mode according
to minimum cost functions. In general, the lane-keeping mode
is preferred if there are no obstacles or there is a large gap
with the preceding vehicle. However, in some situations, it is
advantageous to adopt a lane-change mode.

Optimization problem

statements

Chapter III.B

Optimization problem

statements

Chapter III.G

QP solver QP solver

Minimum cost function

𝐽𝑚𝑖𝑛,𝐿𝐾

Minimum cost function

𝐽𝑚𝑖𝑛,𝐿𝐶

𝐽𝑚𝑖𝑛,𝐿𝐾 < 𝐽𝑚𝑖𝑛,𝐿𝐶 NoYes

Lane-keeping mode Lane-change mode

Optimized trajectory
Optimized trajectory,

Obstacle avoidance timing

P
er

ce
p

ti
o

n

V
eh

ic
le

 c
o

n
tr

o
l

Trajectory planning

Collision-free trajectory

Quadratic programming

Trajectory planning

for Lane-keeping

Trajectory planning

for Lane-change

Fig. 3. Overall schematic of proposed trajectory planner.

• Overtaking: If the preceding vehicle is very slow relative
to the desired velocity, overtaking may be a strategy to
reduce the cost function.

• Static obstacle avoidance: An autonomous vehicle should
avoid static obstacles such as construction or lane reduc-
tion roads. The autonomous vehicle should overcome the
situation by adopting a lane-change mode.

• Emergency obstacle avoidance: An emergency situation
in which braking alone cannot avoid a collision. The
vehicle can avoid collision through the lane-change mode
by planning the path and velocity simultaneously.

The mode change decision for the above situations was
based on the minimum cost function of each MPC. Both MPCs
shared the same cost function. Therefore, the mode with a low
minimum cost function was judged to have a more optimal
trajectory. In conclusion, the trajectory planner selected the
trajectory with a lower minimum cost function.

III. TRAJECTORY PLANNING USING QUADRATIC
PROGRAMMING

Trajectory planning is an essential technology in au-
tonomous driving. This technology is responsible for planning
a collision-free trajectory based on the perception sensor and
handing it over to the tracking controller. We developed a lane-
keeping mode that played an advanced cruise control (ACC)
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role and a lane-change mode that avoided obstacles. The lane-
keeping mode, which considers only the longitudinal relative
distance and velocity to obstacles, has been proposed using
linear MPC in many previous studies [35], [36]. Similarly, we
designed the lane-keeping mode through linear MPC in this
study.

The most challenging problem is the lane change mode.
Simultaneously optimizing not only the path but also the ve-
locity while avoiding obstacles is still challenging. In previous
studies, algorithms were proposed through NP [24] and MIQP
[25]. These algorithms had the limitation of having a massive
computational load. Our proposed novel obstacle constraint
processing algorithm maintains QP form while simultaneously
considering longitudinal and lateral trajectories in lane-change
mode. For this purpose, we used the longitudinal-lateral de-
composition method. We also propose a weak duality problem
that converts nonlinear constraints to linear constraints by
introducing weakly dual functions. The proposed algorithm
optimizes trajectory and obstacle avoidance timing by only
one QP.

A. Cost Functions and General Constraints

This section defines the cost function and sets general
constraints for vehicle safety. These apply equally to all
driving situations. The lane-keeping mode and lane-change
mode are proposed by adding constraints on obstacles.

1) Cost Function: A cost function is defined for
optimization-based trajectory planning. The cost function is
as (4a). The desired states are as follows:

xdes(k +m) =


[
· vx,des 0 0 0 0

]T
: Lane-keeping[

· vx,des −D 0 0 0
]T

: Lane-change

(7)

where D is the lane width, vx,des is the desired velocity or road
velocity limit. The cost function includes the difference with
the desired velocity, the lateral position error for the global
path, and the lateral velocity. In this study, the cost function for
the station was not defined; consequently, the desired station
was represented as a null value (·). For the lane-keeping mode,
the lateral position error is based on lane 1, and the lane-
change mode is based on lane 2. In addition, acceleration and
desired acceleration were considered by adding cost for ax,
ay and u. That was a cost function for ride comfort.

Remark 2. The cost function encompasses a weighted sum-
mation of vehicle state values and inputs. The determination
of these weights is contingent upon the weight matrix for
errors (Q) and the weight matrix for inputs (R). Tuning these
matrices is a crucial task and is imperative to consider the
following physical considerations. Regarding the matrix Q,
its second diagonal element embodies the weight associated
with longitudinal tracking, while the third and fourth diagonal
elements correspond to the lateral tracking weight. Should
expedited acceleration be desired, elevating the value of the
second diagonal element is recommended. An enormous value
for the third and fourth diagonal elements can facilitate swifter
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𝐶𝑜𝑛𝑠𝑡6

𝐶𝑜𝑛𝑠𝑡7
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Fig. 4. Grip circle and linearized grip circle.

lane changes. The fifth and sixth diagonal elements of Q
are equated to those of R. Within R, the first and second
diagonal components signify the weights for longitudinal and
lateral accelerations. Analogously, the weighting can be ad-
justed for the longitudinal and lateral directions by tuning
these components. The magnitude of Q and R governs the
relationship between tracking error and input effort. A larger
Q enables fast acceleration and lane changes, and a larger R
enables smooth and comfortable driving. This way, selecting
appropriate weight matrices can achieve the desired purpose.

2) Constraints for Vehicle Stability: Longitudinal and lat-
eral accelerations are limited due to constraints imposed by
tire grip and engine power capabilities as follows:

ax,d(k +m) ≤ ax√
ax,d(k +m)2 + ay,d(k +m)2 ≤ amax,

for m = 0, · · · , Nc − 1

(8)

Where the maximum longitudinal acceleration of the vehi-
cle, denoted as ax, is set to 3m/s2, the combined maximum
acceleration, denoted amax, is set to 8m/s2. The graphical
representation of (8) is shown in Fig. 4, where it appears in a
light gray shade.

These constraints encompass quadratic components, thereby
significantly elevating the computational intricacy. It is note-
worthy, however, that the grip circle constraints exhibit convex
characteristics. As a result, the expression (8) can be reformu-
lated to following linearized constraints:

ax,d(k +m) ≤ ax

Constn :

(
sin (

n− 1

6
π)− sin (

n− 2

6
π)

)
ay,d(k +m)

+

(
cos (

n− 1

6
π)− cos (

n− 2

6
π)

)
ax,d(k +m) ≤ amax

2

for n = 1, · · · , 8, m = 0, · · · , Nc − 1
(9)

We also set constraints for lanes. We assumed the situation
of avoiding obstacles by moving to the right lane. Therefore,
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the constraint that the vehicle should be located inside the
current and right lanes was set as follows:

−D − w

2
−D ≤ y(k +m) ≤ D − w

2
, m = 1, · · · , Np

(10)

where w is the ego vehicle width. We assumed the situation of
avoiding obstacles by moving to the right lane. Furthermore,
avoiding obstacles by moving to the left lane or to off-road
conditions can be easily applied.

B. Lane-keeping Mode

Lane-keeping mode played the role of ACC for the preced-
ing vehicle. This mode did not consider obstacle avoidance
in the lateral direction. In other words, through longitudinal
trajectory planning, the ego vehicle kept close to the desired
velocity while maintaining a certain distance from the preced-
ing vehicle or moving obstacle. The cost function was the same
as (4a). The obstacle’s future trajectory was predicted by its
current position (sO(k)) and its current longitudinal velocity
(vO(k)) as follows:

sO(k +m) = sO(k) + vO(k)(m△t) (11)

The relative distance constraints to the target obstacle are
as follows:

s(k +m) ≤ sO(k +m)− s,

s = s0 + vx(k)tH
(12)

where s0 is the standstill distance and tH is the time headway.
The above relative distance formula has been used in several
ACC studies [37]. Based on previous studies, s0 = 5m and
tH = 2 sec were set.

In conclusion, the optimization problem for trajectory plan-
ning for lane-keeping mode is as follows:

min
U

(4a), s.t. (4b), (8), (10), (12) (13)

(13) had a QP form that can be optimized through a general
QP solver. The minimum cost function when selecting the
lane-keeping mode is as follows:

Jmin,LK = (4a)
∣∣
U=U∗

LK
(14)

where U∗
LK is the optimized input sequence of (13). Jmin,LK

was compared with the minimum cost function of lane-change
mode to determine whether to change mode.

C. Lane-change Mode: Primal Optimization Problem

Lane-change mode is a situation that includes lateral move-
ment to avoid collision with obstacles. In general driving, lane
keeping is preferred, but lane change is essential in situations
such as overtaking and obstacle avoidance. This section intro-
duces the primal optimization problem for optimization-based
lane change trajectory planning.

Ego

vehicle

Obstacle (Preceding vehicle or static obstacle)

Collision-free

region

Collision

region
𝐒

𝐐

𝑶𝒇

𝑶𝒂𝒇𝑶𝒂𝒓
Planned trajectory

Phase 1 Phase 2 Phase 3

Fig. 5. Collision-free region, collision region, and obstacles.

The collision-free region can be expressed as CF set, as
shown in Fig. 5. Collision-free constraints are expressed as:

(s(k +m), q(k +m)) ∈ CF, m = 1, · · · , Np (15)

where CF is the set of the collision-free region as shown in
Fig. 5. The primal optimization problem for lane-change mode
is defined as follows:

min
U

(4a), s.t. (4b), (8), (10), (15) (16)

Due to nonlinear collision-free constraints, the primal opti-
mization problem should be optimized via NP [24] or MIQP
[25]. NP or MIQP causes excessive computational load. These
limitations are a significant weakness in the real-time imple-
mentation of autonomous driving technology.

D. Strategy of Proposed Algorithm

This section introduces the concept of converting method
trajectory planning in lane-change mode to QP form. The
proposed trajectory planning algorithm, expressed in QP form,
guaranteed a lower computational load than previous studies
such as NP or MIQP. We propose our algorithm on the basis
of the longitudinal-lateral decomposition method. Unlike pre-
vious studies, this study simultaneously optimized trajectory
and obstacle avoidance timing (NOAT,s, NOAT,e). For this, we
introduced ingenious dual functions and added an optimization
variable with information about NOAT,s, NOAT,e. Finally, a
weak duality QP problem is proposed.

1) Considered obstacles: Distinct from the lane-keeping
mode, which solely accounts for the preceding vehicle, the
lane-change mode encompasses an all-encompassing assess-
ment of proximate obstacles. As shown in Fig. 5, this study
considered various obstacles: front obstacle within the same
lane (Of ), rear obstacle in the different lane (Oar), and front
obstacle in the different lane (Oaf ). The requisite information
for each obstacle is as (17). Furthermore, for algorithmic
simplicity, we assumed that obstacles are positioned at the
precise center of each respective lane. It can readily be rectified
when such is not central alignment through a straightforward
adjustment of obstacle width.

sO,(·) : Initial stations of obstacles
lO,(·) : Lengths of obstacles

vO,(·) : Initial velocities of obstacles
wO,(·) : Widths of obstacles

(17)
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Fig. 6. Collision-free constraints using longitudinal-lateral decomposition
method. (a) Longitudinal constraints. (b) Lateral constraints.

2) Longitudinal-lateral Decomposition: The longitudinal-
lateral decomposition algorithm planned the trajectory in the
T-S (time-longitudinal) and T-Q (time-lateral) coordinate sys-
tems instead of the S-Q coordinate system [23], [24], as
shown in Fig. 6. The light gray regions in Fig. 6 represent
collision-free constraints. Longitudinal and lateral constraints
are mathematically expressed according to phase as:

• Phase 1: Pre region (Before lane change initiation), m =
1, · · · , NOAT,s

−∞ ≤s(k +m) ≤ sO,f (k +m),

−D +
w + wO,or

2
≤q(k +m) ≤ ∞

(18)

• Phase 2: Peri region (During lane change execution), m =
NOAT,s, · · · , NOAT,e

sO,ar(k +m) ≤s(k +m) ≤ sO,f (k +m) (19)

• Phase 3: Post region (Upon lane change completion),
m = NOAT,e, · · · , Np

sO,ar(k +m) ≤s(k +m) ≤ sO,af (k +m),

−∞ ≤q(k +m) ≤ −w + wO,f

2

(20)

Here, NOAT,s NOAT,e are the obstacle avoidance timings.
Given NOAT,(·), a collision-free region can be expressed with
linear constraints as in (18)-(20). Therefore, determining and
optimizing NOAT,(·) is essential to the longitudinal-lateral
decomposition method. In previous studies, NOAT,(·) was
selected through multiple candidate paths or was used as a
fixed value through various assumptions. When using many
NOAT,(·) candidates, the computational load was multiplied by
that much. Moreover, when using NOAT,(·) as a fixed value,
the planned trajectory might not be optimal. In this study,
we propose a weak duality QP problem that simultaneously
optimizes trajectory and NOAT,(·) and maintains the QP form.

𝑵𝑶𝑨𝑻,𝒔 𝑵𝑶𝑨𝑻,𝒆

𝑵𝑶𝑨𝑻,𝒔 𝑵𝑶𝑨𝑻,𝒆

−𝑫+ 𝒘𝑶,𝒐𝒓 +𝒘 /𝟐 + 𝒉𝒚,𝒔(𝑵𝑶𝑨𝑻,𝒔,𝒎)

𝐒

Predictive step, m
𝐐

− 𝒘𝑶,𝒇 +𝒘 /𝟐 + 𝒉𝒚,𝒆(𝑵𝑶𝑨𝑻,𝒆,𝒎)

Weak duality

Predictive step, m (a)

(b)

Fig. 7. Collision-free constraints of primal and dual optimization problems.
(a) Longitudinal constraints. (b) Lateral constraints.

3) Strategy of Proposed Algorithm: Fig. 7 shows the algo-
rithm’s strategy in trajectory planning for obstacle avoidance
situations. The light gray area represents the collision-free
constraints of the primal optimization problem. The dark gray
area represents the dual collision-free constraints through the
proposed dual functions. Dual constraints are expressed as
follows:

NOAT,s →

{
s(k +m) ≥ sO,ar(k +m) + hx,s(NOAT,s,m)

q(k +m) ≥ −D +
wO,or+w

2 + hy,s(NOAT,s,m)

NOAT,e →

{
s(k +m) ≤ sO,f (k +m) + hx,e(NOAT,e,m)

q(k +m) ≤ −wO,f+w
2 + hy,e(NOAT,e,m)

s(k +m) ≤ sO,af (k +m)

form = 1, · · · , Np

(21)
where hx,(·)(·, ·) is the dual longitudinal constraint function,
hy,(·)(·, ·) is the dual lateral constraint function, and hx,(·)(·, ·)
and hy,(·)(·, ·) change according to NOAT,(·). The introduction
of the dual function makes it possible to express continuous
constraints rather than conditional constraints. Furthermore,
nonlinearity can be eliminated if those functions can be
expressed as linear constraints of optimization variables. This
study aimed to convert collision-free constraints, which were
nonlinear constraints, into linear constraints by introducing
hx,(·)(·, ·) and hy,(·)(·, ·). For the above strategy, proper se-
lection of hx,(·)(·, ·) and hy,(·)(·, ·) was essential. Next, we
analyzed the necessary conditions and proposed the function.

Remark 3. The dual functions, denoted as h(·),s and
h(·),e, encompass information corresponding to NOAT,s and
NOAT,e, and share analogous attributes. The driving scenario
predominantly involves the avoidance of a forward obstacle
within the same lane (Of ). Consequently, we first analyze the
characteristics of h(·),e, which is a function for NOAT,e, and
propose a dual function based on this. After, we extended and
proposed the dual constraints h(·),e for the rear obstacle of
the other lane.
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E. Weak Dual Constraints for Front Obstacle within the Same
Lane (Of )

1) Necessary Conditions of h(·),e : This section analyzes
the necessary conditions and proposes dual constraint func-
tions. Dual functions must 1) represent existing constraints
well. In other words, the duality should be secured as much
as possible. 2) The dual optimization problem should be
expressed in QP form. 3) NOAT,e should also be optimized
simultaneously.

• Primal constraints representation
A function should represent primal constraints well. First,

the ego vehicle should pass through an obstacle when m =
NOAT,e as follows:

hx,e(NOAT,e,m)
∣∣
m=NOAT,e

= hx,e(NOAT,e, NOAT,e) = 0

hx,e(NOAT,e,m)
∣∣
m=NOAT,e

= hy,e(NOAT,e, NOAT,e) = 0

(22)
(22) has to satisfy the condition for all NOAT,e. Thus, (22)

led to the following necessary condition:

hx,e(NOAT,e,m) = Cx

(
gx,e(NOAT,e)

gx,e(m)
− 1

)
hy,e(NOAT,e,m) = Cy

(
gy,e(NOAT,e)

gy,e(m)
− 1

) (23)

where Cx and Cy are constant tuning parameters. gx,e(·) and
gy,e(·) are decomposed functions of hx,e(·, ·), hy,e(·, ·). The
problem of function selection was the same as the selection
of Cx, Cy , gx,e(·), and gy,e(·).

In addition, before NOAT,e, the ego vehicle cannot overtake
an obstacle and does not have to complete lateral avoidance.
After NOAT,e, the ego vehicle can overtake and require the ego
vehicle to complete lateral avoidance. The above conditions
are expressed as follows:

hx,e(NOAT,e,m)

{
≤ 0 if m ≤ NOAT,e

> 0 else

hy,e(NOAT,e,m)

{
≥ 0 if m ≤ NOAT,e

< 0 else

(24)

• QP form necessary condition
The ultimate goal of proposing a dual optimization problem

was to transform the primal optimization problem into a QP
form. Therefore, (21) had to be expressed as linear constraints
of the optimization variable. Therefore, the following neces-
sary condition was defined.

gy,e(NOAT,e) = a× gx,e(NOAT,e) + b (25)

where a and b are coefficients of a linear relationship.
• Adding an optimization variable
In dual QP, gx,e(NOAT,e) was selected as an additional

optimization variable.

γe ≡ gx,e(NOAT,e) (26)

𝐒

𝐐

𝑶

Obstacle

Current lane

Target lane

𝒔𝒈𝒂𝒑

𝒒𝒈𝒂𝒑

Fig. 8. Collision-free constraints in S-Q coordinate.

The optimization variable, γe, contained information about
NOAT,e. Later, NOAT,e was calculated as the inverse of
gx,e(NOAT,e), so gx,e(NOAT,e) should satisfy the following
conditions:

gx,e(NOAT,e) is one-to-one function on NOAT,e ∈ [1, Np]
(27)

Applying (21) - (27), the dual longitudinal and lateral
constraints are expressed as follows:

s(k +m) ≤ sO,f (k +m) + Cx

(
γe

gx,e(m)
− 1

)
,

q(k +m) ≤ −w + wO,f

2
+ Cy

(
aγe + b

gy,e(m)
− 1

)
,

m = 1, · · · , Np

(28)

2) Proposing Dual Constraint Functions: In this study,
the following function was proposed as a dual function. The
proposed function satisfies all the conditions of (21) - (27).

gx,e(m) = cos2
(
π

2

m

Np + 1

)
, gy,e(m) = sin2

(
π

2

m

Np + 1

)
(29)

3) Parameter Tuning and Time Shifting: After proposing
dual functions, the parameters and components constituting
the function are tuned.

• Parameter tuning
Cx and Cy are tuning parameters, and their physical mean-

ing is shown in Fig. 8, which shows the dual longitudinal and
lateral constraints in station-lateral offset (S-Q) coordinates.
sgap and qgap represent the difference between primal con-
straints and dual constraints. The maximum values of sgap
and qgap are as follows:

|sgap| ≤ |Cx|, |qgap| ≤ |Cy| (30)

As above, Cx and Cy determine the upper limit of sgap and
qgap. In this study, Cx was set according to the current ego
vehicle velocity, and Cy was set 25% of the width of the lane
width as follows:

Cx = vx(k)× 1.3 sec, Cy = 1m (31)

• Time shifting



9

A time-shifting method was introduced to improve the
algorithm’s stability, feasibility, and trajectory continuity as
follows:

gx,e,TS(m, τe) = cos2
(
π

2

m+ τe
Np + 1

)
gy,e,TS(m, τe) = sin2

(
π

2

m+ τe
Np + 1

) (32)

where τe is the time-shifting factor for Of . For selecting τe,
the following is assumed.

Assumption 1. The obstacle avoidance timing optimized at
the k step (NOAT,e(k)) is smaller than the obstacle avoidance
timing optimized at the k − 1 step (NOAT,e(k − 1)).

This assumption was physically reasonable because the re-
maining time to avoid obstacles decreased over the step. It also
led to two conditions. 1) In the k step, collision-free constraints
over m > NOAT,e(k − 1) did not need to be considered. 2)
By a necessary condition of (27), NOAT,e(k) + τ ≤ Np. If
τe = Np−NOAT,e(k−1) was set, (27) was satisfied. Finally,
dual collision-free constraints with time-shifting applied are
defined as follows:

s(k +m) ≤ sO,f (k +m) + Cx

(
γe,TS

gx,e,TS(m, τe)
− 1

)
,

q(k +m) ≤ −w + wO,f

2
+ Cy

(
1− γe,TS

gy,e,TS(m, τe)
− 1

)
,

m = 1, · · · , NOAT,e(k − 1)

where γe,TS = gx,e,TS(NOAT,e, τ), τ = Np −NOAT,e(k − 1)
(33)

F. Weak Dual Constraints for Rear Obstacle in Different Lane
(Oar)

The weakly dual collision-free constraints initially estab-
lished for the front obstacle within the same lane, denoted as
(Of ), can be readily expanded to encompass the rear obstacle
in the different lane (Oar). A pivotal observation is that the
weak duality constraints about Of and Oar exhibit notable
similarities.

This correlation is effectively depicted in Fig. 7. Within this
visual representation, the red lines represent the weak duality
constraints associated with Of , while the blue lines correspond
to Oar. Upon scrutinizing the shapes delineated in Fig. 7(a)
and (b), the symmetry between the blue and red lines becomes
evident. Hence, the dual functions for Oar can be proposed by
applying origin symmetrization to the dual functions of Of .

The weak dual functions for Oar can be expressed as (34).
At this time, there is a difference in the sign because of the
origin symmetry.

hx,s(NOAT,s,m) = −Cx

(
gx,s(NOAT,s)

gx,s(m)
− 1

)
hy,s(NOAT,s,m) = −Cy

(
gy,s(NOAT,s)

gy,s(m)
− 1

) (34)

The function g(·),s is proposed utilizing trigonometric func-
tions, akin to the approach applied in Of . Also, the following
was proposed reflecting the shape of the origin symmetric type.

gx,s(m) = sin2
(
π

2

m

Np + 1

)
, gy,s(m) = cos2

(
π

2

m

Np + 1

)
(35)

The proposed function g(·),s satisfies all previously es-
tablished necessary conditions. Subsequently, employing the
time-shifting technique, an extension of the weak duality
function was proposed.

gx,s,TS(m, τs) = sin2
(
π

2

m+ τs
Np + 1

)
gy,s,TS(m, τs) = cos2

(
π

2

m+ τs
Np + 1

) (36)

where τs is the time-shifting factor for Oor. Similar to the
treatment of Of , the selection of τs adheres to the following
assumption. As a result, τs was set as τs = Np−NOAT,s(k−
1).

Assumption 2. The obstacle avoidance timing optimized at
the k step (NOAT,s(k)) is smaller than the obstacle avoidance
timing optimized at the k − 1 step (NOAT,s(k − 1)).

Finally, the weak dual constraints for the rear obstacle in
the different lanes were extended as (37). These are the solid
blue line constraints in Fig 7.

s(k +m) ≥ sO,ar(k +m)− Cx

(
γs,TS

gx,s,TS(m, τs)
− 1

)
,

q(k +m) ≥ −D +
w + wO,ar

2
− Cy

(
1− γs,TS

gy,s,TS(m, τs)
− 1

)
,

m = 1, · · · , NOAT,s(k − 1)

where γs,TS = gx,s,TS(NOAT,s, τ), τ = Np −NOAT,s(k − 1)
(37)

G. Lane-change Mode: Proposed Weak Duality QP Problem

The weak duality QP problem was proposed as follows:

min
U,γe,TS ,γs,TS

J =

Np−1∑
m=0

∥x(k +m|k)− xdes(k +m)∥Q

+

Nc−1∑
m=0

∥u(k +m)∥R + ∥x(k +Np|k)∥Pf

+ ωγe
γ2
e,TS + ωγs

γ2
s,TS

s.t. (4b), (9), (10), (33), (37)
(38)

where ωγe , ωγs are the weight of γe,TS , γs,TS , set to a
sufficiently small number. It had a negligible effect on the
primal cost function. (38) is expressed as a quadratic cost
function and linear constraints for the optimization variables
(U, γe,TS , γs,TS), which means that the dual optimization
problem has QP form, not NP form. Finally, (38) was op-
timized through a general QP solver to find the optimal U∗

LC ,
γ∗
e,TS , and γ∗

s,TS . Here, (γ∗
e,TS , NOAT,e) and (γ∗

s,TS , NOAT,s)
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had a one-to-one correspondence as in (27). Thus, the opti-
mized NOAT,e, NOAT,s was expressed as follows:

NOAT,e(k) = NOAT,e(k − 1)− 2(Np + 1)

π
arccos (γ∗

e,TS
0.5

)

NOAT,s(k) = NOAT,s(k − 1)− 2(Np + 1)

π
arcsin (γ∗

s,TS
0.5

)

(39)
The minimum cost function of the lane-change mode is as

follows:

Jmin,LC = (4a)
∣∣
U=U∗

LC
(40)

Finally, by comparing (14) and (40), the driving mode was
selected among lane-keeping mode and lane-change mode.

Remark 4. Dual QP problems always showed conservative
results compared to primal optimization problems. As a result,
the following relation was established:

Jmin,LC ≥ Jmin,LC,primal (41)

where Jmin,LC,primal is the minimum cost function of the
primal optimization problem as (16). (41) meant that the
proposed dual QP problem was a weakly dual problem.

The pseudo-code of the overall algorithm is summarized in
Algorithm 1.

Algorithm 1 Algorithm for proposed trajectory planning al-
gorithm
Input: x(k), NOAT,(·)(k − 1), sO,(·)(k), vO,(·)(k).
Output: Driving mode, Optimized trajectory, NOAT,(·)(k).

Initialisation : Q,R, ωγe
, ωγs

> 0, Np, Nc ∈ Z,
NOAT,e(0) = Np, NOAT,s(0) = Np, constraints, tuning
parameters.

1: compute U∗
LK , Jmin,LK using (13)

2: compute U∗
LC , NOAT,(·)(k), Jmin,LC using (38), (39)

3: if Jmin,LK ≤ Jmin,LC then
4: Driving mode ← Lane-keeping
5: Optimized trajectory ← U∗

LK

6: NOAT,e(k)← Np

7: NOAT,s(k)← Np

8: else
9: Driving mode ← Lane-change

10: Optimized trajectory ← U∗
LC

11: NOAT,e(k)← NOAT,e(k)
12: NOAT,s(k)← NOAT,s(k)
13: end if

Remark 5. The variables NOAT,e and NOAT,s are crucial
within trajectory planning, necessitating adjusting suitable
initial values and continuous updating. The proposed al-
gorithm used a time-shifting technique for robustness and
performance. For this purpose, Assumptions 1 and 2 assumed
that NOAT,(·)(k) is less than NOAT,(·)(k− 1). Therefore, the
initial and update values of NOAT,(·) are set to the largest
prediction horizon, Np. These initial conditions and updates
of NOAT,(·) are outlined in Algorithm 1.

Remark 6. This study proposed a lane-change mode to
address the change from lane 1 to lane 2. The proposed
algorithm can be extended to scenarios changing from lane
2 to lane 1. Because the case of changing from lane 2 to
lane 1 coincides with the up-down symmetry for the situation
of changing from lane 1 to lane 2, it is easily extended by
changing the coordinates as follows:

x(k)← x′(k),u(k)← u′(k)

where

x′(k) =
[
s(k) vx(k) −D − q(k) − vy(k) ax(k) − ay(k)

]T
,

u′(k) =
[
ax,d(k) − ay,d(k)

]T
(42)

Consequently, using (x′(k),u′(k)) instead of (x(k),u(k)) as
states and inputs can plan lane-change trajectory from lane 2
to lane 1. As such, the proposed algorithm is scalable in many
ways.

IV. SIMULATION RESULTS

A. Simulation Environments

The performance of the proposed trajectory planning al-
gorithm was verified using simulations. The simulated envi-
ronment encompasses obstacles, including vehicles and con-
struction sites. The proposed algorithm plans the trajectory
by selecting either lane-keeping mode or lane-change mode
according to the situation. Simulation situations include avoid-
ance of the construction site considering the surrounding
environment, overtaking, and preceding vehicle following. The
ego vehicle and obstacle information are shown in Table II.

The simulation assumes the controller can introduce an
additional error of 0.5m. Modeling errors between the lagged-
point mass model and actual vehicles can cause this error. The
trajectory was planned conservatively by 0.5m in the lateral
direction to ensure robustness that always avoids obstacles
despite modeling errors. Furthermore, situations involving lane
departure occurring at the vehicle’s vertex, according to the
vehicle’s heading angle, can also be effectively averted. Also,
the ‘quadprog’ function of MATLAB was used as a QP solver.

B. Simulation results

Fig. 9 shows the simulation result applying the proposed
algorithm. Fig. 9(a) shows the trajectories of the ego vehicle
and obstacles. The ego vehicle is visually represented as a blue
rectangle, while a solid blue line denotes its trajectory. Other
square elements represent obstacles. Obstacle 1 represents a
static obstacle, such as construction sites or lane reduction
areas. Obstacles 2-5 represent the surrounding vehicles as
dynamic obstacles. As a result of the simulation, appropriately
to the surrounding situation, the proposed algorithm plans a
trajectory that includes obstacle avoidance, lane change, and
preceding vehicle following.

Fig. 9(b) shows the ego vehicle’s longitudinal velocity
and acceleration. Longitudinal velocity planning is included
in the proposed algorithm. The proposed algorithm plans
the deceleration and acceleration profiles appropriate for the
purpose.
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(a)

(b)

(c)

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Fig. 9. Simulation results of the proposed trajectory planning algorithm. (a) Trajectory of the ego vehicle. (b) Longitudinal velocity and acceleration. (c)
Obstacle avoidance timings (NOAT,s, NOAT,e).

TABLE II
EGO VEHICLE AND OBSTACLE INFORMATION.

Symbol Parameter Ego vehicle Symbol Parameter Obstacle 1 Obstacle 2 Obstacle 3 Obstacle 4 Obstacle 5
w Ego vehicle width 2m wO,(·) Obstacle width 2m 2m 2m 2m 2m
E Error boundary 0.5m lO,(·) Obstacle length 100m 5m 5m 2m 2m

vx,des Desired velocity 100 km/h sO,(·)(0) Initial sO,(·) 150m −60m 30m 150m 100m
vx(0) Initial vx 100 km/h vO,(·)(0) Initial vO,(·) 0 km/h 70 km/h 70 km/h 75 km/h 70 km/h
D Lane width 4m Lane Lane 1 Lane 2 Lane 2 Lane 1 Lane 2

Fig. 9(c) shows obstacle avoidance timings. The solid blue
line is NOAT,s, representing the remaining time until the start
of the lane change. Moreover, the solid red line is NOAT,e,
representing the time remaining until the end of the lane shift.

The proposed algorithm optimizes the trajectory, velocity,
and obstacle avoidance timings using only one quadratic pro-
gramming. Subsequently, an in-depth analysis of each region
follows. These regions are visually represented in Fig. 9,
divided into six regions. In Fig. 9(a)-(c), the same shading
indicates the same region.

• Region 1.
Region 1 showcases avoiding static obstacle situations such

as construction sites while considering surrounding vehicles.
Initially, It was judged that the ego vehicle could not avoid the
construction site by overtaking obstacle 2. Consequently, the
ego vehicle slows down first and sends obstacle 2 first. It can
be confirmed by the velocity and acceleration data within a 4-
second window, as shown in Fig. 9(b). After that, recognizing
the advantage of lane change over coming to a stop, the ego
vehicle undergoes lane change and positions itself between
obstacle 2 and obstacle 3.

In this region, obstacles 1, 2, and 3 take on the role of Of ,

Oaf , and Oar, respectively. The proposed weak duality con-
straints can express the collision-free region for each obstacle.
In conclusion, it was verified that the proposed algorithm can
plan path and velocity profiles that do not collide with Of ,
Oaf , and Oar during lane change.

Fig. 9(c) shows the optimized obstacle avoidance timings.
Upon examining the results at 4 seconds, approximately
NOAT,s is 2 seconds, while NOAT,e is 4 seconds. It implies
that lane change initiation commences 2 seconds after the
specified point, with the completed 4 seconds after. These
values converge to zero as time progresses and the lane change
is executed.

• Region 2.
Region 2 shows a scenario that overtakes a relatively slower

preceding vehicle. Before 12 seconds, the ego vehicle follows
the preceding vehicle. However, the proposed algorithm con-
cludes that a lane change to regain velocity is advantageous.
Consequently, a lane change maneuver is executed. After lane
change, the ego vehicle regains velocity as shown in Fig. 9(b).
Fig. 9(c) shows the obstacle avoidance timings, representing
the initiation and completion timing of the lane change.

• Region 3.
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Obstacle (Preceding vehicle or static obstacle)
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𝐒

𝐐
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𝐿𝑦

𝐿𝑥

𝐿𝑦

Fig. 10. Previous trajectory planning algorithm using quadratic programming
[20].

Region 3 shows a velocity recovery owing to the substantial
distance between the ego vehicle and the preceding car. A de-
sired velocity was set to 100 kph in this simulation. Therefore,
the velocity profile was planned that the ego vehicle’s velocity
approach 100 kph through smooth acceleration.

• Region 4.
Region 4 exemplifies a scenario of the preceding vehicle

following. In this situation, there is a vehicle represented
by obstacle 5 in the next lane. Also, since the distance
between obstacle 4 and obstacle 5 is short, it is impossible
to change lanes between them. Therefore, the lane-keeping
mode is automatically selected. As a result, it follows while
maintaining the distance from the preceding vehicle through
deceleration.

• Region 5.
Region 5 illustrates avoiding obstacle 4 and overtaking ob-
stacle 5 through lane change. Unlike region 4, in region
5, the distance between obstacle 4 and obstacle 5 widens,
and the proposed algorithm determines that lane change is
possible. As a result, a trajectory of accelerating velocity and
changing lanes was planned. At this time, obstacle 4 acts as
Of , and obstacle 5 acts as Oar. In conclusion, the proposed
algorithm can plan a collision-free trajectory considering the
front obstacle within the same lane and the rear obstacle within
the right lane.

• Region 6.
In this region, no obstacles lie ahead of the ego vehicle. In this
case, it accelerates while maintaining the lane and recovers the
speed to the desired velocity.

In this section, we verified the trajectory planning perfor-
mance through simulation. The proposed algorithm optimized
longitudinal and lateral acceleration simultaneously. Therefore,
it was possible to perform general lane-change and obstacle
avoidance situations. In addition, the proposed algorithm had
a QP form consisting of a quadratic cost function and linear
constraints. This QP form has the advantage of drastically
reducing the computational load while using the optimization-
based trajectory planning method.

C. Comparison with Previous Trajectory Planning Algorithm
using Quadratic Programming

A recent study has proposed a trajectory planning algorithm
using QP [20]. This algorithm is shown in Fig. 10, wherein
collision-free constraints are described as linear functions
within the S-Q coordinate. This approach straightforwardly
represents collision-free regions through linear constraints.

(a)

(b) (c)

(d) (e)

(f) (g)

𝑵𝑶𝑨𝑻,𝑺 𝑵𝑶𝑨𝑻,𝒆 𝑵𝑶𝑨𝑻,𝑺 𝑵𝑶𝑨𝑻,𝒆

Fig. 11. Comparison with proposed algorithm and [20]. (a) Planned trajec-
tories and collision-free constraints. (b) Longitudinal constraints. (c) Lateral
constraints. (d) Longitudinal velocity. (e) Longitudinal acceleration. (f) Lateral
velocity. (g) Lateral acceleration.

However, this trajectory planning algorithm is notably con-
servative. In this section, we conduct a comparative analysis
between the proposed and the previous trajectory planning
algorithms. For comparison, Lx and Ly are set as follows:

Lx = vx(k)× 1.3 sec, Ly =
wO,(·)

2
+ 1m (43)

To conduct a comparative analysis, trajectory planning out-
comes were evaluated at 4 seconds of Fig. 9. This scenario
encompasses considerations for neighboring lane vehicles and
avoidance of the same lane obstacle, as shown in Fig. 11. Fig.
11(a) shows the planned trajectories of each algorithm. Each
square denotes the ego vehicle and obstacles; corresponding
details are shown in Table II.

The white rectangle in Fig. 11(a) represents obstacles
movement during 5 seconds. The blue and purple solid lines
provide each algorithm’s planned trajectory. Also, the purple
dash-single dotted line represents the linear collision-free
constraints proposed in [20]. Previous trajectory planning algo-
rithms using QP typically define collision-free regions using
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S-Q coordinates, as shown in Fig. 11(a). Consequently, the
previous algorithm expresses collision-free constraints linearly
but is very conservative. Therefore, lane change is impossible;
the only possible trajectory is deceleration.

In contrast, the proposed algorithm changed lanes while
adeptly evading obstacles, positioning the vehicle between
obstacles 2 and 3. In conclusion, the proposed trajectory
planning algorithm achieves high freedom despite. Further
details regarding the collision-free constraints of the proposed
algorithm can be found in Fig. 11(b)-(c).

Fig. 11(b)-(c) shows the longitudinal and lateral collision-
free constraints, applying a longitudinal-lateral decomposition
approach. The trajectories of obstacles 1 and 3 are depicted
by black and yellow solid lines, respectively. Notably, the pro-
posed algorithm simultaneously optimizes collision avoidance
timings (NOAT,s, NOAT,e) with trajectory. By applying opti-
mized timings, the dual collision-free constraints and collision-
free regions are represented as dash-single dotted lines and
grey areas. Finally, planned trajectories are shown as solid blue
lines. The planned trajectory in S-Q coordinates is depicted by
the blue line in Fig. 11(a). Like this, the proposed algorithm
enables effective trajectory planning.

Fig. 11(d)-(e) shows the longitudinal acceleration and ve-
locity profiles over the prediction horizon. The proposed
algorithm plans acceleration and obstacle avoidance, while the
previous algorithm decelerate. Lateral components are shown
in Fig. 11(f)-(g), wherein the proposed algorithm excels in
executing a smooth lane change.

Despite employing linear collision-free constraints, the pro-
posed algorithm guarantees a high degree of freedom. This
characteristic makes it realistic and avoids unnecessary braking
compared to previous algorithms. In conclusion, the proposed
algorithm can plan a realistic and advanced trajectory com-
pared to previous algorithms.

D. Minimum required distance for obstacle avoidance of
various algorithms

In this section, the characteristics of the proposed algorithm
are analyzed through performance comparison with previ-
ous algorithms. The performance evaluation was based on
the minimum required distance for obstacle avoidance under
various velocities. A scenario is avoiding collision with a
static obstacle located in the same lane, as shown in Fig. 12.
Information such as lane width and obstacle width is shown
in Fig. 12. It analyzes the minimum distance at which an
obstacle can be avoided by maneuvers such as deceleration
or steering for several algorithms. In other words, we analyze
the marginal performance of each algorithm. Each algorithm’s
marginal performance evaluation results are presented in Fig.
13. Next, we analyze the strengths and weaknesses of each of
the previous algorithms.

• Sampling-based method (5th-order)
The sampling-based method employs either a cubic spline
(3rd-order) [11] or a quintic polynomial (5th-order) [12] to
define the trajectory. Among these, the trajectory planning
algorithm based on the quintic polynomial was chosen as the
comparison group.

Ego vehicle Static obstacle

𝐒𝐒

𝐐𝐐

𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
(= 2𝑚𝑚)

𝑤𝑤𝑂𝑂
(= 2𝑚𝑚)

𝐷𝐷
(= 4𝑚𝑚)

Initial velocity, 𝑣𝑣𝑥𝑥

Required distance

Fig. 12. Marginal performance analysis scenario.
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Fig. 13. Marginal performance of each algorithm: Required distance for
obstacle avoidance under various velocities.

The red line in Fig. 13 represents the required distance
for obstacle avoidance under various velocities. While the
sampling-based method offers the advantage of a predeter-
mined trajectory and lower computational load, it can be
observed that the required avoidance distance for each velocity
is considerably distant. Consequently, while the sampling-
based method demonstrates satisfactory performance under
normal driving conditions, it could not be suitable for more
severe driving scenarios.

• Optimization-based, quadratic programming (Only steer-
ing or braking)

These have a similar level of computational load to the
proposed algorithm. Therefore, through comparison with them,
we compared the performance of algorithms with a similar
level of computational load.

The results of analyzing the required distance under var-
ious velocities using only steering or braking are shown
in Fig. 13. The yellow line represents the result obtained
only through braking, while the purple line corresponds to
the result obtained only through steering. Obstacle avoidance
through braking demonstrated a shorter avoidance distance
than avoidance through steering, particularly at low velocities.
However, as the velocity increased, avoidance through steering
was safer. Nonetheless, both trajectory planning approaches
relying solely on braking or steering necessitated longer avoid-
ance distances than the proposed algorithm. Consequently,
among various algorithms with similar computational load, the
proposed algorithm is the optimal choice to ensure the safest
trajectory planning.
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• Optimization-based, quadratic programming [20]
The result of the algorithm proposed in [20] is shown in
the green line. The algorithm is based on optimization and
shows better marginal performance than the sampling-based
algorithm. However, this is a very conservative trajectory
planning. Therefore, it shows worse performance than obstacle
avoidance through steering only. In conclusion, the previous
algorithm performs well in normal driving situations but has
limitations in marginal driving due to its inherently conser-
vative nature. In contrast, the proposed algorithm shows high
freedom and good marginal performance.

• Optimization-based, nonlinear programming (Primal op-
timization problem)

The primal optimization problem can be optimized through
nonlinear programming. In contrast, the proposed algorithm
can be optimized through QP, significantly reducing compu-
tational effort. However, in terms of performance, it yields
conservative results and may incur slight performance degra-
dation for marginal performance. Therefore, we compared the
marginal performance with the primal optimization problem
(16).

The cyan line represents the results of the primal opti-
mization problem optimized through nonlinear programming.
Due to the weak-duality property of the proposed algorithm,
it can be observed that the required distance of the pro-
posed algorithm is slightly longer compared to the primal
optimization problem. Specifically, at a speed of 100 kph,
this difference amounts to approximately 4m. However, it is
essential to note that the primal optimization problem requires
computational load that is roughly 50 times greater than the
proposed algorithm’s. This critical limitation renders real-
time implementation infeasible for the primal optimization
problem. In conclusion, considering both performance and
computational load, the proposed algorithm emerges as the
optimal choice.

V. CONCLUSION AND FUTURE WORK

We proposed an optimization-based trajectory planning
algorithm with QP form. The critical issue with the
optimization-based trajectory planner was that it was chal-
lenging to implement in real time due to the high com-
putational load. To address this, we proposed a trajectory
planner through QP, which has a small computational load,
rather than through the commonly used NP. We employed
the longitudinal-lateral decomposition method to analyze the
primal optimization problem. Furthermore, we introduced a
new function defined as a dual function for converting NP
to QP form. The necessary conditions and properties of the
dual function were analyzed. Based on these conditions, we
proposed a dual function. Finally, the optimization problem of
trajectory planning was transformed into a weak duality QP
problem. The proposed algorithm optimized the trajectory and
obstacle avoidance timing by solving only one QP. Further-
more, the proposed algorithm was extended to multi-obstacle,
reverse lane change. We demonstrated the performance of
the proposed algorithm through simulations, which verified
that the proposed algorithm could plan the trajectory for

general and emergency driving. In conclusion, the proposed
algorithm exhibits superior computational load-to-performance
compared to previous research methods.

The core technology of this study lies in the proposal
of the dual function. We devised a dual function based
on trigonometric functions. Suggesting a new dual function,
which satisfies all the necessary conditions and improves
duality, will enhance the performance of the trajectory planner.
Ultimately, it will be necessary to validate the performance of
the autonomous driving integrated algorithm integrated with
the perception and control technology and implement the
vehicle.
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