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Robust Tube-MPC based Steering and Braking
Control for Path Tracking at High-Speed Driving

Jonghyup Lee, Yoonjin Hwang, and Seibum B. Choi

Abstract—This paper proposes a steering and braking control
strategy for stable path following at high speed in a robust
model predictive control (MPC) framework. In severe driving
situations, model uncertainties can cause control errors and
lead to control failures. This paper introduces a method to
minimize uncertainty and a controller that is robust against
uncertainty. To minimize uncertainty, the proposed multi-point
linearization reduces linearization error. Moreover, the used
model minimizes the prediction errors due to the delays and
lags of the actuators. The proposed controller, based on tube
MPC, ensures the satisfaction of road friction limits for uncertain
systems. Conditions to satisfy the feasibility of the MPC are
proposed and proven. The proposed controller generates steering
and braking inputs that ensure that none of the tires exceeds its
friction limit. Simulation and experimental results in various test
scenarios show the effectiveness of the proposed approach.

Index Terms—Robust Model Predictive Control, Path Tracking
Control, Model Linearization, Feasibility, Road Friction Limit

I. INTRODUCTION

AS the demand for vehicle safety and convenience in-
creases, advanced driver assistance systems(ADAS) us-

ing cameras and radars are continuously developed. Certain
ADAS functions have thus been recently evaluated as essential
vehicle safety indicators. Path tracking control, which allows
vehicles to follow a path generated by a path planner for a
specific purpose, is essential for lateral ADAS [1]–[4]. Pri-
mary tracking controllers keep vehicles in lanes on highways
or perform obstacle avoidance at low speeds. These ADAS
devices thus aim at accurate tracking in stable and smooth
driving conditions, during which vehicle speed is low or the
steering angle is small.

However, with the development of technology, controller
roles are expanding not only to smooth driving situations but
also to dangerous situations. In particular, for path tracking
at high speed, the dynamic safety of the vehicle must be
considered because unstable behavior may occur due to tire
friction limit. In addition, situations in which stable control
cannot be achieved simply via steering control must be dealt
with through appropriate braking control prior to steering.

In the literature, various algorithms for tracking control have
been studied. Pure-pursuit [5], sliding mode control [6], linear
quadratic Gaussian control [7], and nonlinear adaptive control
[8] have been proposed. These control methods generally show
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excellent tracking performance in smooth driving situations.
However, it is challenging to guarantee performance in high-
speed situations that require consideration of the friction
limit of tires. Model predictive control (MPC) predicts future
behavior using a dynamic model. It is one of the most
suitable methods of path-tracking control because it considers
constraints as it generates optimal control inputs [9]–[21].
To deal with the model nonlinearity, nonlinear MPC has
been proposed for path tracking [11]–[13]. However, real-
time implementation is limited because of the significant
computation burden of nonlinear programming. This problem
has been addressed in various works in the literature by using
linear MPC based on linearized models [14]–[17]. This method
increases the prediction error but is essential for real-time
controller implementation.

Also, in some path tracking control studies, robust MPC
(RMPC) was utilized to resist model uncertainty or external
disturbances. In [22], the nonlinear RMPC-based tracking
controller was designed to be robust against friction coefficient
uncertainty and external disturbances. In [23], a linear RMPC-
based path tracking controller robust to mass uncertainty and
road bank was proposed. In addition to path tracking control, a
RMPC-based lane change decision algorithm using determin-
istic and probabilistic prediction of other participants’ states
was proposed [24]. In addition, a control method considering
violation of constraints was introduced in a study of path
tracking control for autonomous racing [25] and four wheel
steering and direct yaw-moment control [26] using tube based
RMPC. Existing practical research based on RMPC can be
highly valuable for performing constraint-satisfying in real-
world applications. However, further discussion is needed on
the overly conservative approach taken in setting constraints
and ensuring feasibility in a practical sense.

Depending on the purpose of vehicle control using MPC,
various works usually consider constraints such as yaw rate
[17]–[20], [26], lateral position [20], acceleration [21], [25],
side slip angle [18], and longitudinal tire force [27]. In
particular, vehicle stability is governed by the friction limits of
the tires, which can be considered indirectly in a linear manner
through constraints such as yaw rate and side slip angle. In
addition, in severe driving conditions where the load transfer
of each wheel changes rapidly, the limits of the tire force of
each wheel can be considered directly to ensure more accurate
stability [27]. However, in models with combined longitudinal,
lateral, and vertical motions, the tire force of each wheel has
a large nonlinearity and should be utilized with appropriate
measures.

Model uncertainties are caused by errors in the model
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linearization process, lags and delays of sub-controllers and
actuators, and model parameter errors. In general, they degrade
the prediction accuracy of MPC and cause tracking errors.
In particular, in dangerous driving situations where the road
friction limit must be considered, these may cause not only
simple errors but also unexpected and unstable vehicle behav-
ior, which may cause control failure. Therefore, both an effort
to reduce the size of these uncertainties and the design of a
robust controller are required.

In recent studies, robust MPC was applied to attenuate
uncertainties and disturbances for path tracking. Mayne et
al. first proposed the tube MPC as an effective method of
robust MPC, ensuring that state constraints are not violated for
bounded disturbances of linear time-invariant (LTI) systems
[28]. Bumroongsri et al. extended this method for linear
time-varying (LTV) systems [29]–[31]. The input obtained
from the tube MPC consists of the nominal MPC input and
feedback input for errors between actual and nominal states.
The additional feedback input effectively reduces the effect
of uncertainty, and satisfaction of constraints is guaranteed
through tightened constraints that consider the effect of un-
certainty.

Overall, the primary purpose of this study is the integrated
control of steering and braking for stable path tracking at high
speed. For this, methods to minimize uncertainties and a robust
MPC are proposed. The newly proposed multi-point lineariza-
tion model minimizes uncertainty in the linearization process.
We linearized the nonlinear model for the states predicted in
the previous step. The proposed method effectively reduces
the linearization error by minimizing the distance between
the linearization point and the actual states. In addition, the
existing effective method, the delay-lag augmented model, was
used to minimize the uncertainties caused by delays and lags of
actuators [32], [33]. This model avoids excessive uncertainties
and performance degradation caused by ignoring delays and
lags. For robustness against uncertainties remaining despite the
above efforts, the tube MPC framework was used. In addition,
new conditions for feasibility against additional model mis-
match caused by multi-point linearization are presented and
proved.

The main contributions of this article can be summarized
as follows:

1) For stable path tracking in high-speed situations, a tube
MPC-based integrated steering, and braking controller that
satisfies the road friction limit is proposed.

2) A multi-point linearized vehicle model that consider the
performance of the sub-controller is proposed to minimize
model uncertainties.

3) Conditions to satisfy the feasibility of MPC are proposed
even if the model change due to linearization.

4) Constraint tightenings considering a robust invariant set
and feasibility conditions are calculated off-line practically
using driving data.

Finally, the proposed controller shows stable path tracking
performance despite the model’s nonlinearity and actuator
performance limitations. In particular, even without a separate
speed planner, optimal braking is performed before steering to
prevent tire forces from exceeding their limits during turning.

Simulation and experimental results in various scenarios show
the effectiveness of the proposed approach. The proposed
controller automatically carries out braking control when safe
control is impossible with steering alone. Note that the pro-
posed controller does not address throttle control, as the focus
is on effective safety control for emergencies.

The rest of this paper is organized as follows. Section II
introduces a linearized vehicle model that considers actuator
delay and lag. Section III briefly summarizes the structure and
characteristics of tube MPC for LTV systems. The proposed
controller is described in detail in section IV. In section V
and section VI, the performance of the proposed controller
is verified through simulation and experiment, respectively.
Finally, section VII provides a conclusion.

A. Notation

Im denotes an m-dimensional identity matrix, and Om×n
denotes m-by-n zero matrix. Set operations such as Minkowski
set addition X⊕Y := {x+ y|x ∈ X, y ∈ Y }, and Pontryagin
set difference X ⊖ Y := {x|x⊕ Y ⊆ X} will be used. A set
of integers is defined by Nba := {n ∈ N|a ≤ n ≤ b}. Conv{·}
denotes the convex hull of the elements in {·}.

II. VEHICLE MODEL

In this section, we present the mathematical models used
for control design. The model designed from the non-linear
vehicle and tire model is expressed as a linear model through
linearization, and delays and lags of the inputs are compen-
sated. The subsection II-A introduces the vehicle dynamics
model, the subsection II-B introduces the model linearization,
and the subsection II-C introduces an augmented model that
considers the performance of the actuators:

A. Nonlinear Vehicle Model

We used the following equations to express the vehicle
motions and the positional relationship with respect to the
desired path shown in Figure 1 [10], [34], [35].

v̇x =
1

m
[
(
F flx + F frx

)
cos δ + F rlx + F rrx (1)

−
(
F fly + F fry

)
sin δ − cd(vx)

2] + vxβψ̇,

β̇ =
1

mvx
[
(
F flx + F frx

)
sin δ +

(
F fly + F fry

)
cos δ (2)

+ F rly + F rry ]− ψ̇,

Izψ̈ =lf [
(
F fly + F fry

)
cos δ +

(
F flx + F frx

)
sin δ] (3)

− lr
(
F rly + F rry

)
+ b[(F fly − F fry )sin δ

+ (F frx − F flx )cos δ + (F rrx − F rlx )],

ṡ =vx (cos eψ − β sin eψ) , (4)
ėy =vx (sin eψ − β cos eψ) , (5)

˙eψ =ψ̇ − κ(s)ṡ, (6)

where, vx is the vehicle speed, β is the side slip angle, ψ̇
is the yaw rate, s is the station(longitudinal position on the
desired path), ey and eψ are the lateral and yaw angle errors
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Figure 1. Nonlinear vehicle model

for the desired path. Fx and Fy denote each tire’s longitudinal
and lateral forces, and δ is the steering angle. The superscripts
fl,fr,rl, and rr represent the front left, front right, rear left,
and rear right wheels. The model parameters include vehicle
mass (m), yaw moment of inertia (Iz), half of vehicle width
(b), coefficient of air resistance (cd), and distances from vehicle
CG to front and rear axle (lf ,lr). The road curvature κ is
defined as a function of s.

The longitudinal tire forces are calculated from (1) as
follows:

F flx = F frx =
λ

2 [1− λ (1− cos δ )][
max +

(
F fly + F fry

)
sin δ + cd(vx)

2
]
,

F rlx = F rrx =
(1− λ)

2 [1− λ (1− cos δ )][
max +

(
F fly + F fry

)
sin δ + cd(vx)

2
]
,

(7)

where λ is the braking ratio, and ax is the longitudinal
acceleration.

The lateral tire forces are calculated by the brush tire model
[36], [37].

F jy = Cα(tanα
j)

=


3µF jz θy tanα

j{1−
∣∣θy tanαj∣∣ +1/3(θy tanα

j)2}
, if tan

∣∣αj∣∣ < 1/θy,

µF jz sgn
(
αj

)
, if tan

∣∣αj∣∣ > 1/θy,
(8)

where θy , µ and Fz are the model parameter, tire friction limit
and each tire’s normal force. The tire slip angle of each tire

αj can be expressed as:

αj = tan−1
vjty

vjtx
, (9)

where the wheel speeds in each direction on the each wheel
coordinate are as follows:

vjtx =

{
−vjw,xsin δ + vjw,y cos δ , j = fl, fr,

−vjw,x , j = rl, rr,

vjty =

{
vjw,x cos δ + vjw,y sin δ , j = fl, fr,

vjw,y , j = rl, rr,

(10)

longitudinal velocity vjw,x and lateral velocity vjw,y of each
wheel on the vehicle coordinate are calculated from vx, β,
and ψ̇.

Remark 1. The use of a tire model based on pure lateral slip
may introduce modeling errors in combined longitudinal and
lateral motion scenarios. However, in this study, the effect of
longitudinal slip on the lateral tire force was ignored during
the modeling phase to reduce the complexity of the model
by constructing the model for the control input, longitudinal
acceleration. The resulting modeling errors, along with other
uncertainties, are robustly handled by the robust MPC dis-
cussed in Section IV.

The normal forces, taking the load transfer into account, are
given as:

F flz =
lr
2L
mg − hcg

2L
max + σfmay,

F frz =
lr
2L
mg − hcg

2L
max − σfmay,

F rlz =
lf
2L
mg +

hcg
2L

max + σrmay,

F rrz =
lf
2L
mg +

hcg
2L

max − σrmay,

(11)

where L, g, ay , and hcg are the distance from the front axle
to the rear axle, gravitational acceleration, lateral acceleration,
and height of vehicle CG. Considering the roll stiffness of
the front cϕf and rear cϕr axles [34], the lateral load transfer
coefficients σf , σr are:

σf =
1

b

(
cϕfhrc

cϕf + cϕr −mghrc
+
lr
L
(hcg − hrc)

)
,

σr =
1

b

(
cϕrhrc

cϕf + cϕr −mghrc
+
lf
L
(hcg − hrc)

)
,

(12)

where hrc is the distance from CG to roll center.
By integrating and discretizing equations (1)-(12), the inte-

grated nonlinear vehicle model can be expressed.

xo(k + 1) = fk (xo,n(k), uo(k)) + ωo,n(k),

y(k) = gk (xo,n(k), uo(k)) ,
(13)

where, xo = [vx, β, ψ̇, s, ey, eψ]
T ∈ R6, uo = [δ, ax]

T ∈
R2, y =

[(
F fln

)2
,
(
F frn

)2
,
(
F rln

)2
, (F rrn )

2
]T

∈ R4, and
ωo,n ∈ R6 is the uncertainty caused by model parameter
errors. The normalized tire forces F jn are defined as:

F jn =

√
(F jx)2 + (F jy )2

(F jz )2
,∀j ∈ fl, fr, rl, rr. (14)
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The system output vector y composed of the force of each
wheel is used for the constraint of the controller later.

B. Linearized Vehicle Model

The nonlinear model (13) is linearized for the linearization
points (xlin(k), ulin(k)) using Taylor expansion.

xo(k + 1) = Ao(k)xo(k) +Bo(k)uo(k) + Eo(k) + ωo(k),

y(k) = Co(k)xo(k) +Do(k)uo(k) + Fo(k) + ωy,o(k),
(15)

where,

Ao(k) = ∇xfk(x, u)|xlin(k)
ulin(k)

, Bo(k) = ∇ufk(x, u)|xlin(k)
ulin(k)

,

Eo(k) = fk(xlin(k), ulin(k))−Ao(k)xlin(k)−Bo(k)ulin(k),

Co(k) = ∇xgk(x, u)|xlin(k)
ulin(k)

, Do(k) = ∇ugk(x, u)|xlin(k)
ulin(k)

,

Fo(k) = gk(xlin(k), ulin(k))− Co(k)xlin(k)−Do(k)ulin(k),
(16)

and ωo ∈ R6 and ωy,o ∈ R2 include ωo,n and lineariza-
tion error. The selection of the linearization point has a
great influence on the linearization error. The choice of
(xlin(k), ulin(k)) to reduce the error is discussed in IV-B.

C. Compensation for Input Delays and Lags

The commanded input is delayed due to communication
delay and mechanical clearance and is applied to the vehicle.
Also, phase lag occurs due to the dynamics of the actuators and
the sub-controllers. Input delays and lags are approximated by
a first-order linear system as follows:

τl,δ δ̇(t) = −δ(t) + δin(t− τd,δ),

τl,ax ȧx(t) = −ax(t) + ax,in(t− τd,ax),
(17)

where, τl,∗ are the time constants, τd,∗ are the input delays,
δin and ax,in are the input command.

In order to identify the delays and lags of the control inputs,
we compared the commands and measurements of the inputs
as shown in Figure 2. In our experimental platform, the input
delays are both 0.2s, and the time constants were identified
as 0.1s and 0.01s for δ and ax, respectively. The delayed and
lagged commands by (17) shown in Figure 2 match the actual
inputs well.

By combining (15) and (17), a model considering input lags
is expressed as follows:

xl(k + 1) =Al(k)xl(k) +Bl(k)

[
δin(k − kd,δ)
ax,in(k − kd,ax)

]
+ El(k) + ωl(k),

(18)

where,

xl(k) = [xo(k)
T , uo(k)

T ]T , Al(k) =
[
Ao(k) Bo(k)
O2×6 L1

]
,

Bl(k) =

[
O6×2

L2

]
, El(k) =

[
Eo
O2×1

]
, kd,∗ = τd,∗/Ts,

L1 =

[
e
− Ts

τl,δ 0

0 e
− Ts

τl,ax

]
, L2 =

[
1− e

− Ts
τl,δ 0

0 1− e
− Ts

τl,ax

]
,

ωl(k) =

[
ωo(k)
O2×1

]
,

and Ts is time interval of discrete system (13).

Figure 2. Identification of delays and lags of inputs

Input delays are handled through a delay-augmented model.
The system is expressed in terms of a state vector incorporat-
ing delayed commands. Detailed descriptions of this approach
are in [32], [33]. Since the time interval of the proposed
controller is set to 0.1s (i.e. Ts = 0.1s), delays of 2 steps occur
for both inputs (i.e. kd,δ = kd,ax = 2). The delay augmented
model for a 2 steps delay is expressed as:

x(k + 1) = A(k)x(k) +B(k)u(k) + E(k) + ω(k), (19)

where,

x(k) = [xl(k)
T , u(k − 2)T , u(k − 1)T ]T ∈ R12,

u(k) =

[
δin(k)
ax,in(k)

]
∈ R2, ω(k) =

[
ωl(k)
O4×1

]
∈ W ⊆ R12,

A(k) =


Al(k) Bl(k)

1 0
0 1
0 0
0 0

 ∈ A,

B(k) =


O8×2

0 0
0 0
1 0
0 1

 ∈ B, and E(k) =

[
El
O4×1

]
∈ E.

Therefore, the system model is expressed as a delay-free LTV
system, and the system output vector is expressed as follows
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in the same way.

y(k) = C(k)x(k) + F (k) + ωy(k). (20)

where, y(k) ∈ Y ⊆ R4, C(k) =
[
Co(k) Do(k) O4×4

]
∈

C ⊆ R4×12, F (k) = Fo(k) ∈ F, and ωy(k) ∈ Wy ⊆ R4.

III. BACKGROUND ON TUBE MPC

In this section, we outline the framework used to develop
tube-based robust MPC in section IV. Consider the nominal
system of (19) to be defined as:

x̄(k + 1) = A(k)x̄(k) +B(k)ū(k) + E(k). (21)

Let K(k) ∈ R2×12 be a feedback gain calculated in real time,
such that AK(k) = A(k)+B(k)K(k) is stable, i.e. AK(k) is
Hurwitz. If the system inputs (19) is defined as :

u(k) = ū(k) +K(k)e(k), (22)

the error dynamics of e(k) = x(k)− x̄(k) is expressed as:

e(k + 1) = A(k)e(k) +B(k)K(k)e(k) + ω(k)

= AK(k)e(k) + ω(k).
(23)

Therefore, the stable matrix AK(k) suppresses the error be-
tween the actual and nominal states caused by uncertainty.
e(k) is bounded to the robust positive invariant set Z defined
for the LTV system as follows: [29]–[31]

Definition III.1. The set Z is a robust positively invariant
set of (23), if AK(k)Z + W ⊆ Z for ∀e(k) ∈ Z,∀w(k) ∈
W,∀A(k) ∈ A, and ∀B(k) ∈ B.

The definition of robust positive invariant set was first
defined for the LTI system [28] and was extended for the
LTV system [30], [31]. The robust positive invariant set is
calculated for all arbitrary matrices existing in sets A and B,
as follows:

Z = W⊕ Conv{AKp W,∀Ap ∈ A,∀Bp ∈ B}
⊕ Conv{AKp AKq W,∀Ap, Aq ∈ A,∀Bp, Bq ∈ B} ⊕ ....

(24)

Proposition III.2. Suppose the Z is a robust positively in-
variant set of the system (23), ∀A(k) ∈ A,∀B(k) ∈ B.
If x(k) ∈ x̄ ⊕ Z and u(k) = ū(k) + K(k)e(k), then
x(k+1) ∈ x̄(k+1)⊕Z,∀ω(k) ∈ W,∀A(k) ∈ A,∀B(k) ∈ B.

Proposition III.2 states the feedback policy keeps the states
of the uncertain system close to the states of the nominal
system. Therefore, if a feasible solution exists for the following
tightened constraint of the nominal system (21), the control
law (22) guarantees the satisfaction of the constraint for the
uncertain system (19) [28], [30], [31].

x̄(k) ∈ X̄ ⊆ X ⊖ Z,

ū(k) ∈ Ū ⊆ U ⊖KZ,∀K ∈ K.
(25)

Figure 3. Control structure of the proposed controller

Also, for the constraint for the output function (20), if the
nominal output satisfies the following tightened constraint, the
constraint satisfaction of the original system is guaranteed.

ȳ(k) ∈ Y⊖ ỸZ , (26)

where,

ỸZ = Wy ⊕ Conv{C(k)Z,∀C(k) ∈ C}. (27)

IV. CONTROLLER DESIGN

This section introduces the design of RMPC for path
tracking. In subsection IV-A, the cost function and constraint
for path tracking are defined, and the optimization problem is
also defined. In subsection IV-B , multi-point linearization is
introduced to reduce linearization errors. In subsection IV-C,
feasibility conditions are presented to solve model change due
to multi-point linearization. Finally, subsection IV-D intro-
duces a practical calculation of tightened constraints.

A. Control Structure

The purpose of the proposed controller is to accurately
follow the desired path without exceeding the road friction
limit of any tire and to be robust against uncertainty. In order
to achieve these goals, tube-based RMPC introduced in section
III is used. The overall control structure is shown in Figure 3.
The controller consists of a nominal MPC that generates an
optimal feedforward input and an auxiliary feedback controller
to improve robustness.

For constrained optimization, cost function is defined as
follows:

J =

N−1∑
i=0

qey (ēy,i+1|k)
2 + qax(āx,i+1|k)

2 +∆ūTi|kR̄∆ūi|k,

(28a)

where, the subscript i|k denotes the prediction value at (k+i)-
th step predicted at the k-th step. qey and qax are each a
positive gain that inhibits lateral error ey and longitudinal
acceleration ax. This allows the control inputs to be calculated
to minimize lateral error and suppresses braking in situations
where braking is not necessary. And R̄ is a positive diagonal
matrix that suppresses the occurrence of jerk due to excessive
input change ∆ū defined as follows:

∆ūi|k =

{
ūi|k − ū(k − 1) if, i = 0

ūi|k − ūi−1|k if, i ∈ NN−1
1 .
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Remark 2. The primary objective of proposed controller is
efficient trajectory tracking through lateral error minimiza-
tion. Accurate path tracking under severe driving conditions
necessitates appropriate side slip angles and headings during
transient segments, as detailed in [38]. Excluding lateral er-
rors, additional costs related to lateral motion states may even
interfere with path tracking in some severe driving situations.
The proposed controller uses an integrated vehicle model that
considers yaw rate, lateral slip angle, heading angle error, and
lateral error dynamics. Therefore, the optimization results for
the proposed cost function are also used to plan for other
lateral states to minimize the lateral error. The proposed cost
function is effective for the purpose of this controller, but other
forms may be more suitable for different purposes.

Also, constraint is defined as follows:

(
F jn,i|k

)2

≤ µ2,∀i ∈ NN−1
0 ,∀j ∈ fl, fr, rl, rr.. (29a)

The constraint (29a) ensures that all tire forces do not exceed
the friction limit during prediction. For the original system
(19), the original constraint (29a) is expressed by (20) as:

yi|k = (Ci|kxi|k + Fi|k)⊕Wy ⊆ Y, (30)

where, Y = {y|y ≤ [µ2, µ2, µ2, µ2]T }.

Remark 3. Constraints on input magnitude and rate are con-
sidered through alternative means. The term for input changes
curbs excessive control fluctuations, while the constraint for
the friction limit inherently prevents excessive acceleration
input or extreme tire slip angle. Stable control results are
attained without additional constraints on control amplitude
and rate. However, supplementary constraints on actuator per-
formance may be advantageous in more constrained systems.

Based on the constraints of the original system (30), the con-
straint for the nominal state is tightened with two components.
First, to prevent the constraint’s violation due to uncertainty,
it is tightened based on the robust invariant set as expressed
in (26). Second, additional constraint tightening for the time-
varying model is performed to ensure recursive feasibility.
This method was developed and inspired by the recursive
formulation of previous studies [39], [40]. More details on
the feasible condition are given in section IV-C.

Constraint tightening of two components is expressed as
follows:

Ȳ0 = Y⊖ ỸZ ; Ȳi+1 = Ȳi ⊖ Ỹϵ,i,∀i ∈ NN−1
0 . (31)

For the cost function (28a) and tightened constraint (31),
the nominal MPC is expressed as an quadratic programming
problem P(k) as follows:

min
ūk

N−1∑
i=0

x̄Ti+1|kQx̄i+1|k +∆ūTi|kR̄∆ūi|k, (32a)

subject to.
x̄0|k = x̄∗1|k−1, (32b)

x̄i+1|k = Ai|kx̄i|k +Bi|kūi|k + Ei|k, (32c)

ȳi|k = Ci|kx̄i|k + Fi|k ∈ Ȳi,∀i ∈ NN−1
0 , (32d)

x̄N |k ∈ Xf , (32e)

where, ūk = {ū0|k, . . . , ūN−1|k}. By quadratic programming
(32), we can get optimal input sequence ū∗

k and calculate
optimal states x̄∗i|k through (21). The optimal nominal input
ū∗0|k is applied as the feedforward input of the robust MPC (i.e.
ū(k) = ū∗0|k). Finally, according to the control law (22), the
optimal nominal input is applied with the auxiliary feedback
input.

B. Multi-Point Linearization

The error resulting from linearization (16) decreases as the
linearization points xlin,i|k and ulin,i|k become more similar
to the values of xo(k + i) and uo(k + i) at which the model
prediction is made. This is because the higher-order terms
of Taylor’s expansion cause larger errors as the linearization
points move further away from the points of interest [41].
Therefore, it is important to select xlin,i|k and ulin,i|k to be
as similar as possible to xo(k+ i) and uo(k+ i), respectively,
in order to minimize the linearization error.

At the k-th step, the values that best represent the future
behaviors are x̄o,i+1|k−1 and ūo,i+1|k−1. In this study, the
nonlinear model is linearized with respect to these values, and
it is expressed as follows:

Ao,i|k =∇xfk(x, u)|
x̄o,i+1|k−1

ūo,i+1|k−1
, Bo,i|k = ∇ufk(x, u)|

x̄o,i+1|k−1

ūo,i+1|k−1
,

Eo,i|k =fk(x̄o,i+1|k−1, ūo,i+1|k−1)

−Ao,i|kx̄o,i+1|k−1 −Bo,i|kūo,i+1|k−1,

Co,i|k =∇xgk(x, u)|
x̄o,i+1|k−1

ūo,i+1|k−1
, Do,i|k = ∇ugk(x, u)|

x̄o,i+1|k−1

ūo,i+1|k−1
,

Fo,i|k =gk(x̄o,i+1|k−1, ūo,i+1|k−1)

− Co,i|kx̄o,i+1|k−1 −Do,i|kūo,i+1|k−1,
(33)

where, x̄o,i|k = [I6, O6×8]x̄i|k, ūo,i|k = [O2×6, I2, O2×6]x̄i|k.
The multi-point linearized model (33) considers the non-

linearity of the model as much as possible, even though the
computational burden is dramatically reduced by using the
linear model.

C. Recursive Feasibility with Tightened Constraints

In this section, we present and prove the conditions for
ensuring the recursive feasibility of P(k) in (32) that defines
the nominal MPC. The recursive feasibility is a property that
shows that a solution to the optimization problem must exist.
Specifically, this means that if P(k) is feasible, then P(k+1)
is necessarily feasible. This property is proven by finding a
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Figure 4. The difference in state prediction for candidate control input

candidate solution that satisfies constraints (32b)-(32e) in the
(k+1)-th step when P(k) is feasible.

For the LTI system, the (k+1)-th candidate input ûi|k+1

is configured to be the same as the optimal input ū∗i|k (i.e.
ûi|k+1 = ū∗i+1|k,∀i ∈ NN−2

0 ). Since the system is invari-
ant, state predictions of candidate solution x̂i|k+1 have the
same trajectory with the k-th optimal states (i.e. x̂i|k+1 =

x̄∗i+1|k,∀i ∈ NN−1
0 ) as shown in Figure 4(a). Therefore,

recursive feasibility is proven only with the condition for
the terminal constraint Xf , and it has been introduced in
various literature [28], [29], [42], [43]. However, the multi-
point linearized model is time-varying, so it has a different
state trajectory for the same input in the k-th step as shown
in Figure 4(b). The (k+1)-th candidate state trajectory is
calculated through the following model.

x̂i+1|k+1 = Ai|k+1x̂i|k+1 +Bi|k+1ûi|k+1 + Ei|k+1,

ŷi|k+1 = Ci|k+1x̂i|k+1 + Fi|k+1.
(34)

To avoid the infeasible situation due to model change, a
tightened constraint to ensure the LTV system’s feasibility was
introduced in [39], [40]. We develop the feasibility condition
in which the time-varying output function (20) is additionally
considered in the form of [40].

The candidate control input can be set as follows:

ûi|k+1 = ū∗i+1|k + K̂i|k+1(x̂i|k+1 − x̄∗i+1|k),∀i ∈ NN−2
0 ,

ûN−1|k+1 = K̃N−1|k+1x̂N−1|k+1.
(35)

From this control law, the following lemma is derived.

Lemma IV.1. The output trajectory for the candidate control
law (35) satisfies the following relation:

x̂i|k+1 = x̄∗i+1|k + γi+1|k

ŷi|k+1 = ȳ∗i+1|k + Ci|k+1γi+1|k + ϵg,i+1|k,∀i ∈ NN−1
0 ,

(36)

where,

γ1|k = O,

γi+1|k = AK̂i−1|k+1γi|k + ϵf,i|k,∀i ∈ NN−1
1 ,

(37)

AK̂i|k = Ai|k + Bi|kK̂i|k, and the differences between the
nominal states and the nominal outputs due to model variance
are as follows:

ϵf,i|k = (Ai−1|k+1 −Ai|k)x̄
∗
i|k + (Ei−1|k+1 − Ei|k),

ϵg,i|k = (Ci−1|k+1 − Ci|k)x̄
∗
i|k + (Fi−1|k+1 − Fi|k),

∀i ∈ NN−1
1 ,

ϵg,N |k = (CN−1|k+1 − CN−1|k)x̄
∗
N |k + (FN−1|k+1 − FN−1|k).

(38)

The detailed proof of Lemma IV.1 is in Appendix A.
The sets including the error states of (37) and (38) are

defined as follows ∀A ∈ A,∀E ∈ E,∀C ∈ C,∀F ∈ F:

ϵf,i|k ∈ ηf,i =
⋃
k

ϵf,i|k,∀i ∈ NN−1
1 ,

ϵg,i|k ∈ ηg,i =
⋃
k

ϵg,i|k,∀i ∈ NN1 ,

γ1|k ∈ Γ1 = O,

γi+1|k ∈ Γi+1 =
⋃
k

AK̂i|kΓi ⊕ ηf,i,∀i ∈ NN−1
1 ,

C0|k+1γ1|k ∈ Θ1 = O,

Ci|k+1γi+1|k ∈ Θi+1 =
⋃
k

Ci+1|k

(
AK̂i|kΓi ⊕ ηf,i

)
,∀i ∈ NN−1

1 .

(39)
The constraint tightening that guarantees recursive feasibility
can be determined as follows:

Ỹϵ,i = Θi+1 ⊕ ηg,i+1. (40)

Moreover, the following assumptions are made for the terminal
state:

Assumption IV.2. There exists a control law K̃N−1|k+1 such
that the terminal state constraint Xf satisfies the following
properties:

AK̃N−1|k (Xf ⊕ ΓN ) + EN−1|k ⊆ Xf ,
CN−1|kXf + FN−1|k ∈ ȲN .

(41)

Based on the constraint tightening (31), (40) and Assump-
tion IV.2, we can state:

Proposition IV.3. If the optimization for the initial state
P(0) is feasible, subsequent control behaviors with tightened
constraints (31),(40) are feasible, i.e. P(k) is feasible.

The proof of Proposition IV.3 is in Appendix B.

Remark 4. Unlike the control input (22) used as a system
input, the candidate control input (35) is only used to find
a feasible solution but is not used as a system input. The
feedback input added in (35) makes AK̂i|k stable and attenuates
the state error occurring in the LTV system. This feedback
input reduces the size of recursive constraint tightening Ỹϵ,i,
avoiding overly conservative control.

Lemma IV.1 and Proposition IV.3 are developed from the
form described in [40]. In this study, the effective change
compared to [40] is that by dealing with the effect of the
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Figure 5. Driving data for constraint tightening

uncertainty ω(k) of the actual state through (22) and (26).
Therefore, the initial state of optimization x̄0|k is set to the
nominal state of the previous step x̄∗1|k−1 as in (32b), not
the actual state x(k). This difference results in two practical
benefits in our controller. First, recursive constraint tightening
(40) can be calculated off-line since it is unnecessary to con-
sider the effect of time-varying uncertainty ω(k) in a nominal
system. Therefore, there is no increase in real-time calculations
for constraint tightening. Also, since the initial state of nominal
MPC starts from the nominal state of the previous step, the
model change due to multi-point linearization (38) can be
reduced. If the actual state x(k) is used as an initial value,
since the model is linearized for the state containing ω(k), the
magnitude of the model change becomes larger. As the result,
the constraint must be tightened even more to account for this.
Therefore, if the initial state is defined as the nominal state
of the previous step as in (32b), less conservative control is
possible by reducing the constraint tightening proportional to
the size of the model variation.

D. Practical Calculation of Tightened Constraints based on
Driving Data

This section introduces a practical method for calculating
the tightened constraint. Theoretically, the calculation of con-
straint tightening (31) for a time-varying system should be
done ∀A(k) ∈ A,∀B(k) ∈ B,∀E(k) ∈ E,∀C(k) ∈ C, and
∀F (k) ∈ F as described above. However, from a practical
point of view, it can be overly conservatively tightened by
considering cases that cannot actually occur. Therefore, in this

Figure 6. Calculation of ỸZ

section, the impact of uncertainty that can occur based on
numerous driving data is analyzed, and a tightened constraint
is defined based on this.

1) Calculation of ỸZ: The robust positive invariant set Z
and the resulting constraint tightening ỸZ are calculated as
follows instead of (24) and (27).

Z ∼=
⋃
k

lim
M→∞

AK(k +M − 1)(

· · ·
(
AK(k + 1)W⊕W

)
· · · )⊕W,

(42)

ỸZ ⊇
⋃
k

lim
M→∞

Wy ⊕ C(k +M)[AK(k +M − 1)(

· · ·
(
AK(k + 1)W⊕W

)
· · · )⊕W].

(43)

The uncertainty magnitudes ω(k), ωy(k) at each step in
the data is defined as the difference between the measured
and model-calculated values, and is calculated via equations
(19) and (20). The model for this calculation is constructed
by linearizing based on the actual occurring state and inputs.
From this, W and Wy are defined by considering all the
combinations of maximum and minimum ω(k) and ωy(k)
in the data for each state. Thus, the calculations of Z and
ỸZ take into account both the maximum and minimum
values of uncertainty for each state. And the control gain
K(k) is defined as the linear quadratic regulator (LQR)
for matrix pair (A(k), B(k)). Using the Matlab function
dlqr(A(k), B(k), QLQR, RLQR), it is calculated in real-time
for the cost matrices defined as follows:

QLQR = diag(0.1, 1, 1, 0.01, 1, 0.1, O6×6),

RLQR = diag(5000, 10)
(44)

This calculation can avoid conservative calculations for
unrealistic system model sequences. Nevertheless, to consider
as many different cases as possible, the analysis was based
on extreme driving data of the racing circuit. The driving
data used in this study was collected from a circuit driving
experiment conducted with a specific target vehicle. The

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3292616

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 27,2023 at 02:57:05 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , 9

Figure 7. Calculation of Ỹϵ,i

driving data, including the data shown in Figure 5, has a
distance of about 10 km and an acceleration range of about 0.9
g. The term on the right of (43) calculated based on driving
data is represented by the red lines in Figure 6. The upper
bound of constraint tightening including all of them is defined
as follow:

ỸZ = {y|y ≤ [0.36, 0.36, 0.36, 0.36]T } (45)

The tightened constraint of the first nominal output by (31) is
as follow:

Ȳ0 = Y⊖ ỸZ = {y|y ≤ [0.64, 0.64, 0.64, 0.64]T } (46)

Therefore, for all wheels, as long as the square of the normal-
ized tire force of the nominal system (21) does not exceed
0.64 (i.e. F̄ jn < 0.8,∀j = fl, fr, rl, rr), it is guaranteed
that the normalized tire force of the actual system (19) with
uncertainty does not exceed the road friction limit of 1 (i.e.
F jn < 1,∀j = fl, fr, rl, rr).

2) Calculation of Ỹϵ,i: For the same reason as before, it
was calculated based on controlled driving data to prevent
unnecessary conservative tightening. The control gain K̂i|k is
also an LQR control gain for the matrix pair (Ai|k, Bi|k) and
the cost matrices QLQR and RLQR. The impact of model
variations on the output vector for controlled driving data is
expressed as follows and represented as shown in Figure7 (red
line).

ŷi|k+1 − ȳ∗i+1|k = Ci|k+1γi+1|k + ϵg,i+1|k,∀i ∈ NN−1
0 , (47)

Therefore, Ỹϵ,i is defined (40) as an upper bound that en-
compasses all effects caused by model variance in the driving
data. In this study, the upper bound is defined as a second-
order polynomial for the prediction step, which has been tuned
and expressed as follows, and represented by a dashed black
line in Figure 7.

Ỹϵ,i = {y|y ≤ (0.0001(i)2 + 0.008)[1, 1, 1, 1]T },∀i ∈ N19
0

(48)

Figure 8. Calculation of Ȳi : The relationship between the size of two types
of constraint tightening and the tightened constraint

Constraint tightening Ỹϵ,i inductively tightens the nominal
constraint Ȳi with respect to the prediction step according to
equation (31). The final tightened constraint is expressed as
follows and is depicted in Figure 8:

Ȳi+1 = Ȳi ⊖ Ỹϵ,i
= {y|y ≤ ȳi+1[1, 1, 1, 1]

T },∀i ∈ N19
0 ,

= {y|y ≤ (ȳi − 0.0001(i)2 − 0.008)[1, 1, 1, 1]T },∀i ∈ N19
0 ,

(49)
where, ȳ0 = 0.64.

Finally, the calculated tightened nominal constraint is em-
ployed as the constraint for the proposed nominal controller.
Through this, the controller ensures compliance with con-
straints despite any model uncertainty that may arise within
the driving data and guarantees feasibility regardless of model
changes, due to the constraint tightening (47) in the prediction
step.

While the proposed constraint tightening method has the
advantage of being less conservative, its limitation lies in
only considering the uncertainties present in the data. If the
calculations lack a sufficient amount of diverse data, unin-
tended control actions may result from excessive uncertainty
not represented in the data or variance in the prediction model.
It is important to note that under aggressive driving condi-
tions, such as high-speed and high-acceleration scenarios, the
model’s uncertainty increases, as does the variance in the pre-
diction model due to changes in vehicle behavior. In this study,
we computed constraint tightening using a comprehensive and
diverse dataset, encompassing severe driving data from high-
speed and high-acceleration scenarios on high-friction road
surfaces. Consequently, the method effectively covers a broad
spectrum of driving conditions on high-friction road surfaces,
including extreme situations. Furthermore, it is anticipated
that expanding data collection and calculations will allow the
approach to address conditions not yet covered in the data,
such as low-friction road surfaces.

E. Effects of Tightened Constraints on the Linearization Pro-
cess

Constraint tightening not only increases the robustness of
the controller, but is also effective against problems in the lin-
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Table I
MODEL PARAMETERS

Parameter Value Parameter Value
m 1854 kg µ 1
Iz 3966 kg·m2 θy 0.165
b 0.815m hcg 0.55

lf , lr 1.40, 1.61 m σf , σr 0.178, 0.189
cd 0.504 N·s2/m2 τl,δ , τl,ax 0.1, 0.01 s
λ 0.7 τdδ, τd,ax 0.2, 0.2 s

Table II
CONTROL PARAMETERS

Parameter Value
Ts 0.1 s
N 20
qey 10
qax 0.005
R̄ diag(30, 0.001)

earization of nonlinear tire models. Cornering stiffness of the
nonlinear tire model decreases rapidly when tire forces enter
the nonlinear region during extreme lateral behavior, leading
to a quick increase in linearization errors when linearizing a
vehicle model that uses a nonlinear tire model.

If the linearization error increases significantly, controllers
using these models may experience poor control performance,
as the difference between the actual vehicle behavior and the
nominal model becomes larger. For example, if the nominal
model predicts a higher slip angle than the actual one, ex-
cessive steering input may occur, resulting in unstable vehicle
behavior. Conversely, if the nominal model predicts a lower
slip angle than required, insufficient steering input may occur.

However, the proposed controller effectively mitigates these
problems in the nonlinear regions by tightening the constraints.
By enforcing the tire force constraint, it ensures that the tire
force generation in the nominal model does not exceed 80%
of the actual road friction. As a result, the slip angle in
the nominal model does not behave in the region where the
cornering stiffness converges to zero but in a less nonlinear re-
gion. Therefore, the model benefits greatly from a linearization
perspective, contributing to reducing the linearization error. In
this case, if the actual slip angle is larger than the nominal
model due to uncertainty, the nominal model may have a
higher lateral error due to less coordination force resulting
from a larger estimate of cornering stiffness than the actual
value. However, the unstable behavior of the vehicle in the
opposite case can be effectively suppressed.

Overall, these constraints and optimizations minimize model
errors in excessively nonlinear regions, leading to more stable
and accurate results in vehicle steering control. This helps to
improve safety and performance.

V. SIMULATION RESULT

This section introduces the simulation results of the con-
troller previously designed in section IV. A vehicle simulator,
Carsim, was utilized for the simulation, and the controller
was designed using Matlab simulink. The nominal MPC

Figure 9. Simulation result : Desired path

quadratic programming calculations (32) and the calculations
for the linearized model (33) were done using the functions
quadprog() and jacobian() in Matlab, respectively. Specifically,
the linearization model was defined offline in ”symbolic(sym)”
form and only substitution was performed during control,
making it effective for real-time performance. The vehicle used
in the simulation consists of the same parameters as the test
vehicle to be introduced in section VI, which is presented in
Table I. Also, the control parameters are as in Table II. The
simulations were performed for the scenario of entering at
high speed (95km/h) on the curved road shown in Figure 9.
In section V-A, we demonstrate the operating principles and
control performance of the proposed controller, while section
V-B and V-C discusses the effects of constraint tightening.

A. Operating Principle

As a result of the simulation, the control input was generated
as shown in Figure 10 (a), (b), and the nominal MPC input and
the feedback input are commanded together. The commanded
inputs were applied to the vehicle under the influence of delays
and lags of the actuators. As shown in Figure 10 (c), (d), the
vehicle’s speed was significantly reduced before turning, and
the lateral distance error occurred within 0.5m. Also, due to
proper braking, it can be seen that the tire force of each wheel
shown in Figure 11 occurred within the friction limit during
control.

The braking input was not generated from the additional
speed planner but rather from the influence of the constraint
of the controller shown in Figure 12. The cost function of the
controller focuses only on reducing lateral error regardless of
speed. However, the brake input was automatically generated
to avoid excessive lateral force due to tire force constraints at
high speeds.

In this scenario, the load on the left wheel is reduced
when turning, so it may become unstable when braking
and steering are performed together. Because the proposed
controller considers the force of each wheel, the constraint of
the left tire forces was activated and is validated by the blue
dots in Figure 12. Since constraint is guaranteed by (49), the
controller was always feasible during simulation. Without this
constraint tightening, the optimization solution did not exist at
some point, and the simulation stopped.
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Figure 10. Simulation result : Inputs and states

Figure 11. Simulation result : Tire forces

B. The Effect of ỸZ
In this simulation, the effect of constraint tightening ỸZ

based on robust positive invariant sets for robustness against
model uncertainty is analyzed. The result from the data-
driven constraint tightening ỸZ is defined as Ȳ0 = {y|y ≤
[0.64, 0.64, 0.64, 0.64]T } (i.e. F̄ jn < 0.8,∀j = fl, fr, rl, rr)
as expressed in (46). However, if the data used to calculate

Figure 12. Simulation result : Constraint satisfaction

Figure 13. The effect of insufficient ỸZ : ax and ey

ỸZ is not sufficiently representative of severe driving situ-
ations, a smaller tightening value may be calculated. As a
result, the constraints of the nominal MPC are applied less
conservatively. Therefore, in this simulation, we compare the
results for less conservative tightening with Ȳ0 = {y|y ≤
(0.9)2[1, 1, 1, 1]T } and Ȳ0 = {y|y ≤ (0.95)2[1, 1, 1, 1]T } as
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Figure 14. The effect of insufficient ỸZ : Tire forces

shown in Figures 13 and 14. The simulation scenario is the
same as V-A.

When the nominal tire force limit was set to 0.9, the behav-
ior was very similar to the proposed result. Successful control
was achieved even with less conservative constraints because
the calculation of ỸZ was based on the worst-case scenario
of severe driving data in Figure 5. Therefore, the result set to
0.9 shows that the proposed data-driven constraint tightening
is not overfitting for this particular scenario. It should also be
recognized that the result is set less conservatively than the
data-driven calculation and therefore may not always show
successful control in other environments.

On the other hand, when the nominal tire force constraint
was slightly increased to 0.95, the normalized tire force of the
left rear wheel shown in Figure 14(c) violated the actual tire
force constraint due to the effect of uncertainty. As a result, the
lateral error in Figure 13(b) was inaccurate at 0.87 m, which
is about twice as large as the behavior under the proposed
constraint.

As a result, through this simulation result, it can be con-
firmed that the driving data-based constraint tightening is
sufficiently effective against the occurrence of uncertainty.

C. The Effect of Ỹϵ,i
In this simulation, the effect of constraint tightening on the

feasibility of a controller is analyzed. The size of the proposed
tightening Ỹϵ,i creates a margin for model variations, ensuring
that the nominal MPC always has a solution that satisfies the
constraints. To verify the effectiveness of this method, the
performance of the controller is compared with various sizes
of Ỹϵ,i. Table III and Figure15 show the size of the proposed
sequential tightening and the maximum calculation time of
each control.

In Case 2, although the size of sequential tightening is less
conservative than the proposed constraint, the controller is still

Table III
THE SIZE OF SEQUENTIAL TIGHTENING AND CALCULATION TIME

Method Ỹϵ,i Max Comp. time(ms)
Case 1 (Proposed) 0.0001(i)2 + 0.008 9.7

Case 2 0.0001(i)2 + 0.004 21.15
Case 3 0.0001(i)2 + 0.002 infeasible

Figure 15. The effect of constraint tightening (Ỹϵ,i) : Calculation time

always feasible and the behavior is similar to Case 1. However,
the calculation time shown in Figure15 and in Table III
increases at a specific section due to a reduction in the number
of constraint-satisfying solutions. Through this, it can be seen
that the sequential tightening not only guarantees feasibility,
but also helps to improve the calculation speed of constrained
optimization by increasing the size of the feasible set. In Case
3, the simulation stopped at 167m without finding a solution
that satisfies the constraints due to model variance, as indicated
by the diverging calculation time shown in Figure15.

Overall, through this simulation result, it can be confirmed
that the definition and calculation of sequential tightening
proposed in this dissertation is effective in ensuring feasibility
for model change.

VI. EXPERIMENT RESULT

In this section, we show the effectiveness of the proposed
controller through vehicle test results. Vehicle tests are con-
ducted on a curved road and a single lane change (SLC) path
to confirm lane-keeping and collision avoidance performance
in extreme situations.

Figure 16. Experimental setup
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Figure 17. Experimental result (curved road) : Desired path

A. Experimental Setup

Figure 16 shows a simplified experimental setup. The
Hyundai Genesis DH, an E-class sedan, was used as the
test vehicle, and the vehicle’s states are measured through
the RT3000 mounted on the vehicle CG. The controller was
run via Matlab on a personal computer with AMD Ryzen 9
3900X and 64GB RAM. Calculations for each element were
performed in the same way as in the simulation. Steering
angle input and braking input were respectively actuated by a
motor-driven power steering (MDPS) system and autonomous
emergency braking (AEB) actuator. Sensors, PCs, and actu-
ators communicate through Robot Operating System (ROS)
communication and CAN. Predefined path information was
used as the desired path of path tracking.

B. Curved Road

The curved road scenario shown in Figure 17 is similar to
the simulation and is the best scenario to check the perfor-
mance of the proposed controller. Proper turning and braking
are prominently expressed when approaching a sharp corner
at high speed. Figure 18(a),(b) shows the inputs of steering
and braking, consisting of nominal MPC input and feedback
input. In particular, since the actuator’s performance was
considered, unnecessary chattering rarely occurs. In addition,
this controller has a small amount of computation in real-
time due to the utilization of quadratic programming using
the linearized model and the off-line computation of constraint
tightening. The calculation time per step of the controller
shown in Figure 18(c) is less than 2ms, which is very generous
compared to the time interval of 100ms.

The vehicle motions are shown in Figure 18(d),(e). The
lateral distance error occurred within 0.52m, and the vehicle
speed was greatly reduced from the maximum speed of about
90km/h to about 40km/h. Unfortunately, measuring the tire
forces was impossible, so the effectiveness of the controller
was confirmed through the longitudinal/lateral acceleration
shown in Figure 18(f). After the vehicle brakes up to 7.5,
mixed acceleration in the longitudinal/transverse direction oc-
curred. After braking almost disappeared, a lateral acceleration
of up to 8.7 occurred. When all four wheels simultaneously
generate maximum force, a vehicle acceleration of 1g (i.e.

Figure 18. Experimental result (curved road) : Inputs and states

9.81m/s2), equal to the road friction limit, can occur. There-
fore, it can be inferred that all tire forces are utilized almost
to the maximum in a stable area where the road friction limit
is not exceeded all the time. Therefore, it is confirmed that
the amount of braking of this controller is not excessive or
insufficient, and it shows stable turning performance even in
a situation where combined acceleration occurs through the
steering control considered together.

C. Single Lane Change

The SLC path is shown in Figure 19. A vehicle test on this
path was performed to validate the performance of the pro-
posed controller in obstacle avoidance behavior. In particular,
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Figure 19. Experimental result (SLC) : Desired path

Figure 20. Experimental result (SLC) : Inputs and states

bold steering control is required because it requires a lateral
movement as large as about 5 m for a longitudinal distance of
less than 30 m. Therefore, it is suitable for verifying control
performance for transient situations. Figure 20(a-c) shows the
controller’s input, and the computation time is less than 2 ms,
which shows a slight computational burden as in the curved
road scenario.

The vehicle motions are shown in Figure 20(d),(e). Due
to proper steering control, a maximum lateral error of 0.34m
occurred, and the vehicle speed was reduced from a high
speed of about 77km/h to about 45km/h for stable turning.
The acceleration result shows that braking was applied before
turning left, and the braking input almost disappeared when
significant lateral acceleration was required. As it can be seen
that almost no braking occurred just before the right turn, it can
be confirmed that the proposed controller does not generate
unnecessary braking input when low lateral acceleration is
expected.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a tube MPC-based steering
and braking controller for path tracking in extreme driving
situations. Through the friction limit constraint of each tire,
the vehicle can stably follow a path even in an extreme
driving situation. In particular, since the model uncertainty
can cause fatal accidents in such a driving situation, precise
analysis and consideration of the robustness of the controller
were accompanied. The proposed multi-point linearization
method reduces the linearization error while maintaining the
computational efficiency of the linear model. Moreover, a
vehicle model considering input delays and lags was used
for control. The proposed tube MPC-based controller prevents
constraint violation due to uncertainty and guarantees feasi-
bility. The conditions for securing feasibility were explained
and proven through lemma and proposition. The tightened
constraint of the controller was calculated based on driving
data. The performance of the proposed algorithm was verified
through simulations and experiments. As a result, the vehicle
performed stable and accurate path tracking without violating
friction constraints. In particular, the vehicle braked to a stable
speed range without a separate speed planner and behaved
stably even when performing longitudinal/lateral combined
motion.

The proposed methodology in this paper can be further
enhanced through the following additional research directions.
First, beyond the uncertainty addressed in this study, further
analysis of uncertainties, such as sensor errors, localization
errors, and delays that may arise from mass-produced vehicles’
sensors, as well as additional analysis of vehicle behavior on
low friction surfaces, would enable the proposed controller to
be applied to a broader range of vehicles and scenarios. To
achieve this, additional data collection beyond what was used
for constraint tightening calculations in this study is expected
to help improve the tightening amount and be sufficient to
address these uncertainties. Second, while this paper provided
a mathematical proof of feasibility for the proposed system,
we plan to conduct further theoretical investigations on the
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controller’s stability. The current control results reliably con-
verge to the desired results within a stable range of tire forces;
however, a theoretical stability study can further ensure the
stability of the controller. Lastly, we intend to expand the
application of the proposed control methodology to not only
braking control but also acceleration input through throttle
input, broadening its potential uses.
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APPENDIX A
PROOF OF LEMMA IV.1

Proof. Proving this by induction, for i = 0,

x̂0|k+1 = x̄∗1|k + γ1|k,

ŷ0|k+1 = C0|k+1x̂0|k+1 + F0|k+1

= ȳ∗1|k + C0|k+1γ1|k + ϵg,1|k.

(50)

Assuming that (36)-(38) hold for i, we need to verify that they
hold for i+ 1.

x̂i+1|k+1 = Ai|k+1x̂i|k+1 +Bi|k+1ûi|k+1 + Ei|k+1

= Ai|k+1

(
x̄∗i+1|k + γi+1|k

)
+Bi|k+1ûi|k + Ei|k+1

= x̄∗i+2|k +AK̂i|k+1γi+1|k + ϵf,i+1|k,

= x̄∗i+2|k + γi+2|k,

ŷi+1|k+1 = Ci+1|k+1x̂i+1|k+1 + Fi+1|k+1

= Ci+1|k+1

(
x̄∗i+2|k + γi+2|k

)
+ Fi+1|k+1,

= ȳ∗i+2|k + Ci+1|k+1γi+2|k + ϵg,i+2|k.
(51)

This finally proves Lemma IV.1 by induction.

APPENDIX B
PROOF OF PROPOSITIONIV.3

Proof. For recursive feasibility, we want to verify that P(k+1)
is feasible when P(k) is feasible. This is shown by finding a
candidate solution that satisfies constraints (32b)-(32e). (36)
was derived to satisfy constraints (32b), (32c).

ŷi|k+1 = ȳ∗i+1|k + Ci|k+1γi+1|k + ϵg,i+1|k

∈ Yi+1 ⊕Θi+1 ⊕ ηg,i+1

= Ȳi ⊖ Ỹϵ,i ⊕Θi+1 ⊕ ηg,i+1

= Ȳi

(52)

Therefore, the candidate solution satisfies the constraint (32d).
Also, for the terminal state,

x̂N−1|k+1 = x̄∗N |k + γN |k,

∈ Xf ⊕ ΓN .
(53)

This relationship, with Assumption IV.2, enables us to show
that:

x̂N |k+1 = AK̃N−1|k+1x̂N−1|k+1 + Ei|k+1,

∈ AK̃N−1|k+1 (Xf ⊕ ΓN ) + Ei|k+1,

⊆ Xf .

(54)

Therefore, it is proved that the candidate solution (35) is also
satisfied with the terminal constraint (32e). Finally, there is a
candidate solution (35) for P(k+1) that satisfies the tightened
constraint (32b)-(32e), P(k + 1) is feasible.
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