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Abstract: One of the most critical topics in vehicle active safety control is collision avoidance(CA) maneuver. To ensure
the robustness of the CA, it is essential to recognize the behavior of surrounding vehicles accurately. In particular, a
safer path can be generated, if the intention of changing lanes of surrounding vehicles can be predicted. Existing studies
on lane change intention prediction are primarily based on machine learning, and it is difficult to respond to unexpected
situations that have not been learned. In this study, a method for predicting lane change intention in real time based on
the trajectory of surrounding vehicles is presented. It is assumed that the location of the lane is known through the map,
and the global coordinate system is transformed into the Frenet coordinate system to maintain generality regardless of the
curvature of the road. And the paths that the target vehicle can travel are modeled as cubic spline curves on the Frenet
coordinate system. Through the multiple model estimator, which operates the path models in parallel, it finds the most
probable path and predicts the lane change intention. The performance of the lane change intention prediction algorithm
is verified through highD, a German highway vehicle trajectories dataset.
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1. INTRODUCTION

As the level of Advanced Driver Assistance Systems
(ADAS) increases, so does active safety control perfor-
mance. Research to ensure high reliability of vehicle
safety by using V2X technology that can know the in-
formation of nearby vehicles and traffic infrastructure
through communication is also being actively conducted.
Also, high-definition maps are being built over a broader
range. Due to this background, autonomous vehicles can
more accurately perceive their surroundings through a
large amount of information and perform active safety
control [1]. In order to perform control, a decision must
be made based on the perception result.

Lane change decision-making of the ego vehicle is a
very complex problem, and various studies have been
conducted on this. First, there is a method to analyze
model probability by designing an Interacting Multiple
Model estimator based on the Lane change model [2].
Most of the existing studies are data-based learning, and
typically support vector machine (SVM) [3] and deep re-
inforcement learning (Deep RL) [4], [5] are applied. And
recently, researches using game theory have also been
conducted [6], [7]. If there is an error in the autonomous
vehicle’s lane change decision-making on the highway,
there is a high possibility of a serious accident. If the
ego vehicle can recognize the lane change intention of
the surrounding vehicle, it can make a more accurate de-
cision. Most existing studies on lane change intention
prediction of surrounding vehicles also use learning [8].
There are many studies such as SVM and Neural Net-
works (NN) [9], Long short-term memory (LSTM) [10],
[11], and Fuzzy logic with NN [12]. And recently, there
have been attempts to build a Human-like Lane Changing

Intention Understanding Model (HLCIUM) [13].
Lane changing intention prediction is influenced by

many factors such as driver’s disposition and surrounding
traffic conditions, so it is impossible to model it consid-
ering all situations, and it relies heavily on data. How-
ever, the data-driven learning method does not respond
to real-time emergencies, and it is difficult to determine
the cause when making a wrong decision. In this study,
an algorithm that can determine the intention to change
lanes in real time based on the trajectories of surrounding
vehicles without relying on big data is proposed.

2. COORDINATE TRANSFORMATION AND
PATH MODELING

In this study, it is assumed that lane locations
are known through maps. In other words, the
global(Cartesian) coordinates of the lane are known, and
the global coordinate system is transformed into the
Frenet coordinate system to maintain generality regard-
less of road curvature. After that, the paths that the target
vehicle can travel are modeled in the form of cubic spline
curves in the Frenet coordinate system.

2.1 Frenet coordinate system
If the global coordinates of the lane are known, it is

possible to estimate the coordinates that the target vehi-
cle will follow when maintaining or changing lanes at the
current location. Also, the coordinates that the target ve-
hicle is expected to follow can be expressed as a function
of the global coordinate system. This is similar to pre-
dicting the trajectory of a target vehicle when a human
is driving. However, if this process is carried out in the
global coordinate system, the shape of the function does



not appear consistently depending on the curvature of the
road. If it is a straight road without any curvature, a path
can be generated in a consistent form from the current
location of the target vehicle. However, if there is cur-
vature, the shape of the path is distorted according to the
direction in which the target vehicle is moving. There-
fore, in order to ensure generality so that it can be ap-
plied to all roads, curvature roads should be transformed
into straight roads. Such a curvilinear coordinate system
is called a Frenet coordinate system. Fig. 1 and Fig. 2
shows the transformation process from the global coordi-
nate system to the Frenet coordinate system [14].
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Fig. 1. Global coordinate system and base frame.
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Fig. 2. Frenet coordinate system.

Fig. 1 represents a curvature road in the global x-y
coordinate system, and the current location of the target
vehicle is at (xt, yt). Since the global coordinates of the
lanes are known, the position of the target vehicle is indi-
cated with respect to one of the lanes. The standard line
is the base frame, and the length of this line is s. The
vertical distance away from the base frame is q. From the
vehicle’s point of view, s is the longitudinal travel dis-
tance of the vehicle, and q is the lateral offset from the
base frame. The base frame is represented by parameter-
izing x and y in the global coordinate system as a cubic
function for s, respectively, in Eqs. (1)∼(2).

xb(s) = ax,i(s− si)
3 + bx,i(s− si)

2 + cx,i(s− si) + dx,i,
(1)

yb(s) = ay,i(s− si)
3 + by,i(s− si)

2 + cy,i(s− si) + dy,i.
(2)

ax,i, bx,i, cx,i, dx,i are coefficients of the cubic spline
curve of x with respect to s, and y is the same expression.
When the coordinates xb and yb of the base frame are ex-
pressed as a parametric curve for s, sections are divided
by s range and coefficients for each section are obtained.
si is the s value at the initial position of the ith section.
The reason for dividing the section is to accurately ex-
press a point on the base frame as a spline curve for s. If
the points on the long base frame are expressed as a sin-
gle spline curve, the error between the actual points and
the curve increases. However, if the section is subdivided
too much, the amount of calculation is increased, so the
length of the section must be appropriately adjusted. It
may be possible to change the length of the section ac-
cording to the curvature. In Fig. 1, θv,t and θb,t for the
current position of the target vehicle represent the head-
ing angle and the instantaneous inclination in the base
frame in the global coordinate system, respectively Eqs.
(3)∼(4).

tan θv =
Vy

Vx
, (3)

tan θb =

dy

ds
dx

ds

. (4)

It is assumed that the x and y coordinates of the tar-
get vehicle and the velocities Vx and Vy in the x and y
directions in the global coordinate system can be mea-
sured through a sensor in the ego vehicle or can be known
through communication between vehicles. Then, s can be
obtained through the x and y coordinates, and the slope of
the base frame with respect to this s can also be obtained.
The distance from the base frame to the target vehicle is
calculated numerically by Newton’s method [15]. After
all, the situation in the global coordinate system of Fig.
1 can be expressed in the Frenet coordinate system as in
Fig. 2. In the Frenet coordinate system, the current po-
sition of the target vehicle is indicated by st and qt, and
the heading angle is θt. θ is the difference between the
heading angle of the vehicle and the angle with respect to
the instantaneous inclination in the base frame, as shown
in Eq. (5).

θ = θv − θb. (5)

2.2 Path modeling
After transforming the global coordinate system into

the Frenet coordinate system, model the path that the tar-
get vehicle can go. For example, when there are lanes on



either side of the lane where the target vehicle is driving,
the vehicle maneuvers in one of three cases: lane change
to the left, lane keeping, and lane change to the right. It
can be modeled in the form of a cubic spline curve. Fig.
3 describes the above.
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Fig. 3. Path models in the form of cubic spline curves in
Frenet coordinates.

In the Frenet coordinate system, the current position
of the target vehicle is (st, qt) and the heading angle is
θ. q1, q2, and q3 are q values of lane centers to which the
target vehicle can go. The path model expression can be
expressed as Eq. (6).

q = a(s− st)
3 + b(s− st)

2 + c(s− st) + d.

(st ≤ s ≤ sf )
(6)

a, b, c, and d are the coefficients of the cubic spline
curve, which can be determined by four boundary condi-
tions for the initial and final points of the path as shown
in Eq. (7).

1)q(st) = qt 2)
dq

ds
(st) = tan θv − θb

3)q(sf ) = qi +∆q 4)
dq

ds
(sf ) = 0.

(∆q = −4, 0, 4)

(7)

Conditions 1) and 2) relate to path initial coordinates
and heading angle, and conditions 3) and 4) relate to path
final coordinates and heading angle. qi is the distance
from the base frame to the current lane center of the target
vehicle. ∆q is set to 4 when changing lane in the direction
away from the base frame, -4 when changing lane in the
direction closer to the base frame, and 0 when keeping the
lane. The path final point, sf , is set variably according to
the speed of the vehicle and can be expressed as Eq. (8).

sf = Vttprev + st. (8)

st is the current position of the target vehicle and Vt is
the speed. tprev is the preview time and means the time
it takes to change lane. sf − st is the distance traveled

until the lane change is completed. The result of calculat-
ing the coefficients of the cubic spline curve by applying
boundary conditions is Eq. (9).

[
a
b

]
=[

(sf − st)
3 (sf − st)

2

3(sf − st)
2 2(sf − st)

]−1 [
qi +∆q − qt − c(sf − st)

−c

]
c = tan(θv − θb), d = qt.

(9)
The lane change intention of the target vehicle is esti-

mated using the path model.

3. LANE CHANGE INTENTION INFERENCE

Since the cubic spline path model in Chapter 2 has
nonlinearity, it is not possible to use the Kalman filter ap-
plicable only to the linear model. Therefore, an extended
Kalman filter(EKF) that linearizes a nonlinear function or
an unscented Kalman filter(UKF) that uses a probabilis-
tic method through several samples can be considered.
Since it is generally known that the performance of EKF
cannot be guaranteed when the order is more than the 3rd

order, the UKF is used in this study. When there are sev-
eral lanes that the target vehicle can go from the current
location, a multiple model estimator that uses path mod-
els in parallel is configured. Multiple model-based adap-
tive estimator applies the UKF to each path model to find
likelihood and update mode probability and posterior. At
this time, it determines which path is most likely to go
through the mode probability and determines the inten-
tion to change lanes.

3.1 Unscented Kalman filter using path model
The states of the nonlinear model are set as s and q in

the Frenet coordinate system, and the state vector is ex-
pressed as X . Measurements are x and y in the global co-
ordinate system, and the measurement vector is denoted
by Y . In the discrete-time domain, the state space form
can be expressed as follows.(Eqs. 10∼11)

Xk =

[
sk
qk

]
= f(Xk−1) + wk,

f(Xk−1) =

[
Vk−1dt+ sk−1

a(Vk−1dt)
3 + b(Vk−1dt)

2 + c(Vk−1dt) + qk−1

]
.

(10)

Yk =

[
xk

yk

]
= h(Xk) + vk,

h(Xk) =

[
xb(sk)− qk sin θb
yb(sk) + qk cos θb

]
.

(11)

In the above nonlinear dynamic system, wk means
model uncertainty and vk means measurement noise, and
both terms are the additive white Gaussian noise. sk
is obtained by adding sk−1 to the value multiplied by
the speed Vk−1 and the sampling time dt. The qk of



the kth step is obtained from the path model created in
the (k − 1)th step. The measurement model means that
(sk, qk) of the Frenet coordinate system is transformed
back into the global coordinate system (xk, yk). In the
UKF, estimation is performed by comparing the global
coordinates of the target vehicle measured by the sensor
with the value calculated by the measurement model. The
UKF application process is as follows [16], [17], [18].

1) Initialization:

X̂+
0 = E(X0), P̂+

0 = E
[
(X0 − X̂+

0 )(X0 − X̂+
0 )T

]
.

(12)

2) State prediction:
2-1) Sigma points for posterior distribution.

X̂
(i)
k−1 = X̂+

k−1 +

(√
nP+

k−1

)T

i

, i = 1, · · · , n,

(13a)

X̂
(i)
k−1 = X̂+

k−1 −
(√

nP+
k−1

)T

i−n

, i = n+ 1, · · · , 2n.

(13b)

2-2) Propagate the sigma points with f(X).

X̂
(i)
k = f

(
X̂

(i)
k−1

)
. (14)

2-3) Prior state estimate and covariance.

X̂−
k =

1

2n

2n∑
i=1

X̂
(i)
k , (15a)

P−
k =

1

2n

2n∑
i=1

(
X̂

(i)
k − X̂−

k

)(
X̂

(i)
k − X̂−

k

)T

+Qk−1.

(15b)

Where Qk−1 is the process noise covariance.

3) Measurement prediction:
3-1) Sigma points for prior distribution.

X̂ ′
k
(i) = X̂−

k +

(√
nP−

k

)T

i

, i = 1, · · · , n, (16a)

X̂ ′
k
(i) = X̂−

k −
(√

nP−
k

)T

i−n

, i = n+ 1, · · · , 2n.

(16b)

3-2) Sigma points update with h(X).

Ŷ
(i)
k = h

(
X̂ ′

k
(i)
)
. (17)

3-3) Predicted measurement and covariance.

Ŷk =
1

2n

2n∑
i=1

Ŷ
(i)
k , (18a)

PY =
1

2n

2n∑
i=1

(
Ŷ

(i)
k − Ŷk

)(
Ŷ

(i)
k − Ŷk

)T

+Rk.

(18b)

Where Rk is the measurement noise covariance.

4) Measurement update:

4-1) The cross covariance between x̂−
k and ŷk.

PXY =
1

2n

2n∑
i=1

(
X̂

(i)
k − X̂−

k

)(
Ŷ

(i)
k − Ŷk

)T

. (19)

4-2) Kalman gain.

Kk = PXY P
−1
Y . (20)

4-3) Posterior state estimate and error covariance.

X̂+
k = X̂−

k +Kk

(
Yk − Ŷk

)
, (21a)

P+
k = P−

k −KkPY K
T
k . (21b)

3.2 Multiple model estimator design
The UKF is applied to each of the path models that the

target vehicle is expected to follow in the future. The like-
lihood is calculated by comparing the coordinates pre-
dicted through the model and the measured coordinates,
and the probability of each model is calculated. The tran-
sition between each lane model is not considered, so a
static multiple model estimator(SMM) is used. These
processes are shown in Fig. 4.

Target

(sk−1, qk−1)
(sk,1, qk,1)

(sk,2, qk,2)

(sk,3, qk,3)

Path 
model 1 

Path 
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Path 
model 3

UKF
Model 1

probability

Model 2
probability

Model 3
probability

Measurement

Fig. 4. Scheme of the lane change intention prediction.

The paths that the target vehicle can travel are modeled
as cubic spline curves, and the next step positions are pre-
dicted through these path models. Then, the mode prob-
abilities representing the probabilities of going to each
path are calculated by comparing the measurements and
the predictions of each model. Through these mode prob-
abilities, it is possible to determine the lane change inten-
tion of the target vehicle. For example, in Fig.4, if the
probability for path model 1 is the highest, it is deter-
mined that the vehicle intends to change lane to the left.
It can be interpreted that the closer the probability of path
model 1 is to 1, the clearer the intention to change the
lane to the left. In SMM, the mode probability is calcu-
lated using the likelihood function as shown in Eq. (22)
[16].

p(rk|m = i) =
exp

(
−0.5rTk [i]S

−1
k [i]rk[i]

)√
(2π)n|Sk[i]|

. (22)



rk[i] is the innovation that is the difference between
measurement and model value in the ith mode, and Sk[i]
is the covariance of the innovation in the ith mode. The
mode probability is obtained through likelihood Eq. (23).

αk[i] =
αk−1[i] · p(rk|m = i)

M∑
j=1

αk−1[j] · p(rk|m = j)

. (23)

The ith mode probability is obtained using the ith

mode probability at the (k − 1)th step and the likelihood
at the kth step. The overall flow of SMM is shown in Fig.
5.
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Fig. 5. Structure of static multiple model estimator.

Pk is the error covariance. For each step, the final pos-
terior and error covariance are obtained by multiplying
the mode probability by the weight of each mode poste-
rior and error covariance. (Eq. (24))

X̂+
k =

M∑
i=1

αk[i]X̂
+
k [i], (24a)

P+
k =

M∑
i=1

αk[i]

[
P+
k [i] +

(
X̂+

k [i]− X̂+
k

)(
X̂+

k [i]− X̂+
k

)T
]
.

(24b)

3.1 UKF and 3.2 SMM are repeated every step to esti-
mate lane change intention.

4. TEST RESULTS

Chapters 2 to 3 presented SMM that calculates the
probability for each model by applying UKF to the path
models. Chapter 4 is about the performance verification
of the SMM algorithm that estimates the lane change
intention of the target vehicle using highD [19]. The

highD is a vehicle trajectories dataset on German high-
ways that records the driving trajectories of real vehicles
with drones. Various situations including lane change are
recorded in highD, and the accuracy is high with a typical
positioning error of less than 10cm. Since lane change is
also recorded in the dataset, the algorithm is applied and
verified on vehicle data that changes lane. The width of
the lane is fixed at 4 m. The vehicle data used for verifi-
cation is shown in Fig. 6.
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Fig. 6. Vehicle data: (a) trajectory; (b) longitudinal ve-
locity; (c) longitudinal acceleration

As already mentioned, the coordinates of the lanes are
known from the map. The SMM algorithm is applied
to determine the intention to change lanes, considering
that the position and speed of the target vehicle can be
measured. The vehicle data is visualized in Matlab to
verify the algorithm, and some of the results are shown in
Fig. 7∼9. In all three cases, lanes and target vehicles are
displayed in the Frenet coordinate system. The left lane
changing path is shown in blue, the lane keeping path is
shown in red, and the right lane changing path is shown in
yellow. In SMM, the path with high probability appears
thicker. This means that the thicker the path, the higher
the probability of going to that path.

Fig. 7 is a situation in which the probability of the
vehicle keeping the lane is about 0.6, and the probability
of changing the lane to the right (the direction in which
q is lowered) is about 0.4. Since there is no lane to the
left of the target vehicle, the probability for this is zero.
In Fig. 8, the probability of changing lanes to the right
becomes 1, so that the thickness of the yellow path is
maximum. Finally, Fig. 9 shows that the probability of
keeping the lane is 1 because the vehicle has completed
the lane change. Fig. 10 shows the trajectory of the tar-
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Fig. 7. Simulation result using highD (lane change in-
tention detection).
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Fig. 8. Simulation result using highD (lane changing).
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Fig. 9. Simulation result using highD (lane keeping).

get vehicle in the Frenet coordinate system, and Fig. 11
shows the path model probabilities corresponding to s.

Comparing and analyzing Fig.10 and Fig.11, it can be
concluded that the algorithm reflects the intention of the
vehicle well. When s is within 100m, the lane change in-
tention probability is about 0.4 as the vehicle moves in the
direction where q decreases. When s exceeds 100m, the
lane change probability exceeds 0.8 instantaneously, but
the lane keeping probability becomes one as q increases
again. It can be seen that when s is about 200m, the
lane change probability becomes one as the curvature in-
creases in the direction in which q decreases.

5. CONCLUSION

In autonomous driving, decision-making is a crucial
step directly related to safety, but due to the high com-
plexity, it is sometimes difficult to consider all situa-
tions well. In the case of automated highway driving,
lane change decision-making errors are fatal. If the lane
change intentions of surrounding vehicles can be pre-
dicted, these errors can be reduced. In this study, the
lane change intention of surrounding vehicles is predicted
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Fig. 10. Trajectory of the target vehicle in the Frenet
coordinate system.
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Fig. 11. Path model probabilities calculated by SMM.

using the path model. Path modeling is done by trans-
forming the global coordinate system to the Frenet co-
ordinate system so that it can be generally applied to all
roads. After that, UKF is designed using the path model,
and the multiple model estimator is constructed using the
path models in parallel. Estimator performance is verified
through highD.

In this study, the preview time is set as a tuning pa-
rameter, but in the future, preview time adaptation using
the past trajectory will be performed. Furthermore, the
trajectory expected to follow when changing lanes can be
predicted using the preview time for each lane.
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