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Abstract— This paper presents a novel identification method
for vehicle dynamics model and sensor lever-arm using the
motion measurements from sensors mounted on arbitrary
positions. Since known methods for vehicle model parame-
ter identification and sensor lever-arm estimation have been
cross-referencing the results from each other, a simple conju-
gation of two methods cannot solve the identification of model
parameter and lever-arm concurrently. A modified single track
model with normalized tire stiffness is formulated to decou-
ple the lever-arm effect from the vehicle’s dynamics states.
The identification scheme is conducted through an unscented
Kalman filter by fusing the modified model with inertial and
velocity measurements from the sensor. We demonstrate the
efficacy of identification performance of the proposed method
in simulations and real-vehicle experiments. The identified
model accomplished the accuracy within 5% error for geomet-
rical parameters and 10% error for tire stiffness over various
experimental conditions and confirms the feasibility of utiliz-
ing motion estimation devices in vehicle dynamics and vice versa.

Index Terms— Motion estimation, Sensor fusion, System identification, Vehicle dynamics, Extrinsic calibration

I. INTRODUCTION

RESEARCHES on the advanced driver assistance sys-
tem(ADAS) and self-driving cars have been gaining

momentum under the emerging attention of the automotive
industry and academia. Over the last decade, numerous mass-
produced vehicles are produced with state-of-the-art sensor
systems, such as lidar, radar, camera, or global navigation
satellite system(GNSS) [1]. This innovation of the sensor
systems not only offers the advantage of recognizing the
surrounding driving scenes but the capability of potential
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enhancement on the vehicle model and state estimation for
the active safety control on various conditions.

The sensor systems for ADAS not only provide the rela-
tive motions of moving objects by detecting distinguishable
features from the given scenes but also estimate the position
and motion of ego-vehicle by referencing stationary features in
the surrounding environment. In order to accomplish precise
localization and accurate state estimation through external
sensing, several studies based on various types of sensors have
been introduced. Inertial navigation system with GNSS aiding
provides a capability of vehicle state estimation [2]–[4], and
also achieves the centimeter-level of positioning accuracy with
real-time kinematics(RTK) technology [5], [6]. Furthermore,
based on pose optimization approaches, the motion estimation
techniques have been introduced using ADAS sensors, such
as camera [7]–[10], lidar [11] or radar [12], [13] and being
widely applied in GNSS-denied environments including indoor
positioning.

The motion estimation methods mentioned above are only
relying on their own measurement characteristics, whereas the
actual motion of land vehicles follows the vehicle dynamics
model strictly constrained on the ground. Consequently, by
combining the dynamic motion constraints from the vehicle
model, the comprehensive motion estimation gives benefits for
improved performance and robustness [14]–[18]. Moreover,
the motion estimation provides attitude and velocity infor-
mation of the vehicle as well as position information, which
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enables itself as a state estimator for vehicle dynamics and
control applications. The vehicle dynamics state estimation
methods based on external environment sensing, such as vision
[19], [20] or lidar [21], have been proposed and validated that
the additional sensor modality can effectively reduce the drift
and error in sideslip estimation.

However, there exist preliminary requirements when inte-
grating vehicle dynamics equations with motion estimation
techniques. First, in practice, the mounting position of sensors
in consumer vehicles usually does not coincide with the center-
of-gravity(CoG) of vehicles due to technical reasons. The
distance between the sensor body to vehicle CoG, called
sensor lever-arm, induces addictive quantities on the raw
measurement and needs to be compensated when merging the
measurement with the vehicle dynamics model [22]. Second,
the model-based integration requires an adequate vehicle dy-
namics model that is built upon several physical parameters
which are hard to be directly measured.

For the identification of sensor lever-arm which is off-
center mounted in the vehicle body, several estimation methods
have been proposed. The non-holonomic constraint(NHC)
assumption is a conventional way used to eliminate the effect
of the lever-arm. It assumes that there is no slip occurs on
the rear axle, thus the lateral and vertical velocities at the
rear axle are considered as zero. Then the distance between
the rear axle and sensor position can be determined using
the kinematic constraints on velocity measurements [23]–[25].
However, adopting NHC into the vehicle model parameter
identification can lead to erroneous results, since the vehicle
dynamics model is derived from the tire force generated by
slip, which directly conflicts with NHC assumption [26].

As for the dynamics model, various techniques have been
applied to obtain the vehicle parameters [27]. The longitudinal
tire stiffness can be calculated from the wheel dynamics
[28], [29], and the lateral tire stiffness also can be estimated
based on the relationship between the sideslip angle and
tire force [30]–[33]. For the vehicle inertial parameters, such
as mass, moment of inertia, and axle distance from CoG,
recursive system identification methods based on the single
track model are introduced [34]–[36], but those parameter
identification methods are formulated with the motion and
inertial measurements acting on vehicle CoG, which is the
target of identification itself.

Alternatively, to overcome the limitations above, a dual
Kalman filter approach considering sensor lever-arm for ve-
hicle motion state estimation was introduced [37], [38]. This
method establishes a Kalman filter to obtain an indirect
estimation of virtual measurements at vehicle CoG, while
another Kalman filter estimates the vehicle model parameter
using the virtual measurement, in parallel. However, this
method also has the prerequisite that the distance between
IMU and the front axle of the vehicle should be configurated
with respect to the vehicle body frame when generating the
virtual measurement. Thus, there is still a remaining issue in
the implementation of an integrated state estimator for the
unknown vehicle model and sensor position.

Taking the above into account, those two requirements for
the integration of the vehicle model and motion estimation

need contradictory preliminaries in their identification strategy:
Sensor to vehicle CoG lever-arm identification has a precise
vehicle model as a prerequisite, whereas the vehicle dynamics
parameter estimation has a mounting location of the sensor as
a prerequisite. Accordingly, the fusion of various modalities
with the dynamics model is mainly based on relative motion
constraints with respect to each sensor [39], not being gov-
erned by the vehicle dynamics equations which dominate the
motion of land vehicles.

In this paper, we introduce a novel method for simultaneous
identification of vehicle dynamics parameters and sensor lever-
arm for arbitrarily mounted motion sensors. The proposed
method takes the inputs as yaw rate, acceleration, and velocity
for longitudinal and lateral direction, measured on the sensor
position, and also requires in-vehicle sensors including steer-
ing angle and odometer measurement. The identified model
consists of the following fundamental vehicle dynamics pa-
rameters: normalized tire stiffness for longitudinal and lateral
direction, radius of gyration of vehicle, longitudinal position
of CoG and the corresponding sensor lever-arm. The identifi-
cation process is constructed on a combination of longitudinal
and lateral dynamics of vehicle with a linearized tire model,
and how the dynamics states presented in the measurement
under the lever-arm effect. As a result, a modified single
track model with lever-arm compensation is formulated and
integrated with sensor measurements via an unscented Kalman
filter(UKF). The identification results for vehicle dynamics
model parameters and sensor lever-arm are evaluated with
numerical simulations and vehicle experiments.

II. VEHICLE AND SENSOR MODEL

In this section, we introduce the equations of motion for the
linearized vehicle dynamics model for both longitudinal and
lateral motions, and the corresponding measurement influence
due to the mounting position of motion sensors with respect
to vehicle CoG.

Assuming the vehicle chassis as a rigid body, the Newton-
Euler equations of motion for the vehicle on a plane become

Fx = mv̇x −mrvy (1)

Fy = mv̇y +mrvx (2)

Mz = ṙIz (3)

When the lateral movement of the vehicle, vy is relatively
small compared to the forward velocity vx, we can assume
that

vx = v cosβ ≈ v (4)

vy = v sinβ ≈ vβ (5)

where β is the sideslip angle, defined by β ≈ vy
vx

, and v is the
planar speed of the vehicle. Then, the longitudinal and lateral
forces acting on the vehicle can be represented in terms of β
as follows.

Fx ≈ mv̇ −mrvβ (6)

Fy ≈ mv̇β +mv(r + β̇) (7)
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Fig. 1. Normalized longitudinal tire force with respect to tire slip ratio

When the aerodynamic effect is negligible, the only force
acting on a vehicle is the friction between the ground and tires.
Due to the highly nonlinear characteristics of tires, there are
numerous parameters that affect the tire force. However, the
tire force can be simplified with a linear coefficient when the
contact surface to the ground is nearly in stick condition. In the
following, we will describe the details of the vehicle dynamics
model using the linear tire model, and how it manifests itself
in the sensor measurement.

A. Longitudinal Dynamics
When a vehicle accelerates or decelerates, there are speed

differences between tires and the ground speed developed. The
longitudinal slip ratio of a tire, κ, is defined as

κ =
Rωwheel − vx

vx
(8)

where R is the nominal radius of the tire, and ωwheel is the
angular velocity measured from vehicle’s wheel speed sensor.

The longitudinal force between a tire and the ground de-
pends on the vertical load Fz and the slip ratio κ. As shown in
Fig. 1, the normalized force is proportional to the slip ratio in
a small slip region and saturated when the slip ratio exceeds
a certain slip ratio. Hence, in a mild driving maneuver, the
longitudinal force (1) can be written as

Fxi = Cκi(κi, Fzi) · κi (9)

Cκi ≈ CκFzi (10)

where Cκ is the normalized longitudinal stiffness of tires and
the subscript i denotes the axle, front or rear, where equations
acting on.

Considering that a vehicle commonly uses the same tires on
all wheels, and moves on a uniform surface, the longitudinal
forces acting on the front and rear axle can be derived with
the vertical load and the slip ratio. The vertical load of each
axle is determined by the position of CoG, and the dynamic
load transfer due to the longitudinal acceleration,

Fzf = m(g
lr
l
− ax

h

l
) (11)

Fig. 2. Longitudinal vehicle model
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Fig. 3. Single Track Model Geometry

Fzr = m(g
lf
l

+ ax
h

l
) (12)

where g is the gravitational constant, l refers to the wheelbase
length, lr and lf refer to the distances from CoG to front and
rear axles respectively, and h refers to the height of CoG.

Combining (9)-(12), the longitudinal force generated by the
front and rear tires becomes the function of the longitudinal
slip ratio κ with the nominal longitudinal tire stiffness Cκ.

Fxf = mCκ
(glr − axh)

l
κf (13)

Fxr = mCκ
(glf + axh)

l
κr (14)

Note that the longitudinal forces, (13) and (14), refer to
the forces acting on each axle, not per tire, hence we use the
average of κ of two tires on the same axle.

B. Lateral Dynamics

The single track model(also known as ”bicycle model”)
assumes that the lateral dynamics of a vehicle can be described
by the equivalent single tire per axle, while the roll dynamics
including the lateral load transfer is neglected. Fig. 3 shows
the geometry of the single track model when the vehicle turns
with an instant turning radius ρ.

From the equations of motion of the vehicle, (1)-(3), the
single track model approximation of vehicle dynamics can be
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derived. We can rewrite (2) and (3) in terms of the front and
rear tire force Fyf and Fyr as follows,

Fy =Fyf + Fyr (15)
Mz =lfFyf − lrFyr (16)

In the same manner as the previous section, it is known that
the lateral force of tire is proportional to the sideslip angle of
tire α, with the lateral tire stiffness(also known as ”cornering
stiffness”), Cαi,

Fyi = −Cαi(αi, Fzi) · αi (17)

where the sideslip angle of each tire αi can be calculated by

αf =β + lf
r

vx
− δ (18)

αr =β − lr
r

vx
(19)

with the given front steering angle δ.
Substituting (15)-(19) into (2)-(3), the single track model

for the sideslip β and yaw rate r is derived as below.

[
β̇
ṙ

]
=

[
−Cαf+Cαr

mvx
− lfCαf−lrCαrmv2x

− 1

− lfCαf−lrCαrIz
− l

2
fCαf+l2rCαr

Izvx

] [
β
r

]
+

[
Cαf
mvx
lfCαf
Iz

]
δ

(20)

In general, the lateral tire stiffness can be approximated as
a constant when the effect of lateral load transfer is negligible.

Cαf =CαFzf (21)
Cαr =CαFzr (22)

where Cα is the normalized lateral tire stiffness, which remains
constant locally on the homogeneous road surface. Then, sub-
stituting lateral tire stiffness with normalized lateral stiffness
and longitudinal weight transfer model, the lateral tire force
can be established as follows,

Fyf =−mCα
(glr − axh)

l
(β + rlf − δ) (23)

Fyr =−mCα
(glf + axh)

l
(β − rlr) (24)

Assuming that the magnitude of sideslip angle, β, is not
huge, the longitudinal velocity of the vehicle can be approxi-
mated with the ground speed, and then the single track model
in (20) is represented with the normalized tire stiffness as
follows,[

β̇
ṙ

]
=

[
−Cαv g

Cα
v2 axh− 1

1
k̄2
Cαaxh − 1

k̄2
Cα(glf lr−(lf−lr)axh)

v

] [
β
r

]
+

[ Cα
vl (glr − axh)

1
k̄2

Cαlf
l (glr − axh)

]
δ

(25)

where k̄ is the radius of gyration, defined as follows.
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Fig. 4. Discrepancy between sensor mount position and vehicle CoG

C. Vehicle Dynamics Model with Sensor Lever-arm

The vehicle dynamics equations given in the previous
sections are formulated on the assumption that the position
of sensing devices is coincident with vehicle CoG. For the
sensor mounted on the remote position, the measured values
differ from that measured on vehicle CoG [40]. Hence a direct
feed of sensor measurement to the original dynamics equations
becomes no longer valid and a modified dynamics model that
compensates kinematic relationships between vehicle CoG and
sensor measurement is required.

The acceleration of the vehicle CoG can be expressed by
sum of tire forces.

max =Fxf + Fxr − Fyfδ (26)
may =Fyf + Fyr (27)

Note that the longitudinal acceleration contains Fyf ,
whereas the lateral acceleration does not. Since this research
assumes the moderate driving maneuver, harsh braking or
acceleration on a curved road is not considered. However, even
the vehicle moves with a stationary turn, the lateral force of
the front tire can be applied along longitudinal direction under
tight turns.

The sensor measurement is influenced by the lever-arm
effect, induced by the motion of the vehicle. With the unknown
lever-arm distance, ls, between the sensor and vehicle CoG,
the inertial measurements from the sensor becomes

rs =r (28)

ax,s =ax − lsr2 + gθ (29)
ay,s =ay + lsṙ + gφ (30)

where the subscript s is for the quantity on sensor position,
and θ and φ are vehicle pitch and roll angle, respectively.
The corresponding measurement of the sideslip angle on the
sensor position, βs, is also added by an extra component from
the sensor lever-arm.

βs = β + ls
r

v
(31)
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Combining the linear tire force models denoted in previous
sections, (13)-(14) and (23)-(24), and the sensor measurement
models, (26)-(31), the acceleration measurements from the
sensor can be represented with tire stiffness and slip:

ax,s =Cκ(
glr − axh

l
κf +

glf + axh

l
κr)

− Cα
glr − axh

l
αfδ + rv(βs − ls

r

v
) + gθ (32)

ay,s =Cα

(
−gβs + (gls + axh)

r

v
+ (glr − axh)

δ

l

)
+ gφ

(33)

Also the single track model is modified in terms of the
sensor measurements, including lever-arm effect.[
β̇s
ṙs

]
=

[
−Cαv g

Cα
v2 axh− 1

1
k̄2
Cαaxh − 1

k̄2
Cα(glf lr−(lf−lr)axh)

v

] [
βs − ls rv

r

]
+

[ Cα
vl (glr − axh)

1
k̄2

Cαlf
l (glr − axh)

]
δ +

[
ṙ lsv
0

]
(34)

The derivative of sideslip angle, β̇s, can be formulated based
on the kinematic relationship from the measurement itself
without consideration of vehicle motion:

β̇s,kin =
ay,s − gφ

v
− r (35)

Although the sensor has the capability to measure the
sideslip angle directly, the system becomes highly sensitive
when it depends on velocity measurements which can suffer
external disturbances such as GNSS signal outage. Hence,
alternatively, the kinematic model, (35), is adopted to obtain
the time derivative of sideslip angle.

III. PARAMETER IDENTIFICATION FILTER

The vehicle model provided in the previous section con-
tains vehicle-specific parameters such as the tire stiffness,
position of CoG, and sensor lever-arm, which are normally
hard to determine. In order to achieve reconstructing the
vehicle dynamics model, and validate the potential capability
for complementary performance enhancement through sensor
fusion from additionally mounted sensors, an online parameter
identification filter is suggested.

As mentioned briefly in the previous section, identification
approaches based on the steady-state response of the single
track model would not be applicable for the system that
contains off-centered measurement. From the basic form of
the single track model, (20), it can be easily found that
a simple replacement of dynamics states with compensated
states, (28)-(31), leaves CoG position and sensor lever-arm as
fully coupled.

In order to identify indistinguishable states in the single
track model, a simultaneous identification process of the longi-
tudinal and lateral dynamics of the vehicle is established. The
proposed method utilizes the inertial and motion estimation
results from sensors mounted on a land vehicle and provides
the relative location of motion sensors from vehicle CoG, as
well as, corresponding vehicle dynamics model in the linear
slip region.

The identification process of vehicle model parameters is
based on the Kalman filter, which is widely used to obtain
the optimal solution for rank deficient systems. Originally, the
Kalman filter is constructed for linear-time-invariant systems,
thus the prediction and correction model need to be in the
form of linear combinations of states.

For non-linear systems, an extended version of the Kalman
filter is developed, which performs a linearization of nonlinear
models around recently estimated states for each step. The
EKF approximates the system dynamics as the first-order
Taylor approximation, and the probability density as a Gaus-
sian distribution, which requires the numerical calculation of
Jacobian matrices at every update.

As the degraded performance of EKF of a system with
the probability distribution of a random vector, the UKF was
proposed [41], [42]. The UKF is based on the unscented
transform, which gives the accuracy up to a second-order
Taylor approximation, whereas the computational effort has
the same order O(n3) as that of the EKF. Additionally,
the estimation architecture of the UKF does not require the
derivatives, which brings convenience to the implementation
of practical systems.

In the rest of this section, the identifiability analysis and the
UKF formulation for the vehicle model parameter estimation
will be demonstrated.

A. System Identifiability

The unknown vehicle model parameters, lr, ls, Cα, Cκ, and
k̄, need to be determined to comprise the vehicle dynamics
model given in the previous section. The state vector and
available measurements used to establish identification filter
are as follows, respectively,

x̂ =
[
l̂r Ĉκ Ĉα l̂s

ˆ̄k
]T

(36)

z =
[
β̇s,kin ṙ ax,s ay,s

]T
(37)

and the corresponding measurement model derived with the
vehicle dynamics model, (32)-(34), can be represented in terms
of the filter state,

ẑ =h(x̂,u)

=


− gv Ĉα

(
βs − l̂s rv

)
+ axh

v2 Ĉαr − r + gl̂r−axh
vl Ĉαδ + ṙ l̂sv

1
k̄2

(
axh

(
βs − l̂s rv

)
−
(
l̂f l̂rg −

(
l̂f − l̂r

)
axh

)
r
v + l̂f

(
gl̂r − axh

)
δ
l

)
Ĉκ( gl̂r−axhl κf +

gl̂f+axh
l κr)− Ĉα gl̂r−axhl αfδ + rv

(
βs − l̂s rv

)
+ gθ

Ĉα

(
−gβs + (gl̂s + axh) rv + (gl̂r − axh) δl

)
+ gφ+ ṙl̂s


(38)

where the hat operator denotes a estimated value.
The structural identifiability for the given system is eval-

uated by investigating the identifiability matrix, OI(x,u)
defined by

OI =


∂
∂xh (x,u)
∂
∂xLh (x,u)

...
∂
∂xL

n−1h (x,u)

 (39)
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where the operator, Li, denotes the ith order extended Lie
derivative defined by

Lih (x,u) =

∞∑
j=0

∂Li−1h (x,u)

∂u(j)
u(j+1) (40)

where u(j) is the jth time derivative of u [43]. If the system
with nx independent states satisfies rank (OI(x,u)) = nx,
then the model is locally structurally identifiable [44], [45].

Although the first order Jacobian matrix for the given
system, ∂

∂xh (x,u), has the rank deficiency, the extended Lie
derivative of h (x,u) implies full column rank of OI , with the
consideration of the system input u =

[
βs r δ

]
. It should

be noted that the system only has full rank with non-zero
excitation of the lateral movement, hence the update process
should be limited to the longitudinal parameters when the
vehicle moves in a straight trajectory.

B. UKF Formulation
The parameter estimation proposed in this research is per-

formed by the UKF. The key difference between the UKF and
the EKF is the approximation method for nonlinear models.
The UKF linearizes the system by the statistical linearization
method, based on the unscented transform. This method ap-
proximates the system with a linear regression over 2n + 1
point, chosen by the prior distribution of the states. These
points are called the sigma points, given by the following
transformation

χi =


x̂k|k−1 if i = 0

x̂k|k−1 +
√

(n+ λ) Σk|k−1i
if 0 < i ≤ n

x̂k|k−1 −
√

(n+ λ) Σk|k−1i
if n < i ≤ 2n

(41)

where χ, Σ, and λ denote the sigma points, prior states co-
variance, and a scaling parameter, given by λ = a2(n+k)−n
with tuning parameters a and k, which determine the spread of
the sigma points. The subscript i|j denotes that the estimated
parameter in ith step using the information of jth step.

The corresponding weights for each point are

Wc
i =

{
λ

n+λ + (1− a2 + b) if i = 0
1

2(n+λ) if i 6= 0

Wm
i =

{
λ

n+λ if i = 0
1

2(n+λ) if i 6= 0

(42)

where Wc
i and Wm

i are weights for the covariance and mean
calculation, respectively.

The average measurement, ẑ is obtained according to the
measurement model, (38), over the sigma points:

Zi = h(χi) (43)

ẑ =

2n∑
i=0

Wm
i Zi (44)

Similarly, the error and state covariance are propagated as
below

S =

2n∑
i=0

Wc
i (Zi − ẑ) (Zi − ẑ)T +R (45)
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Fig. 5. Allan-variance characteristics of IMU(Xsens MTi-670g)

TABLE I
IMU NOISE AND BIAS CHARACTERISTICS

Xsens MTi-670G Characteristics Unit Measured Datasheet

Accelerometer
Noise density, σa m

s2
1√
Hz

6.9e-4 5.9e-4
Random walk, σba m

s3
1√
Hz

0.9e-5 N/A
In-run bias stability m/s2 9.80e-6 9.81e-6

Gyroscope
Noise density, σg rad

s
1√
Hz

1.49e-4 1.22e-4

Random walk, σbg rad
s2

1√
Hz

2.0e-6 N/A
In-run bias stability deg/hr 6.21 8.0

Σ̄ =

2n∑
i=0

Wc
i (χi − χ0) (Zi − ẑ) +Q (46)

where R and Q are the observation and process noise respec-
tively.

The state correction is performed when a new set of
measurement is available:

K =Σ̄S−1 (47)
x̂k|k =χ0 +K (z − ẑ) (48)

Σk|k =Σ̄−KSKT (49)

Since the vehicle parameters are time-invariant states, the
prior state is not updated without the measurement correction,
x̂k|k−1 = x̂k−1|k−1.

Even though the vehicle parameters are constant properties,
the process noise, Q, is added into the state covariance, Σ, for
the purpose of maintaining the estimation performance against
potential violations of model assumptions or environmental
changes. Hence Q is adjusted as a tuning parameter, while
the measurement noise covariance, R, can be determined by
analyzing sensor characteristics through the Allan-variance
method [46]. The standard deviation analysis for noise and
random walk of IMU used in this research are represented in
Fig. 5 and the result is summarized in Table I. According
to the measured noise density of IMU, the measurement
covariance for identification filter is derived and additional
noise components are emulated in the simulation environment.
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TABLE II
VEHICLE PARAMETERS USED IN SIMULATION

B-Class Sports Car Parameter Value Unit
Vehicle mass m 1140 kg
Moment of inertia Iz 1320 kg m2

Radius of gyration k̄ 1.076 m
Wheelbase l 2.33 m
Front axle distance lf 1.165 m
Rear axle distance lf 1.165 m
CoG Height h 0.5 m
Nominal lateral tire stiffness
∼ |α| < 0.1 Cα 15 1/rad

Nominal longitudinal tire stiffness
∼ |κ| < 0.1 Cκ 19 1/(slip ratio)

Sensor lever-arm ls 0.5 m

IV. SIMULATION AND EXPERIMENTAL RESULTS

The proposed identification method for vehicle model pa-
rameters and sensor mount position was evaluated by a nu-
merical simulation. The aim of the simulation is to investigate
the performance of the identification algorithm and explore the
effect of the initial state and tuning parameters. Moreover, the
simulation approach allows to validate the proposed method
on various conditions, for example, modifying physical param-
eters of test vehicles, which is hard to be performed in the real
situation for technical reasons. The simulation was performed
on the CarSim, which is an industrial software for simulating
and analyzing the vehicle dynamics. Also, the experimental
validation was also established to evaluate the performance of
the proposed method under unintended noise and assumption
violations.

A. Simulation Results
All of the vehicle model parameters used for the simulation

are summarized in Table II. The inertial and geometrical
parameters are extracted from the vehicle model data, whereas
the longitudinal and lateral tire stiffness are obtained using
linear regression as shown in Fig. 6, since originally the
stiffness is modeled as a function of the slip, vertical load,
road surface friction, and elastic characteristics.

The simulations were made for various road shapes, but
here the results of the representative scenario which contains
several curves and straights are presented. The driving scenario
is described in Fig. 7, considering the characteristics of real-
world drivers in normal driving circumstances. According to
the previous research for the driving pattern analysis [47], it
had been shown that the majority of peak acceleration in a
moderate driving scenario is 3-4m/s2. Therefore, the simu-
lation driving maneuver is set to be limited to 3.5m/s2 for
the longitudinal and lateral acceleration with the homogeneous
road friction coefficient.

Fig. 8-9 shows the identified vehicle parameters with and
without the correction of the sensor lever-arm effect. Without
the simultaneous identification of the sensor lever-arm, the
identified vehicle model converges to an incorrect direction to
resolve the error from the lever-arm, ls, with the own dynamics
of the vehicle model itself, whereas the estimation results
with the consideration of the lever-arm enhance the estimation
performance of the vehicle parameters.
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Fig. 10. Subsequent sine-wave steer scenario for the excitation signal
of identifying radius of gyration.

However, it is worth noting that the radius of gyration is not
well converging to the actual value, while other estimations
tend to converge to the actual model. Since the given driving
maneuver in the simulation is hardly restricted, the excitation
condition for the identification of k̄ rarely occurs. Thus, we
construct a subsequent scenario, which contains rotational
excitation with sine-wave steer input. Fig. 10 shows the steer
input and estimated k̄ in additional maneuver.

The comparative result of the proposed method and NHC
method for the sensor lever-arm estimation is presented in Fig.
11. It can be found that even the vehicle moves with low-level
acceleration, the sideslip angle of the rear axle, αr, violates
the non-slip assumption, thus the estimation result of the NHC
method obviously leads to a wrong value. Meanwhile, the
proposed method provides an acceptable identification result
based on the single track model. Fig. 12 and 13 show results
of the longitudinal and lateral tire forces, for the front and
rear axle respectively. The calculated tire forces are obtained
by (13)-(14) and (23)-(24) using the identified vehicle model
parameters. There can be found that the longitudinal force
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Fig. 11. Sensor to vehicle CoG Lever-arm estimation results
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Fig. 12. Front tire forces obtained from the identified model

from the model shows emphasized error when the vehicle
decelerating, whereas lateral tire force follows the actual value.
It can be explained by the fact that we assumed that the sus-
pension motion of the vehicle is negligible; therefore the tire
force model does not contain the weight transfer due to angular
motion, and as a result, the calculated longitudinal force has
been biased to the rear axle when the peak deceleration is
applied, while the summation of longitudinal tire force follows
the actual value.

Reminding the main goal of the proposed identification
method is providing information of vehicle motion constraint
and sensor lever-arm for the integration of vehicle dynamics
with state-of-the-art motion estimation technologies, a simple
validation for the sideslip angle and yaw rate is conducted
based on the identified vehicle model. The estimation follows
an open-loop integration of the single track model, described
in the previous section, with the estimated model parameters.
As seen in Fig. 14, the identified model well represents the
actual dynamics of the given condition. The sideslip angle
reconstructed from the model achieves a reliable tracking
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Fig. 14. Open-loop estimation results for sideslip angle and yaw rate
with online identification of vehicle model parameters

performance of the actual β, even during the combined slip
region. However, the yaw rate is not much varying from the
actual value. The measurement model used in this research
directly includes the yaw rate measurement, and the lever-arm
effect does not implicate an interference on angular velocity
measurements. As a result, the yaw rate given by the identified
model shows less model sensitivity regardless of the accuracy
of model parameters.

Additionally, the simulation was conducted both on the
high and low surface friction condition, with the purpose
of feasibility check for potential usage of proposed methods
in the vehicle dynamics and control applications. The test
consisted of two different surface conditions, µ = 1.0 and
µ = 0.6, which are typical road friction coefficients for the
dry pavement and wet pavement, respectively.

A comparison between the estimation results for different
road friction is presented in Fig. 15(a) and Fig. 15(b). It can
be seen the tire stiffness on the low friction surface has a
lower value compared to that on the high friction surface.
The tire behavior on different surfaces can be modeled by a
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method called friction similarity, which predicts the effect of
the degraded friction coefficient while maintaining the initial
response in the small slip region [49]. This phenomenon is
demonstrated in Fig. 15(c). The normalized force on the low
friction surface has a similar slope to that on the high friction
surface when the slip ratio is nearly zero. However, on the
low friction surface, an excessive slip is required to generate
the same amount of force, which causes saturation on the tire
force. This result implies a potential necessity of the estimation
criteria for switching the estimation strategy according to
dynamics states for the real environment implementation.

Additional simulation scenarios to evaluate the identification
performance under various model parameters also have been
performed. Since the vehicle model parameters are hardly
entangled with each other in single track model, the estimation
performance of each parameter should not be affected while



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 20XX

TABLE III
IDENTIFICATION RESULTS FOR DIFFERENT VEHICLE MODELS IN

SIMULATION (IDENTIFICATION ERROR)

Changed Parameter

Estimated Parameters and Error∗

lr ls Cκ Cα k̄
(m) (m) (1/ratio) (1/rad) (m)

Base Model 1.171 0.467 18.90 16.28 1.069
(Table II) (0.006) (-0.033) (-0.1) (0.28) (-0.008)

CoG Position 1.487 0.513 19.10 15.79 1.087
(lr = 1.5) (-0.013) (0.013) (0.1) (-0.21) (0.011)

Sensor Position 1.168 -0.532 18.83 16.30 1.062
(ls = −0.5) (0.002) (-0.032) (-0.17) (0.30) (-0.015)
Tire Stiffness 1.196 0.444 25.97 19.59 1.092

(Cκ = 26, Cα = 19) (0.031) (0.056) (-0.03) (0.59) (0.016)
Radius of Gyr. 1.171 0.493 18.94 15.83 1.389

(k̄ = 1.4) (0.006) (-0.007) (-0.06) (-0.17) (-0.011)
*stabilized result after 300s from initialization

other parameters are changed. Table III shows the set of
results of model identification for varying model parameters
one by one. The result implies that the identification process
of coupled parameters, such as CoG position and sensor lever-
arm, is not affected by other parameters and shows consistent
performance regardless of changes in the physical model.

B. Experimental Results
Although validation of the proposed algorithm was per-

formed based on the numerical simulation, an experimental
evaluation was conducted in order to secure the feasibility
with unexpected or unmodeled disturbances. The test was
performed with various types of dynamic maneuvers in the
proving ground, to mitigate the propagation of motion es-
timation errors from external reasons such as road bank,
inclination, or heterogeneous surface conditions. A passenger
vehicle equipped with SINS(Xsens MTi-670G) was used in the
experiments, and the available parameters for the experimental
vehicle are as described in Table IV. The inertial parameters
for the test vehicle were adopted by a kinematics and compli-
ance(K&C) testing result for the same model, and the mass and
longitudinal CoG position are obtained using a corner weight
scale after the experimental equipment installed.

The test scenario is as described in Fig. 17. The maneuver
consists of several acceleration and braking in the straight line,

TABLE IV
VEHICLE PARAMETERS USED IN EXPERIMENT

2016 Genesis G80 3.3 4WD Parameter Value Unit
Vehicle mass m 1998 kg
Moment of inertia(Unloaded) Iz 4124 kg m2

Radius of gyration(Unloaded) k̄ 1.44 m
Wheelbase l 3.01 m
Front axle distance lf 1.57 m
Rear axle distance lf 1.44 m
CoG Height(Unloaded) h 0.52 m
Nominal lateral tire stiffness

Typical value Cα 10 1/(rad)
Nominal longitudinal tire stiffness

Typical value Cκ 20 1/(slip ratio)
Sensor lever-arm (P.G. Test) ls -0.4 m
Sensor lever-arm (Road Test) ls 0.25 m
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and multiple loops of figure 8 shape turn which is intended
to obtain the estimation result from a short period of driving
fragments within a limited proving ground area.

However, unlike the simulation, the longitudinal slip ratio
and the steering angle at the front wheels cannot be mea-
sured directly. The wheel speed measurements from in-vehicle
odometers have a scale error depending on the effective radius
of tires, and the steering system also has its own kinematics
which is manifested in the nonlinear response of the wheel
angle with respect to the rotation of the steering wheel. Thus,
a simple regression process was performed to specify the
coefficients of the odometer scale and steering ratio.

A comparative result for the odometer scale factor com-
pensation is given in Fig. 18. Without the compensation,
the calculated longitudinal slip denotes continuous negative
slip. Thus, in this experiment, the odometer measurement is
compensated with a coefficient of 1.012, and similarly, the
steering ratio is set to be 13.8 within the range (−90◦, 90◦).

Ideally, the measurement noise from the sensor is usually
modeled as Gaussian noise, but the actual characteristic of
sensor measurements may not follow zero-mean noise. Fig.
19 shows the raw measurement of sideslip from SINS and the
filtered result. It can be found that there exists slowly varying
error on the raw measurement which is mainly propagated
from the heading attitude error, thus a bandpass filter is applied
to the sideslip measurement to reduce the error from attitude
estimation while maintaining the dynamic state information.
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The identification results for the experimental vehicle is
presented in Fig. 20-21. The overall estimation results seem
to follow the ground truth, whereas there exist fluctuations in
the first half of the experimental maneuver. The fluctuations
can be interpreted as due to the excessive steering angle in
the corresponding section. As it can be found in Fig. 17, the
maximum steering angle in the first half of the experimental
scenario exceeds 360◦ which violates the assumption that the
steering angle, δ, is small enough to approximate.

However, for the tire stiffness, the ground truth of the
longitudinal and lateral stiffness is hard to be measured, while
the identification results converge into the typical range for
radial tires [50]. Thus, an indirect validation is established to
ensure the performance of the proposed identification method
by comparing the modeled dynamics states with the motion
measurements.

Fig. 22 shows the open-loop estimation performance of the
identified model. The yaw rate and the sideslip angle seem
to be following the measured value in the acceptable range
without additional sensor feedback. The sideslip model has an
erroneous region, from 30s to 40s, where braking is applied
to the vehicle. Since the single track model assumes that the
time derivative of longitudinal velocity is negligible, the model
integration has its weakness with the speed change.

For the estimation result for the radius of gyration, k̄ has
been converged to a larger value than the unloaded moment
of inertia. Although the moment of inertia of loaded vehicles
cannot be measured, it is shown that the identified model
well describes the motion of the vehicle, which is the primary
purpose of the model identification.

In order to validate the identification performance on a nor-
mal driving situation, an additional experiment was performed
on an urban street road. The vehicle parameters for the road
test are set to be the same as the previous experiment, whereas
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Fig. 23. Driving maneuver in the Road Test

the sensor mounting position is relocated as described in Table
IV to demonstrate the consistency of model identification
performance with arbitrary sensor position.

Unlike the proving ground experiments, driving in the street
is strictly restricted to a few possible maneuvers, such as lane
change, left or right turns. Fig. 23 shows the driving maneuver
for the road test, and it can be found that the most of time is
for straightforward driving with few lane changes and U-turns.
Compared with the previous experimental maneuver, that leads
to the overall process having less enough excitation state to
update the model parameters and the identification results can
be dominated by unintended disturbances. Furthermore, in a
stop or low-speed condition, the measurement disturbances are
emphasized since the definition of slip calculation includes
longitudinal velocity as a denominator. Hence, the filter update
strategy has been slightly modified not to be updated when the
speed of the vehicle is below 30kph (≈ 8.3m/s).

Fig. 24 shows the geometrical parameter identification re-
sults in the road test. The identification of vehicle CoG location
stabilized with the estimated value of 1.48m with 0.15m 1-
sigma boundary, while the previous result with −0.4m sensor
lever-arm converged into 1.38m, and the corresponding error
from measured CoG position, 1.44m, are 0.04m (2.78%) and
−0.06m (4.17%) respectively, which can be considered in the
typical varying range with occupants, fuel, or luggage. The
sensor lever-arm identification results in 0.22m for the last
100 seconds of data, while the actual value is measured to be
0.25m forward from vehicle CoG.

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

l r(m
)

Distance to Rear Axle (Road Test)

1-sigma bound

Proposed (l
s
=0.25m)

Proposed (l
s
=-0.4m)

Ref

0 100 200 300 400 500 600 700

time (s)

-0.5

0

0.5

l s(m
)

Sensor Lever Arm (Road Test)

1-sigma bound

Proposed

Ref

Fig. 24. Geometrical parameter identification results in Road Test. Blue
line shows the identification results with 0.25m sensor lever arm and
red-dotted line is for the identification result from previous section with -
0.4m sensor lever-arm. (top) Vehicle CoG position identification (bottom)
Sensor lever-arm identification

0 100 200 300 400 500 600 700
5

10

15

20

25

30
C

, 
(1

/r
at

io
)

Longitudinal Stiffness (Road Test)

1-sigma bound

Proposed (l
s
=0.25m)

Proposed (l
s
=-0.4m)

0 100 200 300 400 500 600 700

time (s)

0

5

10

15

20

C
, 
(1

/r
ad

)

Lateral Stiffness (Road Test)

1-sigma bound

Proposed (l
s
=0.25m)

Proposed (l
s
=-0.4m)

Fig. 25. Tire stiffness identification results in Road Test. Blue line shows
the identification results with 0.25m sensor lever arm and red-dotted line
is for the identification results from previous section with -0.4m sensor
lever-arm. (top) Longitudinal tire stiffness (bottom) Lateral tire stiffness

The tire stiffness identification results for the road test
scenario are given in Fig. 25. Compared with the previous
experimental results, both longitudinal and lateral stiffness
result in somewhat higher value: The identified stiffness
for the last 100 seconds of estimation results in 24.3
for longitudinal and 12.4 for lateral, while the previous
experiment had 22.6 and 11.2, which are 7% and 9.7%
in errors, respectively. The errors are considered in the
reasonable range to be applied in state estimations or control
applications referring to the related works [51], [52], factoring
in that those tests are taken in the different roads.
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V. CONCLUSION

This paper addresses a novel vehicle dynamics and sensor
lever-arm identification method for in-vehicle mounted motion
sensing devices. We proposed a modified single track model in
consideration of the measurement lever-arm with normalized
tire stiffness to solve the circular dependency on vehicle model
identification and lever-arm estimation. The inertial and pose
estimation result fused with the modified single track model
via UKF to establish an in-run identification of the parameter
set. The proposed identification method was demonstrated both
in simulation and real-vehicle experiments with promising
results. We hope that the proposed identification method
facilitates researchers in related fields that conjugate vehicle
dynamics with modern techniques for localization and pose
estimation from various sensing domains.

Furthermore, we intend to adopt the brushed tire model
to expand the dynamics coverage of the proposed methods
toward the nonlinear region of force-slip curves. Also, a
design of parallel estimation of vehicle states and model
parameters would be seen in our future framework for the
unified vehicle state estimation with multi-modality of external
sensing devices.
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