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Abstract—In this paper, a magnetorheological damper fault
diagnosis algorithm is proposed. Recently, various studies have
been proposed fault diagnosis methods for this damper system,
however, these methods use a displacement sensor in addition
to the two accelerometers mounted on the commercial vehicle.
The use of this sensor configuration limits the application of
the algorithm proposed so far to commercial vehicles. In order
to overcome this limitation, the paper proposes a magnetorhe-
ological damper fault diagnosis algorithm that uses only two
accelerometers. Based on these sensors, the states of the vehi-
cle suspension system are estimated by a Takagi-Sugeno fuzzy
unknown input observer. This observer scheme can estimate the
states of the damper even under conditions affected by damper
hysteresis and unknown road elevation. Using the Lyapunov sta-
bility theorem, the stability of the proposed observer with an
unmeasured premise variable is verified. In addition, a support
vector machine classifier is used to determine damper condition
without empirically set thresholds. In this paper, a fault flag is
generated by data-driven machine learning algorithms, reduc-
ing the design effort while at the same time achieving optimal
performance. The proposed algorithm is verified using a quarter-
car test rig and test results confirm that the proposed algorithm
exhibits robust performance in various road conditions. Con-
sequently, the magnetorheological damper fault diagnosis algo-
rithm proposed in this paper can reduce the effort in designing a
diagnosis algorithm while using inexpensive production sensors
applied to a vehicle.

Index Terms—fault diagnosis, support vector machine, takagi-
sugeno fuzzy observer, vehicle suspension, magnetorheological
damper

NOMENCLATURE

FMR MR damping force.
a2 Damping coefficient parameter.
b1 Weight of scale factor.
b2 Weight of viscous damping coefficient.
c1 Bias of scale factor.
c2 Bias of viscous damping coefficient.
i MR damper current.
ia Actual MR damper current.
if MR damper current fault.
vrel MR damper velocity.
ms Sprung mass.
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mu Unsprung mass.
zs Sprung mass location.
zu Unsprung mass location.
zr Road elevation.
ks Suspension spring coefficient.
kt Tire vertical stiffness.
η MR damper control bandwidth.
Fd Desired damping force.
Fa Actual damping force.
ζ Fault flag value.

I. INTRODUCTION

THE suspension is an essential component of a vehicle
that improves ride comfort and handling performance.

Vehicle suspension systems are classified into passive, active,
and semi-active suspensions. First, the passive suspension has
a simple structure and low cost. However, the fixed damping
characteristics make it difficult to simultaneously satisfy the
desired vehicle ride comfort and handling performance. Active
suspension [1], on the other hand, affords good performance
but has the disadvantages of high cost and large energy
consumption. Finally, semi-active suspension [2], which can
only change the damping characteristics of the damper, can
improve ride comfort and handling performance without en-
ergy consumption and additional hardware. Therefore, most
vehicle manufacturers use semi-active suspension.

Most semi-active vehicle suspension system uses a contin-
uously variable damper with a solenoid valve to change the
damping characteristics of the dampers [3]. On the other hand,
a magnetorheological (MR) damper [4]–[7] that uses MR fluid
is attracting attention since this type of damper has various
advantages such as fast response, wide dynamic range and
simple structure [8]. The MR damper uses magnetic particles
and fluid to change the damping characteristics by supplying
current to the damper. By applying a current to this damper, a
magnetic field is generated that causes the change of MR fluid
state. This principle of operation allows the MR damper to
have the various advantages mentioned above. However, vari-
ous factors cause MR damper faults, and these faults degrade
the control performance of the vehicle suspension system. For
example, when magnetic particle sediment is deposited in the
damper cylinder, the MR damper does not respond to the
current input. In addition, other reasons such as magnetic coil
failure and oil leakage also render the control system obsolete.
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Contrary to the intention of the control engineer, these faults
can make the driving experience unpleasant and reduce driving
stability. Therefore, in order to improve the ride comfort and
handling performance of a vehicle using MR damper control,
an MR damper fault diagnosis algorithm is essential.

Recently, various MR damper fault diagnosis algorithms
have been proposed. In particular, model-based fault diagnosis
frameworks [9] have been used in most previous studies to
overcome the effect of unknown disturbances caused by road
elevation. De [10] uses the transmissibility of the vehicle
suspension system to diagnose the condition of the MR
damper. In this paper, system transmissibility is estimated
using a quarter car model and derivative of the displacement
sensor. Dong [11] uses a full car model and an adaptive sliding
mode control framework to diagnose MR damper faults, but
the states of the vehicle suspension used in this paper are
generally unmeasurable. In addition, this study ignores the
nonlinear characteristics of the MR damper. Varrier [12] uses
a parity space approach to diagnose MR damper faults, but
this method is vulnerable to system uncertainty. In addition,
Hernandez [13] and Tudon [14] propose a method of defining
and estimating the fault parameter based on the force generated
by the MR damper. As in previous studies, a displacement
sensor is used in the above method.

The aforementioned previous studies used a vehicle sus-
pension model such as a quarter car model or full car model
and a sensor configuration including a displacement sensor to
diagnose the MR damper. The methods presented in previous
studies have common limitations. First, most of the algorithms
used a sensor configuration with a displacement sensor. Dis-
placement sensor allow the design of robust and simple algo-
rithm for estimating the state of vehicle suspension system.
However, in general, a displacement sensor is not used except
for a small number of vehicles with air suspension [15] due
to packaging and cost issues. In addition, in previous studies,
a diagnostic algorithm was constructed under the assumption
that the nonlinear characteristics of the MR damper can be
ignored or the relative velocity, which is an unknown variable,
is known. In conclusion, the previously studied MR damper
fault diagnosis algorithms are not applicable to commercial
vehicles.

To overcome these limitations, this paper propose a robust
Takagi-Sugeno (T-S) fuzzy observer based MR damper fault
diagnosis algorithm. the T-S fuzzy modeling technique repre-
sents the system dynamics using weighted summation of sub-
linear system. In this manuscript, the unknown input observer
is designed using linear system control theory. The observer
used in this paper is designed based on a quarter car MR sus-
pension model that considers the nonlinear characteristics of
the MR damper. Since the quarter car MR suspension model is
described as sum of linear system, the linear control technique
can be adopted. Unlike previous studies, this observer uses
only body and wheel acceleration information. Additionally,
this paper also uses the support vector machine (SVM), a
widely used machine learning algorithm for classification. In
this paper, the features required for the SVM classifier are
generated based on the estimated state and MR damper model.

This paper is organized as follows. In section II, the MR

suspension system of the vehicle is represented by a T-S fuzzy
model. In this section, a tangent hyperbolic MR damper model
is used to represent the MR damping force. In section III,
a robust T-S fuzzy observer is designed based on the MR
suspension model derived in section II. Although the T-S
MR suspension model has unmeasured premise variables, the
proposed observer is stable and robust against unknown road
elevation. In addition, an SVM based decision making process
is presented in section. Section IV presents an experimental
verification, using a quarter car MR suspension test rig. In
conclusion, this paper shows that the proposed diagnosis al-
gorithm provides robust performance under various scenarios.

II. T-S FUZZY MR SUSPENSION MODEL

In this section, the T-S fuzzy MR damper model is derived
from the experimental data. First, the experimental equipment
and experimental results are introduced. Next, a hyperbolic
tangent MR damper model is introduced. The parameters of
this model are estimated based on experimental data. Lastly,
a T-S fuzzy MR suspension model used for observer design
is derived.

A. MR damper test environment

The MR damper experimental data used in this study are
obtained from the following experimental environment. In
this study, the MR damper produced by vehicle suspension
maker NEOTECH is used. This MR damper is tested using a
shock dyno from damper test equipment manufacturer CTW
Automation. Using this shock dyno, various sine wave tests
with amplitude of ±25mm are conducted. Fig. 1 shows the
experimental equipment.

Fig. 1. MR damper test experimental equipment: (a) Shock dyno by CTW
Automation (b) MR damper current driver by RMS Technology.

B. Hyperbolic tangent MR damper model

Since the development of the MR damper, various models
have been developed to describe the damping characteristics
of the MR damper. First, the phenomenological model [16]
and the Bouc-Wen model [17] can accurately describe the
hysteresis of the MR damper. However, many parameters
should be estimated, and the accuracy of the model is highly
dependent on the accuracy of the parameter estimation. A
polynomial model [18] can simply describe the properties
of the MR damper, but an accurate higher order polynomial
model has many parameters that must be estimated. On the
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other hand, the hyperbolic tangent MR damper model [19]
can relatively accurately describe the force of the MR damper
with fewer parameters. Therefore, this paper describes the MR
damper force using a hyperbolic tangent MR damper model.
According to the hyperbolic tangent MR damper model, the
force of the MR damper can be described as follows:

FMR = (b1 · i+ c1) tanh(a2 · vrel) + (b2 · i+ c2)vrel (1)

where FMR is the damping force of the MR damper, i is
the implemented current of the MR damper, and vrel is the
relative velocity between sprung mass and unsprung mass.
Other variables are model parameters of the hyperbolic tangent
MR damper model.
Based on this model described above, model parameters are
estimated by the curve fitting method. Table I shows the
estimated parameters, Fig. 3 shows the curve fitting results
for estimating the MR damper parameter, and Fig. 2 shows
the results of the comparison between the hyperbolic tangent
MR damping force and the experimental data. In Fig. 3, the
experimental data are described by black dots and the R
squared value is 0.9872.

TABLE I
HYPERBOLIC TANGENT MR DAMPER MODEL PARAMETERS

Parameter Estimated value
a2 23.94
b1 588.8
b2 193.5
c1 381.2
c2 757.2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Damper velocity [m/s]

-3000

-2000

-1000

0

1000

2000

3000

D
a
m

p
in

g
 f
o
rc

e
 [
N

]

Hyperbolic tangent MR damping force

0A

0.5A

1A

1.5A

2A

2.5A

Fig. 2. MR damping force comparison between MR damper test results and
hyperbolic tangent MR damper model.

C. T-S fuzzy MR suspension modeling

In this paper, a quarter-car suspension model is used to
diagnose the MR damper mounted on the vehicle. The quarter-
car model consists of sprung mass and unsprung mass and this
model has been used in various vehicle suspension control
studies. The governing equations of a quarter-car suspension
model such as that in Fig. 4 are as follows:
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Fig. 3. Curve fitting results for hyperbolic tangent MR damper model
parameter estimation.

Fig. 4. Quarter-car model of MR suspension system.

msz̈s = −ks(zs − zu)− FMR (2)

muz̈u = −ks(zu − zs) + FMR − kt(zu − zr) (3)

i̇ = −η(i− u) (4)

where ms is a sprung mass, mu is an unsprung mass, ks
is the spring stiffness, kt is the tire vertical stiffness, u is a
control command, zs and zu are the position of sprung mass
and unsprung mass, and zr is the road elevation. The MR
damping force FMR is described by (1). In this paper, the
damping effect of the tire is neglected. The physical properties
of this model is listed in Table II. According to (4), the actual

TABLE II
QUARTER-CAR MODEL PROPERTIES

Symbol Quantity Value
ms Sprung mass 374.03 kg
mu Unsprung mass 52.25 kg
ks Spring stiffness 22080 N/m
kt Tire vertical stiffness 248193 N/m

MR current input is the output of a first order low pass filter.
This equation realizes the bandwidth η of the current driver
and the MR damper. Using (1) and (2)-(4), the quarter-car MR
suspension model is represented in nonlinear state-space form
below.

ẋ = A(f1, f2)x+Bu+Dżr (5)
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x =
[
zs − zu żs zu − zr zu̇ i

]T
(6)

A =


0 1 0 −1 0

− ks

ms
− cMR

ms
0 cMR

ms
− f1

ms

0 0 0 1 0
ks

mu

cMR

mu
− kt

mu
− cMR

mu

f1
mu

0 0 0 0 η

 (7)

B =
[

0 0 0 0 η
]T

(8)

D =
[

0 0 −1 0 0
]T

(9)

f1 = (b1 · a2 + b2) (żs − żu) (10)

f2 =
tanh (a2 · (żs − żu))

a2 · (żs − żu)
(11)

where cMR = c2 +c1a2f2. In this paper, the sprung mass ver-
tical accelerometer and the unsprung mass vertical accelerom-
eter data are regarded as the measurements of the diagnosis
system. These sensors are used by most vehicle manufacturers,
and therefore this assumption is reasonable. As in the above
equation, the sensor measurement is mathematically described
as follows.

y = C(f1, f2)x =
[
z̈s z̈u

]
(12)

C(f1, f2) =

[
A21 A22 A23 A24 A25

A41 A42 A43 A44 A45

]
(13)

In accordance with (5), the MR suspension model takes the
form of a nonlinear model. This nonlinear characteristics has
to be considered to design a stable observer. In the past several
decades, various nonlinear state estimation techniques such as
the extended Kalman filter [20], sliding mode observer, [21]
and T-S fuzzy modeling [22]–[24] have been proposed. In this
paper, the T-S fuzzy model is constructed by the sector non-
linearity technique. According to (10) and (11), the nonlinear
terms f1 and f2 are bounded. Since the relative velocity of the
damper is physically bounded, f1 is bounded. Next, f2 has the
form of tanhx/x, and therefore this function is bounded from
zero to one. In conclusion, the sector nonlinearity technique
is used to build the T-S fuzzy model reasonably and the
relationship between the premise variable and fuzzy rules can
be described as follows.
IF żs − żu is M1 and z is N1, THEN ẋ = A1x+Bu+Dżr
IF żs − żu is M1 and z is N2, THEN ẋ = A2x+Bu+Dżr
IF żs − żu is M2 and z is N1, THEN ẋ = A3x+Bu+Dżr
IF żs − żu is M2 and z is N2, THEN ẋ = A4x+Bu+Dżr

M1 = (b1 · a2 + b2) (żs − żu)− f1min/f1max − f1min
(14)

M2 = 1−M1 (15)

N1 =
tanh(a2·(żs−żu))

a2·(żs−żu) − f2min

/
f2max − f2min

(16)

N2 = 1−N1 (17)

where f1max and f1min are the upper bound and lower bound
of f1, and f2max and f2min is the upper bound and lower
bound of f2.
Consequently, the quarter-car T-S fuzzy model of the MR
suspension is obtained using the above equations and this

model is represented by weighted summation of sublinear
models.

ẋ =

4∑
i=1

hi(z(t)) (Aix+Bu+Dżr) (18)

y =

4∑
i=1

hi(z(t))Cix (19)

h1(z(t)) = M1N1, h2(z(t)) = M1N2,
h3(z(t)) = M2N1, h4(z(t)) = M2N2

(20)

where z(t) = [f1 f2] is the premise variable and hi(z(t)) is a
weighting function that satisfies the following conditions:

hi(z(t)) ∈ [0 1],
∑

i
hi(z(t)) = 1 (21)

It is noteworthy that the premise variable for determining
the fuzzy rule is an immeasurable variable. In other words,
in order to estimate the state of the MR damper, the fuzzy
observer uses the estimated premise variable and satisfies the
stability simultaneously.

D. Uncertainties and disturbances

Since the quarter car model is an approximation of the vehi-
cle suspension system, there are some uncertainties and distur-
bances. First, the parametric uncertainty exists in sprung mass
since the sprung mass depends on the weight of the passenger.
In this paper, the weight of the passenger is assumed 80kg,
therefore the sprung mass parameter can have a variability of
about 20%. Next, the MR damper force obtained by the hy-
perbolic tangent model includes uncertainties. Parameters such
as unsprung mass, spring coefficient and tire vertical stiffness
do not change easily, therefore it is reasonable to assume that
there is no or very small uncertainty. Considering the effect
of uncertainties on aspects of model stability, the model does
not diverge while model uncertainties exist since the sprung
mass and MR damper force are bounded and the quarter car
model is stable at this boundary. Physically, MR dampers are
semi-active dampers that only change the characteristics of
the damper, therefore the proposed model can be robust under
the influence of model uncertainty since there is no external
input force. Furthermore, the coefficients of MR damper force
model are likelihood values obtained from various test data.
It means that the parametric uncertainties of the MR damper
force model is minimized and the coefficients are suitable for
depicting the real world MR damper force. This fact is con-
firmed by the high R squared value of 0.9872 in the model
and test data.

A disturbance applied to vehicle suspension system is the
road surface elevation. This elevation is the source that vibrates
the suspension system and generates MR damping force, how-
ever, it is an unknown input that cannot be measured without
image sensors or ultrasonic sensors. Therefore, when design-
ing an observer using the model designed in this section, it is
necessary to check the stability by considering the unknown
input.
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III. T-S FUZZY OBSERVER BASE MR DAMPER FAULT
DIAGNOSIS

In this section, the T-S fuzzy observer based MR damper
fault diagnosis algorithm is proposed. First, a robust unknown
input T-S fuzzy observer is designed to estimate the MR
damper state. Next, based on the estimated state, SVM based
classification is conducted in order to generate a fault flag.

A. T-S fuzzy MR suspension state observer

In order to estimate the state of a nonlinear system, various
studies have proposed a T-S fuzzy nonlinear observer [25]–
[32]. Previous studies have shown that most studies assume
that the premise variable is measurable. However, this kind
of algorithm cannot guarantee stability if the premise vari-
able cannot be measured. Therefore, in recent years, various
studies on state estimation of T-S fuzzy systems with premise
variables that cannot be measured have been conducted [33]–
[39]. For instance, Guerra [34] proposed a H∞ linear matrix
inequality (LMI) based T-S fuzzy observer. However, in this
previous study, it is assumed that the premise variable and
state have a linear mapping relationship. Another study [35]
proposed T-S fuzzy observer with multiple output matrices;
however, the information of the premise variable is used to
obtain measurement information. Therefore, in this paper, a
robust unknown input T-S fuzzy observer for unmeasurable
premise variables is proposed using the Lipschitz bounded
condition. In order to design the T-S fuzzy observer, the T-S
fuzzy quarter-car model is divided by four sub-linear models.
Based on the definition of the T-S fuzzy system, the state x
and measurement y can be described as

x(t) =

4∑
i=1

xi(t), y(t) =

4∑
i=1

yi(t) (22)

where xi(t) = hi(z(t))x(t) and yi(t) = hi(z(t))y(t). Ac-
cording to (22), the new variables xi(t) and yi(t) depend on
the unmeasured premise variable z(t). Therefore, in order to
design the T-S fuzzy observer, other variables that depend on
the estimated premise variable are defined by

x̃i(t) = hi(ẑ(t))x(t), ỹi(t) = hi(ẑ(t))y(t) (23)

where ẑ(t) is the estimated premise variable and, according to
(20), these new variables satisfy the following condition:

x(t) =

4∑
i=1

x̃i(t), y(t) =

4∑
i=1

ỹi(t) (24)

Then, using (18), (19), (22) and (24), the T-S fuzzy model can
be expressed by

ẋ(t) =
4∑

i=1

ẋi(t)

=
4∑

i=1

Aixi(t) + hi(z(t))Bu+ hi(z(t))Dżr

(25)

y(t) =
4∑

i=1

yi(t)

=
4∑

i=1

Cihi(z(t))x(t) =
4∑

i=1

Cixi(t)
(26)

ẋ(t) =
4∑

i=1

˙̃xi(t)

=
4∑

i=1

Aix̃i(t) + hi(ẑ(t))Bu+ hi(ẑ(t))Dżr

(27)

y(t) =
4∑

i=1

ỹi(t)

=
4∑
i

Cihi(ẑ(t))x(t) =
4∑
i

Cix̃i(t)
(28)

Consequently, the sub-linear systems are defined as follows.

ẋi(t) = Aixi(t) + h(z(t))Bu+ h(z(t))Dżr
yi(t) = Cixi(t)

(29)

˙̃xi(t) = Aix̃i(t) + h(ẑ(t))Bu+ h(ẑ(t))Dżr
ỹi(t) = Cix̃i(t)

(30)

Using these sub-linear systems, the observer system proposed
in this paper is described in the following form.

µ̇i(t) = Niµi(t) + hi(ẑ(t)) + Liỹi(t)
x̂i(t) = µi(t)− Fiỹi(t)

(31)

The estimated state is then represented as

x̂(t) =

4∑
i=1

x̂i(t) (32)

According to (18), (19) and (23) the difference between (22)
and (24) is weight part h. In (22), the sub-state xi(t) and sub-
measurement yi(t) are weighted value using hi(z(t)). There-
fore, xi(t) and yi(t) depend on unmeasured premise variable
z(t). In contrast, x̃i(t) and ỹi(t) in (24) are weighted value
using hi(ẑ(t)). It means that the state is sum of sub-state which
depends on estimated premise variable ẑ(t)). It is notewor-
thy that the error dynamics can be expressed by estimated
premise variable by using (24). Consequently, it is possible
to design stable observer using error dynamics which is func-
tion of the estimated premise variable. In this paper, the sub-
linear systems (29) and (30) are observable. In order to design
observer matrices, a stability analysis based on error dynamics
should be conducted. In accordance with (29)-(31), the error
dynamics of the observer system is obtained by

ei(t) = x̂i(t)− xi(t) (33)

ei(t) = µi(t)− Fiỹi(t)− xi(t) + (Fiyi(t)− Fiyi(t)) (34)

ei(t) = µi(t)−Mixi(t)− FiCi(x̃i(t)− xi(t)) (35)

where Mi = I +FiCi. The error dynamics is expanded using
(31) and (35).

ėi = µ̇i −Miẋi − FiCi (̇̃xi − ẋi)
= Niµi + hi(ẑ)Giu+ Liỹi −Mi ẋi − FiCi (̇̃xi − ẋi)

(36)
Using (29) and (30), this error dynamics can be expressed by

ėi = Niei + (NiMi −MiAi + LiCi)xi
+(NiFiCi + LiCi − FiCiAi)(x̃i − xi)
+hi(ẑ)(Gi −MiB)u+ (hi(ẑ)− hi(z))Bu
−FiCi( hi(ẑ)− hi(z))Dżr − hi(z)MiDżr

(37)

In order to design observer matrices that make the T-S fuzzy
observer stable, Theorem 1 and Lemma 1 are used.
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Lemma 1: For any real matrices X , Y and a positive definite
matrix P , the following equation always holds [40]:

XTY + Y TX ≤ XTPX + Y TP−1Y (38)

Theorem 1: For a given positive scalar ρ, the T-S fuzzy
observer (31) is asymptotically stable if there exist a positive
scalar λ and the positive definite matrix P satisfying the
following conditions.

NiMi −MiAi + LiCi = 0 (39)

Gi −MiB = 0 (40)

MiD = 0 (41)[
H11

i 0
0 H22

i

]
< 0 (42)∥∥[ (hi(ẑ)− hi(z))u (hi(ẑ)− hi(z)) żr

]∥∥ ≤ ρ ‖ei‖ (43)

where

H11
i = N̄T

i P + PN̄i + N̄T
i PN̄i + λρ2I (44)

H22
i = M̄T

i PM̄i − λI (45)

N̄ =

[
N N −A
0 A

]
(46)

M̄ =

[
−B −D
B D

]
(47)

Proof )
Under conditions (39)-(41), the error dynamics (37) is rewrit-
ten as

ėi = Niei + (Ni −Ai)(xi − x̃i)
−(hi(z)− hi(ẑ))Bu− (hi(z)− hi(ẑ))Dżr

(48)

In order to design a stable T-S fuzzy observer, another error
dynamics is defined as

˙̃e = Aix̃i + hi(ẑ)Bu+ hi(ẑ)Dżr
−(Aixi + hi(z)Bu+ hi(z)Dżr)
= Aiẽ+ ( hi(ẑ)− hi(z))Bu+ (hi(ẑ)− hi(z))Dżr

(49)
where ẽ = x̃i−xi. The augment error is then defined as ēi =[
ei ẽi

]T
. Consequently, the augmented error dynamics is

defined as[
ėi
˙̃ei

]
=

[
Ni −Ni +Ai

0 Ai

] [
ei
ẽi

]
+

[
Bi Di

Bi Di

] [
(hi(ẑ)− hi(z))u
(hi(ẑ)− hi(z))di

] (50)

Then,

˙̄e =

4∑
i=1

˙̄ei =

4∑
i=1

N̄iēi + M̄iΛi (51)

where

ēi =

[
ėi
˙̃ei

]
, Λi =

[
(hi(ẑ)− hi(z))u
(hi(ẑ)− hi(z))di

]
N̄i =

[
Ni −Ni +Ai

0 Ai

]
, M̄i =

[
Bi Di

Bi Di

]

In this paper, the T-S fuzzy observer is designed using the
Lyapunov stability theorem. According to the above equations,
the Lyapunov function can be defined as

V̇ (t) =
4∑

i=1

˙̄eTi (t)P ēi(t) + ēTi (t)P ˙̄ei(t)

=
4∑

i=1

(N̄iēi + M̄iΛ)TP ēi + ēTi P (N̄iēi + M̄iΛ)

(52)
Using (52) and Lemma 1, the following inequality is derived.

V̇ ≤
4∑

i=1

(ēTi
[
N̄T

i P + PN̄i

]
ēi

+ ēTi N̄
T
i PN̄iēi + ΛT M̄T

i P ēi + ēTi PM̄iΛ)
(53)

According to (43), the uncertainty from the unmeasured
premise variable is Lipschitz bounded in ei(t). Therefore, the
Lyapunov function can be rewritten as

V̇ ≤
4∑

i=1

ēTi
[
N̄T

i P + PN̄i + N̄T
i PN̄i + P + λρ2I

]
ēi

+ΛT
[
M̄T

i PM̄i − λI
]

Λ
(54)

V̇ (t) ≤
4∑

i=1

([
ēTi
ΛT
i

] [
H11

i 0
0 H22

i

] [
ēi Λi

])
(55)

Therefore, if the proposed T-S fuzzy observer satisfies the
condition (42), this observer is asymptotic stable. In this
paper, Matlab LMI toolbox YALMIP/MOSEK is utilized to
solve LMI (42). Since this equation has the form of bilinear
matrix inequality, this condition is transformed into LMI form
using Schur complement [41]. Condition (42) can then be
transformed by[

H11
i 0
0 H22

i

]
< 0⇔

[
S11
i 0
0 S22

i

]
< 0 (56)

where

S11
i =

[
N̄T

i P + PN̄i + λρ2I + P N̄T
i P

PN̄i −P

]
,

S22
i =

[
−λI M̄T

i P
PM̄i −P

]
(57)

B. Learning data extraction based on the T-S fuzzy observer

It is noteworthy that the T-S fuzzy observer designed in the
previous subsection is robust against unknown road elevation
as well as control input. According to (40), this constraint en-
sures that the control input does not affect the error dynamics
of the observer. Since condition (40) is satisfied, the input term
hi(ẑ)(Gi −MiB)u is decoupled from error dynamics (37).
This means that the estimated states of the MR damper do not
depend on the fault input. In this paper, this property of the
observer is utilized to extract the feature used for MR damper
diagnosis. Using the observer and hyperbolic tangent model,
the damping force of MR damper is obtained as follows.

F̂d(ic, ˙̂zs − ˙̂zu) = (b2ic + c2)( ˙̂zs − ˙̂zu)

+(b1ic + c1) tanh(a2( ˙̂zs − ˙̂zu))
(58)

ic = ia + if (59)
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where ic is the current control command, ia is the actually
implemented current of the MR damper, if is the faulty
current of the MR damper, and Fd is the MR damping force
expected to be implemented by the control. In this paper, the
MR damper force is represented using the fault current input.
According to (58), the desired damping force Fd is a function
of the faulty current if . On the other hand, the actual damping
force Fa can be represented using a quarter-car model such as

F̂a = −ks(ẑs − ẑu)−msz̈s (60)

As mentioned above, the faulty current if does not have an
impact on the estimated states. Therefore, Fa is an accurate
estimate of the actual force of the MR damper with or without
a fault. In accordance with (58) and (60), the desired damping
force Fd is equal to the actual damping force Fa if the MR
damper is fault-free. On the other hand, when an MR damper
fault occurs, the actual damping force of the MR damper is
less than the desired damping force. Consequently, the fault
flag ζ that indicates the MR damper fault can be generated as
follows.

ζ =

{
1, Fd 6= Fa

0, Fd = Fa
(61)

C. SVM based fault determination

Theoretically, the MR damper fault can be detected using
(61). In practice, however, unexpected model uncertainties,
unknown input and sensor noise degrade the performance
of the diagnostic algorithm. Therefore, if the fault diagnosis
algorithm is completely dependent on (61), then a false alarm
problem arises. Consequently, an algorithm that can determine
the fault using information obtained from the observer and
model is needed. In many previous studies, a fixed threshold
is utilized to overcome the effect of disturbances. However, it
takes a lot of effort to determine the threshold for optimal per-
formance. Therefore, this paper proposes a SVM based fault
determination method. SVM is a kind of machine learning
algorithm optimized for binary classification and requiring a
relatively small amount of data [42]. Fig. 5 shows the concept
of the SVM classifier. The SVM creates decision boundaries
that divide the data based on input features. In the SVM
theory, the nearest data is named a support vector. The SVM
determines the decision boundary by solving an optimization
problem that maximizes the margin between the support vector
and the decision boundary.

SVM is divided into different types depending on the kernel
function [43] used in the optimization technique. In this pa-
per, the Gaussian radial basis function (RBF) used for SVM
learning. In this paper, the hyper parameter of the learning
algorithm is determined by considering the characteristics of
the data.

D. Data preprocessing

In the field of machine learning, data preprocessing [44] is
an essential process to enhance the performance of machine
learning. In particular, data preprocessing makes the machine
learning model more accurate and reduces the training time.
In fact, most research on machine learning applications has
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Fig. 5. Two class classification of support vector machine.

Fig. 6. Scatter plot of raw data: desired force by actual force.

conducted data preprocessing. Fig. 6 shows the scatter plot of
the raw data obtained by (58) and (60). In accordance with this
figure, there is a region where fault data and fault-free data
overlap. This region appears since the impact of a fault on the
MR suspension system decreases when the relative velocity
of the MR damper is low. In other words, the fault of the
MR damper cannot be detected without the movement of the
MR damper. This overlapped data makes a machine learning
model approach inaccurate and delays training time. In order
to overcome this problem, in this paper, data processing using
a moving average filter is conducted.
Fig. 7 shows the result of data preprocessing. In this paper,

the absolute value of raw data is filtered through a moving
average filter. According to Fig. 7, data overlapping is reduced.
In addition, in this paper, fault data with absolute values of the
desired damping force of less than 250 N are dropped. This
process can contribute to improving machine learning perfor-
mance as follows. First, the learning time of machine learning
algorithms can be greatly reduced by dropping fault data in
the region where data overlapping occurs most. Furthermore,
this data dropping reduces the risk of false alarms caused
by the SVM classifier. In fact, the fault diagnosis algorithm
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Fig. 7. Scatter plot of preprocessed data: desired force by actual force.

used in vehicle systems should be designed to minimize false
alarms where faults are detected in the absence of an actual
fault. From an accuracy point of view, this data processing
can reduce the accuracy of the algorithm in regions which
|Fd| less than 250 N. However, since the purpose of the fault
diagnosis algorithm is to provide effective information to the
driver, accurate fault decision should be made in the area
where the damper affects the vehicle system. Physically, if the
force of the damper is small, the fault of the damper cannot
be detected. As an extreme case, it does not matter if the
damper is fault or healthy, in a situation where no damper
force occurs, which means that there is no road elevation.
Therefore, it is reasonable not to judge the fault of the damper
in the region where the damping force is small. As mentioned
above, the proposed data preprocessing method can reduce the
risk of false alarms by allowing the SVM to determine that the
data are fault-free in areas where the fault of the MR damper
cannot be diagnosed. In conclusion, it can be expected that
the performance of SVM training using preprocessed data is
enhanced. The proposed MR damper fault diagnosis algorithm
is implemented as shown in Fig. 8.

Fig. 8. Schematic description of the MR damper fault diagnosis algorithm.

IV. EXPERIMENTAL VALIDATION

In this section, experimental validation results are intro-
duced using a quarter-car MR suspension test rig. This section

is organized as follows. First, the T-S fuzzy observer based
feature extraction performance is verified using experimental
results. Next, SVM learning is conducted using the sensor
signal and features obtained with the proposed observer. For
comparison with the fixed threshold method, the data in Fig.
7 is used to determine a fixed threshold. According to Fig. 7,
it is confirmed that |Fa| and |Fd| have a linear relationship.
Therefore, the fixed threhsold is designed by linear regression.
If the MR damper is healthy, the relationship between |Fa| and
|Fd| can be described by

|Fd| ' 1.1468|Fa| (62)

Conversely, if the MR damper has a fault, the relationship
between |Fa| and |Fd| can be described as

|Fd| ' 2.6077|Fa| (63)

Therefore, the fixed threshold can be designed as

|Fd| = 1.8772|Fa| (64)

Note that this decision boundary is not fixed in time-force
domain. However, this is fixed in actual force-desired force
domain. Consequently, using fixed threshold method, the fault
flag is generated when |Fd| is larger than 1.8772|Fa|. In this
paper, the experimental road input consists of sine wave, sine
sweep and rectangular wave roads. Finally, the performance of
the SVM classifier is measured using the F0.5 measure, which
is a well-known machine learning performance index.

A. Experimental set-up

In order to verify the proposed MR damper diagnosis
algorithm, a quarter-car test rig is used, which is widely used to
develop suspension control systems in many previous studies.
In this study, the customized MR damper for the Hyundai
Genesis Coupe is used. In order to obtain actual states such
as the suspension displacement and relative velocity, a linear
variable differential transformer (LVDT) SLS 130 is attached
to the test rig. In addition, MANDO accelerometers, which
are actually used in the Hyundai midsize coupe, are attached
to a sprung mass and an unsprung mass. The measuring range
of the sprung mass accelerometer is ±2 g and the measuring
range of the unsprung mass accelerometer is ±50 g.
The experimental validation is performed under various road
types. First, a sine wave road test was performed to evaluate
the performance of the proposed fault diagnosis algorithm
in a low frequency range. Next, a 0.5 hz rectangular wave
road test with and elevation of -0.01 meter to 0.01 meter was
performed. Finally, a sine sweep road test with an elevation
of -0.01 meter to 0.01 meter was performed to evaluate the
performance of the proposed fault diagnosis algorithm in a
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high frequency range. In order to realize the fault of the MR
damper, a current input different from the current command
input to the estimator was implemented in the MR damper.
Fig. 9 shows the experimental equipment for verifying the
fault diagnosis performance. The physical characteristics of
the quarter-car test rig are listed in Table II.

Fig. 9. Overall experimental environment for validating MR damper fault
diagnosis algorithm.

B. Experimental results

1) Sine wave test results: Fig. 10 and Fig. 11 show the
results of a 3 hz sine wave test with an amplitude of 0.1
meter. First, Fig. 10 shows the fault diagnosis results when
an MR damper fault occurs between 15.71 seconds and 35.31
seconds. In this region, the MA damper controller inputs a 1
A current command to the current driver, but the MR damper
current does not achieve 1.06 A. According to this figure, it
can be confirmed that the proposed T-S fuzzy observer has
robust performance in both fault and fault-free regions. As
mentioned above, the filtered MR damping force |Fd| and
|Fa| have similar value in the fault-free region. On the other
hand, the difference between |Fd and |Fa| increases in the
fault region. Using this feature, the proposed SVM classifier
correctly generates a fault flag. Next, Fig. 11 shows the fault
diagnosis results when an MR damper fault occurs after 25.59
seconds. In this figure, due to the model uncertainty of the
hyperbolic tangent MR damper model, it can be seen that
|Fd| and |Fa| are slightly different, even if no fault occurs.
However, in the fault region, the value of |Fd| and |Fa| show
a large difference. Therefore, it can be confirmed that the fault
diagnosis using the SVM is performed correctly. According
to these experimental results, fault determination is slightly
delayed due to data preprocessing. However, this slight delay is
not critical in the field of suspension fault diagnosis. According
to this experimental results, fault diagnosis using SVM can
provide improved accuracy compared to traditional fixed-
threshold methods. In this experiment, the difference between
the existing method and the proposed method is noticeable
in the region where the damper force is small. It means that
the proposed method can reduce false alarms compared to the
fixed threshold method.
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Fig. 10. Sine wave test results for MR damper fault diagnosis: (a) Relative
velocity of MR damper (Va) and estimated relative velocity (Ve) (b) Current
command (ic) and actual MR damper current (ia) (c) filtered actual MR
damping force (|Fa|), filtered desired MR damping force (|Fd|) and fixed
threshold (d) fault flag obtained by SVM and fixed threshold.

2) Rectangular wave test results: Fig. 12 and Fig. 13
show the results of a 0.5 hz rectangular wave test with an
amplitude of 0.1 meter. As in the previous experiment, it can
be confirmed that the desired damping force and the actual
damping force used in the fault diagnosis of the MR damper
are robustly estimated. Generally, the rectangular road input
increases the variance of the damping force. However, since
moving average filtering is used in this paper, the variance
of the preprocessed MR damping force is not large. This
feature makes the SVM create an accurate model based on
the data. Although SVM and fixed threshold method utilize
the same signal, it is confirmed that the SVM based fault
diagnosis method has better performance comparing with the
fixed threshold method. In particular, in the region where
the fault occurs, the SVM robustly generates a fault flag
despite the vibration of the road surface. Consequently, it is
confirmed that the fault flag that indicates an MR damper fault
is accurately generated using the SVM classifier.

3) Sine sweep test results: Fig. 14 and Fig. 15 show the
results of a 0 hz to 5 hz sine sweep test with an amplitude of
0.1 meter. According to these figures, the proposed T-S fuzzy
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Fig. 11. Sine wave test results for MR damper fault diagnosis: (a) Relative
velocity of MR damper (Va) and estimated relative velocity (Ve) (b) Current
command (ic) and actual MR damper current (ia) (c) filtered actual MR
damping force (|Fa|), filtered desired MR damping force (|Fd|) and fixed
threshold (d) fault flag obtained by SVM and fixed threshold.

observer has robust performance in various frequency ranges.
Since moving average filtering is employed, the preprocessed
damping force data tends to increase as the velocity of the MR
damper increases. As with the previous experimental results,
the fault flag is correctly generated. The experimental results
show that there is significant performance difference between
the SVM-based method and the fixed-threshold method in the
region where the MR damper current drop is large. When the
current in the MR damper drops significantly, |Fa| becomes
smaller than |Fd|. As a result, in this situation, |Fd| can be
less than 1.8772|Fa| despite the fault occurring situation.

4) SVM learning results: In this paper, the authors propose
an MR damper fault diagnosis method using a SVM classifier.
In the above experiments, the kernel function used for SVM
learning is Gaussian RBF with a kernel scale of 2. The data
used for SVM training consists of a total of 543798 data sets
for various fault scenarios. In the field of machine learning,
time window is used to extract features from time series sig-
nals. Using this time window, features such as mean, variance
and frequency response is extracted. In this respect, the sample
used in this paper contains the average of the absolute values of
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Fig. 12. Rectangular wave test results for MR damper fault diagnosis: (a)
Relative velocity of MR damper (Va) and estimated relative velocity (Ve) (b)
Current command (ic) and actual MR damper current (ia) (c) filtered actual
MR damping force (|Fa|), filtered desired MR damping force (|Fd|) and fixed
threshold (d) fault flag obtained by SVM and fixed threshold.

the desired damping force and the actual damping force, cur-
rent command and the value of accelerometer signals. The fil-
tered force values are extracted through a moving average filter
with a time window of 1 second. Other signals can be obtained
by control unit. In this paper, the five-fold cross validation and
the F0.5 measure are used to verify the performance of the
designed classifier. The F0.5 measure is a performance measure
that emphasizes precision over recall. Using this performance
measure in this paper is reasonable since the fault diagnosis in
vehicle system aims at reducing the presence of false alarms
as well as accurate fault diagnosis. Using this performance
measure, the trained SVM classifier has a F0.5 measure of 0.99.
Consequently, using this performance measure, it is verified
that the proposed SVM classifier has robust performance in
MR damper fault diagnosis.
Table III shows the overall experimental result and Fig. 16

shows the result of SVM training as a confusion matrix. Table
III shows accuracy and F0.5 measure of SVM based and fixed
threshold based fault determination. According to this table,
it is confirmed that the propose fault determination method
using SVM has better performance comparing with the fixed
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TABLE III
OVERALL EXPERIMENTAL RESULTS UNDER VARIOUS ROAD CONDITIONS

Road type Accuracy(SVM) Accuracy(Fixed) F0.5measure(SVM) F0.5measure(Fixed) RMS error
Sine wave-1 0.9744 0.9215 0.9676 0.8381 0.0332
Sine wave-2 0.9834 0.8645 1.0000 0.7549 0.0276
Rectangular-1 0.9720 0.8081 0.9458 0.6380 0.0308
Rectangular-2 0.9901 0.8567 1.0000 0.7468 0.0301
Sine sweep-1 0.9703 0.8632 0.9590 0.7714 0.0517
Sine sweep-2 0.9798 0.8716 1.0000 0.7430 0.0513
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Fig. 13. Rectangular wave test results for MR damper fault diagnosis: (a)
Relative velocity of MR damper (Va) and estimated relative velocity (Ve) (b)
Current command (ic) and actual MR damper current (ia) (c) filtered actual
MR damping force (|Fa|), filtered desired MR damping force (|Fd|) and fixed
threshold (d) fault flag obtained by SVM and fixed threshold.

threshold method. In this paper, the T-S fuzzy unknown in-
put observer based MR damper state estimation algorithm is
proposed. Furthermore, it is confirmed that the proposed MR
damper state estimation algorithm has small root mean square
error under various road condition and fault situation. In accor-
dance with Fig. 16, it can be seen that the false-positive error
and true-negative error occur with similar frequency. Due to
the characteristics of the fault diagnosis algorithm based on the
damping force proposed in this paper, it is difficult to diagnose
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Fig. 14. Sine sweep test results for MR damper fault diagnosis: (a) Relative
velocity of MR damper (Va) and estimated relative velocity (Ve) (b) Current
command (ic) and actual MR damper current (ia) (c) filtered actual MR
damping force (|Fa|), filtered desired MR damping force (|Fd|) and fixed
threshold (d) fault flag obtained by SVM and fixed threshold.

the system condition in the region where the damping force
of the MR damper is small. As mentioned above, when the
damping force of the MR damper is small, the effect of the
fault on the vehicle suspension system is reduced. As a result
of SVM training, most of errors occurred within the small
damping force region shown in Fig. 6 and Fig. 7.
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Fig. 15. Sine sweep test results for MR damper fault diagnosis: (a) Relative
velocity of MR damper (Va) and estimated relative velocity (Ve) (b) Current
command (ic) and actual MR damper current (ia) (c) filtered actual MR
damping force (|Fa|), filtered desired MR damping force (|Fd|) and fixed
threshold (d) fault flag obtained by SVM and fixed threshold.

Fig. 16. Confusion matrix of SVM classification result for generating fault
flag.

V. CONCLUSION

In this paper, a fault diagnosis algorithm for an magnetorhe-
ological damper is proposed. The proposed fault diagnosis al-
gorithm consists of the damper state observer that estimates the
damper states and a support vector machine classifier. Using

Takagi-Sugeno fuzzy modeling and unknown input observer
scheme, the proposed observer, which is robust against un-
known road elevation and the damper faults, is designed. In
addition, using the desired damping force and actual damping
force generated for machine learning training, this paper com-
bines a model-based state estimation method with machine
learning based fault diagnosis. This paper also validates the
performance of the Takagi-Sugeno fuzzy observer and support
vector machine based fault flag generation using a quarter-
car test rig, commercial sensors, and an magnetorheological
damper. From the results, it is confirmed that the features used
for support vector machine training are well estimated. In ad-
dition, the data preprocessing process makes the training ac-
curate. Furthermore, it is verified that the support vector ma-
chine based fault determination has high accuracy for various
road inputs by comparing with the fixed threshold method.
This paper provides the following contributions. First, the pro-
posed fault diagnosis algorithm considers a practical suspen-
sion sensor system. A commercial accelerometer employed in
practical fields is used to verify the performance of the fault
diagnosis algorithm. In addition, using a quarter-car test rig
and commercial accelerometers, the practicality of the pro-
posed fault diagnosis algorithm is confirmed. Next, the Takagi-
Sugeno fuzzy quarter car model has an unmeasured premise
variable, whereas this paper proposed a stable damper state
observer. Finally, this paper verified that the support vector
machine based fault determination can replace the heuristically
tuned threshold or map. It thus becomes possible to reduce the
effort required to design fault diagnosis algorithms. In con-
clusion, the proposed fault diagnosis algorithm can be used
to detect the damper condition in a vehicle suspension using
only two accelerometers.

In this paper, the damper fault is defined as the difference
between desired damping force and actual damping force. This
definition is suitable for fault detection, however, not for fault
isolation. For example, the proposed algorithm cannot find the
cause of errors such as damper leaks, electromagnetic coil fail-
ures. In terms of future work, the proposed algorithm can be
utilized for the damper prognosis. In the field of prognosis, the
remaining useful life is determined by the characteristics of the
physical system. The difference between the actual damping
force and the desired damping force is a reasonable feature of
damper performance degradation.
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