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Abstract: With the emerging interest of Autonomous Vehicles(AV), the performance and reliability1

of the land vehicle navigation are also becoming important. Generally, the navigation system for2

passenger car has been heavily relied on the existing Global Navigation Satellite System(GNSS)3

for the past decades. However, there are many cases in real world driving where the satellite4

signals are challenged, for example urban streets with buildings, tunnels, or even underpasses.5

In this paper, we propose a novel method for simultaneous vehicle dead reckoning based on the6

lane detection model in GNSS-denied situations. The proposed method fuses Inertial Navigation7

System(INS) with learning-based lane detection model to estimate the global position of vehicle,8

and effectively bounds the error drift compared to standalone INS. The integration of INS and9

lane model is accomplished by UKF to minimize linearization errors and computing time. The10

proposed method is evaluated through the real-vehicle experiments on highway driving, and11

also the comparative discussions for other dead-reckoning algorithms with the same system12

configuration are presented.13

Keywords: Dead Reckoning; Lane Detection; Sensor Fusion; Multimodal System14

1. Introduction15

Precise positioning and localization techniques for modern land vehicles have been16

widely implemented in the purpose of advanced driving assist system and autonomous17

driving capability. Global Navigation Satellite System(GNSS) have been adopted as a18

primary option to obtain the position and velocity of the vehicle. Since land vehicles are19

designed to be driven on the road, the positioning accuracy of GNSS can be compensated20

with the road map from Geographic Information System(GIS) [1–4] for the conventional21

navigation purpose and even with the Real Time Kinematics(RTK) techniques [5,6], its22

positioning performance can be improved up to centimeter-level accuracy.23

Despite of the outstanding accuracy and wide coverage of RTK GNSS, the satellite24

signal outage and multipath error in GNSS-denied area, such as densely built city, under-25

pass, or indoor area, significantly threaten the reliability of the GNSS measurement[7,8].26

To overcome the environmental limitation of the GNSS measurement, several alternative27

navigation methods with other types of measurements are introduced to ensure the con-28

sistency of positional information and improve the minimum performance under a poor29

satellite signal condition[9–11]. Those methods, well known as Dead-Reckoning(DR),30

are based on the cumulative process of relative change in the speed and direction from31

the latest known position.32

Inertial Navigation System(INS) has been commonly adopted to complement GNSS33

[12–16]. During the period that GNSS signal is unavailable, INS estimate the position,34

velocity and attitude by integrating the inertial measurements such as acceleration and35
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(a) Original Image (b) Feature-based Lane Detection (c) Learning-based Lane Detection

Figure 1. Example for lane detection output difference according to approaches

angular rate. With the advancement of computing technology, visual sensors have36

been used as positioning devices[17–24]. Modern silicons allows real-time processing37

of high-resolution stereo images which can directly compute the motion of camera set,38

and uses machine learning to estimate 3-axis motion from a monocular system. Recently,39

lidar-based localization methods are also introduced to perform precise positioning with40

point cloud maps in sub-meter accuracy.41

However, considering the fact that GNSS is still considered as a primary device42

for navigation systems, it is obvious that those alternative positioning methods have43

their own limitations. INS have been widely used in various fields, including military44

and aerospace technologies where the performance and reliability are top priorities.45

Although the nature of INS convinces near-perfect motion estimation theoretically, there46

occurs an inevitable error in reality without external aiding due to the imperfection47

of sensor measurements. Visual odometry[25,26] and SLAM[27–29] estimate the ego-48

motion of sensor by comparing the positional changes of surrounding environments49

and reduce error accumulation using the historical measurements. The main drawback50

of methods based on external sensing is the result easily affected by the condition of51

surrounding environment. When the surrounding environment is not suitable to perform52

feature extraction and matching, for instance foggy or rainy weather, low intensity, or53

highly homogeneous scenes, DR based on environmental sensing easily fails.54

On the other hand, applying those advanced positioning and localization techniques55

on mass-production vehicles are considered premature due to several reasons. Currently,56

the mainstream of environmental sensing equipment for consumer cars consists of57

monocular vision for lane detection, frontal radar for collision avoidance, and GNSS for58

navigation system. It is known that monocular vision system has scale ambiguity, which59

disturbs absolute motion estimation, and radar has highly sparse feature points that60

can be easily lost. Also global positioning methods based on map-matching approaches61

require large amount of digital map data and there still remain numerous works to62

implying the high-definition map(HD map) based localization in public.63

In order to mitigate the shortcomings of DR performance of monocular vision64

and inertial measurement, this research focused on lane detection results from camera.65

Unlike feature extraction, learning-based lane detection gives much consistent result66

from same images. Recently, as a remarkable evolution in neural-network and artificial67

intelligence, learning-based lane detection models[30–32] shows better robustness than68

conventional machine vision approaches in challenging situations, such as varying69

shadows and image occlusions by moving objects. Fig. 1 presents the lane detection70

results from both feature-based and learning-based approaches. For real driving scenes71

like highway driving, those challenges happen everyday, and therefore learning-based72

lane detection is widely adopted in production vehicles.73

In this paper, we propose a DR method that uses robust lane detection results from74

the learning based lane detection model[32]. As explained above, using standalone75

INS will gradually lead to drifting issues for vehicle kinematic/dynamic state variables,76

e.g., vehicle roll angle, bank angle of road surface and vehicle heading angle. By using77

the robust lane detection results, these drifting problems are to be compensated and78

therefore will be regulated to much smaller magnitudes compared to standalone INS.79

Moreover, using lane detection results for correction show higher performance and80

better computational cost than the State-of-the-Art vision based methods in real-world81

experiment.82
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We summarize the main contributions of our work as below:83

• We proposed a novel filter design that combines learning based lane detection84

results with IMU mechanization for accurate vehicle localization in GNSS denied85

environments.86

• Accurate online vehicle localization was achieved for various road geometry and87

environment conditions, verifying the robustness of our proposed method.88

The rest of the paper is organized as follows. In Section 2, vehicle kinematics model89

and observer model are introduced. In Section 3, filter selection and implementation90

process is illustrated. In Section 4, experiment scenarios, vehicle set up and various91

dataset from experiment is explained. In Section 5, result of lane detection aided DR is92

presented and is compared with other visual odometry based localization algorithms.93

Finally, in Section 6, conclusion of this research will be illustrated.94

2. System Modeling95

In this section, vehicle kinematics and observer model design process will be96

explained thoroughly. To design kinematic model that operates inside the filter, we97

first need consider the overall framework of our research. From Fig. 2, we can see98

that, using IMU measurement and lane detection results, the system should output99

reliable vehicle localization data. As shown in Fig. 3, the result from vision-based lane
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Figure 2. Overall architecture of land-aided dead-reckoning system
100

detection might be degraded for various reasons, such as motion of vehicle, luminous101

intensity or shape and color of lane lines. In the purpose of rejecting outliers in the102

lane detection results and securing the consistent performance of position estimation,103

a vehicle kinematics-based observer model will be implemented based on this general104

framework.105

(a) (b) (d)

(c)

Figure 3. Potential error sources when using lane detection for vehicle localization: (a) Original
road image in perspective view; (b) Blurred lane estimation accuracy along preview distance
in global frame; (c) Effects of vehicle attitude and road inclination in lane detection result; (d)
Mismatched lane lines in successive frames
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2.1. Vehicle Kinematics Model106

Vehicle kinematics follow the process of INS mechanization and a total of 9 vehicle107

states are propagated. Vehicle states and inputs are shown below.108

Xk−1 =
[

xk−1 yk−1 zk−1 vx
k−1 vy

k−1 vz
k−1 φk−1 θk−1 ψk−1

]T
(1)

uk−1 =
[

ax
k−1 ay

k−1 az
k−1 ωx

k−1 ω
y
k−1 ωz

k−1

]T
(2)

φ, θ, ψ represent the Euler angles of the vehicle frame. At the initial step, we109

initialize all the states and vehicle attitude matrix according to the IMU measurements.110

Suppose that the vehicle attitude matrix at timestep (k − 1) is (Cn
b )k−1, skew matrix111

computed from Euler angles is Sk−1 and norm of ω3×1
k−1 T as ||ω3×1

k−1 T||, then we can first112

update the vehicle attitude matrix using the angular velocity input and compute the113

vehicle acceleration in the navigation frame.114


(ax

k−1)n

(ay
k−1)n

(az
k−1)n

 = (Cn
b )k−1


ax

k−1

ay
k−1

az
k−1

−
 0

0
9.8

 (3)

Sk−1 = skew
([

ωx
k−1T ω

y
k−1T ωz

k−1T
])

= skew
((

ω3×1
k−1

)T
T
)

(4)

(Cn
b )k = (Cn

b )k−1 + I3×3 +

(
sin ||ω3×1

k−1 T||
||ω3×1

k−1 T||

)
Sk−1 +

(
1− cos ||ω3×1

k−1 T||
||ω3×1

k−1 T||2

)
S2

k−1 (5)

T is the timestep interval and is 0.05s(20Hz) during the simulation process. Using115

the updated vehicle attitude matrix and acceleration data, we can propagate the updated116

Euler angles, velocity vector and position vector.117

xk = xk−1 + vx
k−1T +

1
2
(ax

k−1)n T2 (6)

yk = yk−1 + vy
k−1T +

1
2
(ay

k−1)n T2 (7)

zk = zk−1 + vz
k−1T +

1
2
(az

k−1)n T2 (8)

vx
k = vx

k−1 + (ax
k−1)n T (9)

vy
k = vy

k−1 + (ay
k−1)n T (10)

vz
k = vz

k−1 + (az
k−1)n T (11)

φk = atan2( (Cn
b )k(2, 2) , (Cn

b )k(3, 3) ) (12)

θk = − arcsin ( (Cn
b )k(1, 3) ) (13)

ψk = atan2( (Cn
b )k(1, 2) , (Cn

b )k(1, 1) ) (14)

Arranging the results above, propagated vehicle states can be written as following.118

Xk =
[
xk yk zk vx

k vy
k vz

k φk θk ψk
]T

= f(Xk−1, uk−1) (15)
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Figure 4. Observer Model: Predicting lateral distance to the previewed lane

2.2. Observer Model119

In order to update the vehicle states by using lane detection results, we can first120

think of using the previous step lane geometry as shown in Fig.4121

Considering filter implementation at Section 3, previous step lane detection results122

and previous step vehicle position estimates are used to create the previewed lane123

geometry(Previous Sample Points) at the (k− 1)th step. After the IMU Pre-integration124

introduced at Section 2.1, we can resample points on the previous lane geometry by125

linear interpolation. This can be compared with the actual measurement made at the kth
126

step(Current Sample Points) for vehicle position error compensation.127

The actual implementation starts off with creating the lane geometry information128

with (k− 1)th step updated vehicle position and (k− 1)th step lane detection results.129

Suppose that we are obtaining the Global coordinates for nth previewed left lane point130 (
(xl

n)k−1, (yl
n)k−1

)
. The coordinates can be computed as below.131

(xl
n)k−1 = xk−1 + 10n cos (ψk−1)− (ln)k−1 sin (ψk−1) (16)

(yl
n)k−1 = yk−1 + 10n sin (ψk−1) + (ln)k−1 cos (ψk−1) (17)

(ln)k−1 is the lateral distance to the 10n m (longitudinal) previewed left lane point132

measured by the lane detection model. These coordinates for all the previewed points133

are the Previous Sample Points in Fig.4. Then we convert Previous Sample Points134

Coordinates from Global frame to kth Vehicle Body frame(IMU Pre-integrated). Frame135

transformation of nth previewed left lane point can be done as following.136

(ψrel
n )k = ψk − atan2

(
(yl

n)k−1 − yk, (xl
n)k−1 − xk

)
(18)

(Ll
n)k =

√
((xl

n)k−1 − xk)2 + ((yl
n)k−1 − yk)2 (19)

(xl
n)

b
k−1 = (Ll

n)k cos (ψrel
n )k (20)

(yl
n)

b
k−1 = (Ll

n)k sin (ψrel
n )k (21)

(ψrel
n )k in Eqn.18 represents the relative angle of the previewed lane point measured137

from the vehicle body x axis. (Ll
n)k in Eqn.19 is the 2D Euclidean distance from the IMU138

Pre-integrated vehicle position and the nth left lane point. The superscript b at Eqns.20,21139
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mean that they are measured from the vehicle body frame. Note that the subscript of140

(xl
n)

b
k−1 in Eqn.20 is (k− 1) because we are simply transforming (xl

n)k−1, which is the x141

coordinate of Previous Sample Point.142

For measurement update, we can compare (yl
n)

b
k−1 with (ln)k, which is the kth step143

lane detection result of nth previewed left lane point. IMU Pre-integration process error144

can be compensated through this step. Other than the lane information, we also use145

vehicle longitudinal velocity for the measurement model.146

vb
k = vx

k cos(ψk) + vy
k sin(ψk) (22)

Combining the lateral distances of previewed points(n points for left and right147

lanes) and vehicle longitudinal velocity, the measurement prediction matrix can be148

written as following.149

Zk =
[
vb

k (yl
1)

b
k−1 (yr

1)
b
k−1 · · · (yl

n)
b
k−1 (yr

n)
b
k−1

]T

= h(Xk, uk−1) (23)

Having n preview points for each lane, size of the measurement prediction matrix150

will be R(2n+1)×1. For measurement update, we organize the actual measurement matrix151

as below.152

Yk =
[(

vb
k

)m
(l1)k (r1)k · · · (ln)k (rn)k

]T
(24)(

vb
k

)m
represents the longitudinal velocity actually measured by IMU.Using Zk, Yk,153

we can update the vehicle states at the measurement update step, introduced at the next154

section.155

3. Filter Design156

3.1. Filter Selection and Framework157

Nearly every vehicle localization problem is approached by using a filter that fits158

the proposed prediction/observation model and available data type well. The most159

popular filters are Extended Kalman Filter(EKF), Unscented Kalman Filter(UKF), and160

Particle Filter(PF) which show reliable performance for nonlinear or complex models.161

Extended Kalman filter solves the nonlinear estimation problem by linearizing state162

and/or measurement equations and applying the standard Kalman filter formulas to163

the resulting linear estimation problem. The linearization yields to approximation errors164

which the filter does not take into account in the prediction/update steps. Therefore165

EKF error estimates tend to underestimate state uncertainties. In comparison, UKF picks166

so called sigma point samples from the filtering distribution and propagates/updates167

them through the nonlinear state and measurement models. The resulting weighted168

set of sigma points represents how the updated filtering distribution, which, is then169

approximated as a moment matched Gaussian distribution. This state estimation results170

represent the state uncertainty better than the estimates obtained from the EKF with an171

increased computational cost. Similar to UKF, PF method propagate particles, but the172

main difference is that the particles are selected in a probabilistic manner. Generally, PF173

show higher time complexity than EKF and UKF because a lot of particles are needed to174

represent the entire nonlinear model.175

Since one of our goals in this research is to implement real-time vehicle localization176

method, we can see that PF is not an appropriate candidate for filter design. Taking our177

system into consideration, for GNSS denied situations with no precise map available, the178

only applicable measurement for update step is lane detection result. However, output179

of lane detection model has high uncertainty for far preview distances, which may lead180



Version October 6, 2021 submitted to Sensors 7 of 19

Figure 5. Simplified framework of UKF method

to huge error accumulation for EKF update process. Cancelling out the candidates, we181

finally have UKF as our filter structure.182

From the subsections below, simple implementation of the UKF will be illustrated183

in the same order as the flowchart shown in Fig. 5. Note that the variables used in184

this section are slightly modified from the ones at Section 2, adopting the Kalman Filter185

notation.186

3.2. Prediction Step187

Before entering the main filtering loop, initialization of all the state variables are188

done by using the GNSS/INS and vision data. Assuming that at least the initial condi-189

tions are very accurate, the variance values of all the states inside the covariance matrix190

were initially set as low quantities. Using the state variable format from Section 2, we191

can rewrite the state propagation equation in the KF notation,192

uk−1 =
[

ax
k−1 ay

k−1 az
k−1 ωx

k−1 ω
y
k−1 ωz

k−1

]T
(25)

Xk|k−1 = f(Xk−1|k−1, uk−1) (26)

where function f is the state propagation function introduced at Section 2.193

Then, the measurement prediction step can also be rewritten as following.194

Zk = h(Xk|k−1, uk−1) (27)

For the simplicity of explanation, extracting sigma points and performing Un-195

scented Transform were not mentioned in the equations 26 and 27. Also, the prediction196

step for state covariance matrix was skipped. Detailed information about the implemen-197

tation process is shown at Fig. 5.198

3.3. Update Step199

At the update step, we have to compare the predicted measurement with the actual200

measurements. Referring to the observer design at Section 2.2, state update can also be201

described in the KF form.202



Version October 6, 2021 submitted to Sensors 8 of 19

(a). Experiment Trajectory (b). GENESIS G80 Sedan (c). Stereo Camera

Figure 6. Test Environment and Experimental Setups are described in the figure. The experiment was done in Daejeon, South Korea,
with Stereo camera attached test vehicle(GENSIS G80 Sedan).

Xk|k = Xk|k−1 + Kk(Yk − Zk) (28)

The remaining filter implementation is done according to the flowchart of Fig. 5.203

As the simulation loop continues, Xk|k and Pk|k are saved for data analysis at Section 5.204

4. Experiment205

As mentioned in Section 1, our goal is to achieve accurate online vehicle localization206

for GNSS denied situations. Therefore, we have to compare the result of our proposed207

model with ground truth and other State-of-the-Art visual odometry-based methods208

to prove the performance. The following sections describe the equipment used in the209

experiment, the geographical information of the test site, lane detection model, and its210

results in detail.211

4.1. Experiment Setup and Scenarios212

In this research, we focus on the outdoor, especially highway(i.e. challenging213

feature extraction) situations because urban and indoor(e.g. Parking lot) online vehicle214

localization can be achieved in high accuracy by existing Visual Odometry(VO) or SLAM215

methods. Experiment is carried out on the highway located in Daejeon, South Korea and216

as shown in Fig. 6a, the vehicle traveled approximately 52km.217

The test vehicle used for the research is GENESIS G80 Sedan as shown in Fig.218

6b, and the camera used for forward view recording is FLIR BLACKFLY model. Two219

monocular cameras are attached to the vehicle in Fig. 6c to perform as stereo camera. In220

order to compare the proposed methods with other VO methods, an industrial grade221

IMU, Xsens MTi-670g is also fastened to the stereo vision system, and calibrated with222

the vehicle body coordinate[33,34]. Finally, the CPU used for simulation is Intel Core223

i5-4690 CPU @ 3.50GHz, and RAM of 16GB.224

For the performance evaluation of our proposed method in various situations, there225

is a need to slice the total vehicle trajectory into some specific scenarios. The scenarios are226

chosen mainly according to the lane geometry and the surrounding environments. The227

localization performance of our proposed method will be illustrated for each scenario at228

Section 5. At the beginning of each scenario, we assume that there is GNSS initialization.229

After the initialization, our proposed method and the other comparison methods are230

propagated without any GNSS update.231
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4.2. Lane Detection Model232

In order to obtain lane fragments from collected images, CRNN based lane detec-233

tion model, named "supercombo" is adopted[35], which is currently implemented in234

commercial aftermarket ADAS systems. The model takes its input as two successive235

image frame and latest fully connected layer. The output of model consists of four236

lane line candidates, two road boundary for left and right edge, lead vehicle position237

estimation and path planning results. In this research, we use only two lane lines, for238

left and right lanes, since those two lane lines are also presented in other types of lane239

detection methods as the essential output. It is worth noting that the detected lane lines240

have their preview length up to 100m, while the estimated accuracy decreases as preview241

length increase.242

4.3. Lane Detection Results243

Before proceeding to DR implementation, we perform a pre-test of lane detection to244

validate the performance and reliability. Since the lane detection model is designed for a245

single-camera setup, the left camera from the stereo setup is used. The inference results246

of the lane detection model are presented in Fig. 7, which describes the reprojected247

lane lines in global coordinate. Ground truth of vehicle trajectory is obtained by OxTS248

RT3100, a commercial INS system for land vehicle test and survey.249
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Figure 7. Lane Detection Results (0.5-7.5s) with 70m preview distance

Figure 7 shows lane points for 3 different time steps with 70m preview distance. Ex-250

tending the preview distance up to 100m and plotting for full simulation time of Scenario251

1(refer to Section 5.2), we can get Fig. 8. Due to transformation error from image to real252

world coordinates and image distortion for far previewed distances, it is obvious that253

lateral distance data of 0m previewed lane point is much more trustworthy compared to254

100m previewed lane point. As we can see in figures 7 and 8, further previewed lane255

points show huge deviations especially at curvy road segments. However, this does not256

mean that the previewed lane point data should be discarded due to the high uncertainty.257

Although further previewed lane points have larger position errors, their existence258

implies curvature of the previewed lanes and restrains kinematic/dynamic vehicle states259

from diverging. This is a trade off problem and will be discussed intensively at Section260

5.6.1.261

To sum up, the most accurate mapping possible from this dataset would be merging262

all the 0m previewed lane points. Ground truth for this research can be thought as263

2 parts. First is the accurate vehicle position measured by RT and the second is 0m264

previewed lane points transformed into global fixed coordinates.265
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Figure 8. Lane Detection result including up to 100m previewed points is plotted with the vehicle
position measured by OxTS RT3100 (Vehicle position marked blue). As shown in the figure, longer
preview distance show huge lateral deviation from the ground truth.

At Section 5, localization error will be computed by using the ground truth vehi-266

cle position obtained above. Other than the Euclidean distance error, heading angle267

difference will also be considered for analysis.268

5. Results269

5.1. Comparison method: VO270

In order to evaluate dead-reckoning performance of the proposed method, state-271

of-the-art visual odometry methods are also implemented. We chose VINS[36–39],272

top-ranked VO method in KITTI benchmarks, as competitive methods, since VINS have273

been designed for various types of system configurations such as monocular vision,274

stereo vision, visual-inertial fusion and even vehicle model fusion. It is worth noting275

that for the fair comparison, the intrinsic and extrinsic parameters for cameras and IMU276

have been pre-calibrated with open-sourced visual-inertial calibration library, kalibr[40].277

Fig. 9 shows the baseline of the stereo setup.278

However, unlike the indoor situation or urban driving scenes, the performance of279

VO is figured out to be degraded in the highway environment. Fig. 10 shows the feature280

matching and calculated optical flow from given image sequence. Since the background281

scene is nearly homogeneous, large portion of features are extracted from surrounding282
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Figure 10. Disturbances on optical flow with moving traffics

vehicles. Moreover, the feature points on surrounding vehicles are relatively closer,283

hence the effect of that points can be emphasized in the pose estimation result, while284

learning-based lane line detection shows consistent result with or without surrounding285

vehicles.286

In order to improve the performance degrading under the homogeneity of the287

scenery, the direct approach, specifically Direct Sparse Odometry(DSO) [41], that uses288

the photometric error rather than the matching of selected set of feature points has been289

adopted to competitive methods. The direct method shows more consistent ego-motion290

tracking performance. The sparse points from DSO also reflect the distinguishable291

characteristics in the middle of road surface, while the feature points from VINS tend to292

be biased on the corners on images. However, under rapid changes in illuminance in the293

surrounding environment, such as direct sunlight toward camera or insufficient intensity294

in tunnels, the direct method shows the degraded performance or fails occasionally.295

Considering the drawbacks of comparison methods and to evaluate localization296

performance of our proposed method for specific lane geometry conditions, we extracted297

4 scenarios from the highway drive. Result of localization for various scenarios will298

be presented in the following subsections, and overall analysis will be done at the end299

of the section. For simplicity, VINS Stereo + IMU is written as VINS1, VINS Stereo as300

VINS2 and VINS Mono + IMU as VINS3 for the RMSE comparison.301

Figure 11. Disturbances on optical flow with moving traffics
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5.2. Scenario 1: Initial Stage302
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Figure 12. Scenario 1: Vehicle Localization with Various Methods

The first scenario is the initial stage of the experiment, where vehicle passes the303

tollbooth and enters highway. This scene was chosen for evaluating standardized304

highway road geometry. As we can see from Fig. localization with other methods,305

the ground truth lane does not have any extreme road geometry(high curvature, long306

straight path). The total travel distance and travel time of scenario 1 is approximately307

992m and 60 seconds respectively. Localization comparison of methods are shown in308

Fig.13,12 and Table 1.309

Figure 13. Scenario 1 (40m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift

Dataset 10m 20m 30m 40m 50m 60m 70m 80m 90m INS DSO VINS1 VINS2 VINS3

RMSE(m) 14.56 15.79 8.09 5.06 7.34 9.32 9.31 9.75 9.83 41.11 48.66 132.4 55.89 456.0
RMSE Lat(m) 4.26 12.22 7.15 3.52 5.06 6.61 6.62 6.98 7.05 37.13 17.04 82.14 50.51 216.4

RMSE Long(m) 13.92 10.00 3.78 3.63 5.32 6.57 6.55 6.81 6.86 17.63 45.58 103.9 23.95 401.4
Max Error(m) 24.87 35.31 19.65 6.84 10.19 14.75 14.89 15.98 16.21 111.3 62.82 230.5 98.18 869.2

Table 1. Scenario 1 Localization Results (Trajectory Length: 992m)
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5.3. Scenario 2: Straight Road310
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Figure 14. Scenario 2: Vehicle Localization with Various Methods

Scenario 2 represents the case for a long straight road. This is to evaluate and analyze311

the longitudinal error magnitude for our proposed method. The total travel distance312

and travel time of scenario 2 is approximately 4.6km and 200 seconds respectively.313

Localization comparison of methods are shown in Fig.15,14 and Table 2. VINS1(VINS314

Stereo + IMU) method failed in scenario 2.315

Figure 15. Scenario 2 (90m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift

Dataset 10m 20m 30m 40m 50m 60m 70m 80m 90m INS DSO VINS1 VINS2 VINS3

RMSE(m) 447.9 161.6 62.26 22.24 12.56 9.05 8.89 8.60 8.56 1175 334.5 x 1315 342.4
RMSE Lat(m) 423.7 156.7 59.93 20.28 10.38 6.86 6.40 6.07 6.04 1161 93.63 x 1214 182.5

RMSE Long(m) 145.3 39.6 16.86 9.13 7.07 6.28 6.16 6.08 6.07 166.9 321.1 x 465.6 289.6
Max Error(m) 771.2 339.2 127.6 38.05 19.01 13.58 12.80 12.71 12.77 2984 490.7 x 1981 650.5

Table 2. Scenario 2 Localization Results (Trajectory Length: 4628m) VINS1 Failed
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5.4. Scenario 3: Curved Road316
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Figure 16. Scenario 3: Vehicle Localization with Various Methods

Scenario 3 represents the case for curvy roads. High curvature trajectory was chosen317

from the ground truth data. The total travel distance and travel time of scenario 3 is318

approximately 1077m and 60 seconds respectively. Localization results are shown in319

Fig.17,16 and Table 3. Note that VINS1(VINS Stereo + IMU) localization result is close to320

the ground truth (marked yellow).321

Figure 17. Scenario 3 (90m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift

Dataset 10m 20m 30m 40m 50m 60m 70m 80m 90m INS DSO VINS1 VINS2 VINS3

RMSE(m) 25.94 13.69 7.88 4.57 4.13 4.03 3.91 3.84 3.81 13.57 284.9 28.02 65.93 428.3
RMSE Lat(m) 23.80 13.08 6.00 2.57 2.68 3.08 3.01 3.05 3.05 12.85 130.9 11.33 31.81 379.4

RMSE Long(m) 10.32 4.03 5.09 3.78 3.15 2.61 2.49 2.33 2.28 4.36 253.0 25.62 57.75 198.6
Max Error(m) 67.87 37.57 19.32 7.95 6.46 6.45 6.24 6.12 6.07 35.5 723.2 61.04 196.5 632.5

Table 3. Scenario 3 Localization Results (Trajectory Length: 1077m)
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Figure 18. Scenario 4: Tunnels marked in green

5.5. Scenario 4: Tunnels322

As illustrated in Section 5.1, VO shows generally degraded performance at highway323

situations and this is predicted to be more intensified at tunnels. In order to compare the324

localization performance of VO and proposed method for challenging feature extraction325

environments, scenario 4 was tested at Fig.18. Scenario 4 consists of 3 consecutive tunnels326

at the highway as shown in Fig 18. The total travel distance and travel time of scenario327

4 is approximately 5290m and 225 seconds respectively. Localization comparison of328

methods is shown in Fig.20,19 and Table 4. In this scenario, DSO algorithm has failed.329
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Figure 19. Scenario 4: Vehicle Localization with Various Methods

Figure 20. Scenario 4 (50m Preview) (a) Longitudinal Error (b) Lateral Error (c) Heading Angle Drift

Dataset 10m 20m 30m 40m 50m 60m 70m 80m 90m INS DSO VINS1 VINS2 VINS3

RMSE(m) 753.5 152.1 46.21 10.92 5.12 5.26 5.43 5.61 5.66 990.6 x 1146 3914 1489
RMSE Lat(m) 695.0 146.9 44.67 10.32 4.31 4.44 4.63 4.85 4.92 950.8 x 1111 3647 313.0

RMSE Long(m) 291.2 39.32 11.84 3.57 2.78 2.82 2.83 2.82 2.80 277.9 x 280.8 1422 1422
Max Error(m) 1576 337.5 100.5 17.65 8.20 9.79 10.70 10.93 10.81 2088 x 2583 6946 2429

Table 4. Scenario 4 Localization Results (Trajectory Length: 5290m)
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5.6. Result Analysis330

5.6.1. Localization Performance for Varying Preview Distances331

For 4 scenarios and their localization results from Tables 1, 2, 3, 4, we can observe332

that localization performance of our proposed method is generally enhanced for further333

preview distances. As shown in Fig 8, although further previewed points have higher334

positional uncertainty, vehicle localization is stabilized by introducing forward lane335

geometry to the model update. Predicting the previewed point positions using the336

previous step lane detection measurements and vehicle position estimate "push" or337

"pull" the IMU mechanized vehicle position to the accurate location. However, naively338

increasing the preview distance is not the optimal solution to accurate localization.339

Results from Table 1, 4 show degrading localization performance after 40m and 50m340

preview distance respectively. This is due to the inherent uncertainty of the lane detection341

results for far preview distances.342

Therefore we can conclude that optimal preview distances are different for various343

scenarios tested in this research, but localization performance is generally enhanced for344

longer preview distances.345

5.6.2. Longitudinal, Lateral error and Heading Angle Drift of proposed method346

It is intuitive that lane detection information helps vehicle localization in the lateral347

direction, but not for longitudinal direction. Observing the localization results for scenar-348

ios 1 to 4, we can see that the our method shows accurate enough localization for both349

vehicle longitudinal and lateral directions. This is because previewed road curvature350

information "attracts" vehicle to the appropriate longitudinal position by measurement351

prediction model in Section 2.2, compensating the accumulated longitudinal error.352

If the road has high curvature as shown in Section 5.4, longitudinal error is bounded353

with the help of previewed lane geometry. On the other hand, for scenario 2 (Fig.15), the354

error keeps on increasing because there is little feedback on the longitudinal direction355

for long straight road section(low road curvature). However, considering that the356

longitudinal error reached only 11m after 4.6km drive, this implies that even with357

small lane curvature feedback, longitudinal diverging tendency is maintained at slow358

increasing rate.359

Other than 2D Euclidean localization error, vehicle heading angle drift should also360

be considered for accuracy evaluation. For all the scenarios, we can see that the heading361

angle drift is regulated below 2 degree magnitude, even for long vehicle trajectories.362

Similar to the longitudinal error, heading angle is bounded by using the previewed lane363

geometry.364

5.6.3. Comparison with Other Methods365

As we can see from Fig.12, 14, 16, 19 and RMSE comparison table for each scenario,366

our proposed method shows much better performance in estimating the vehicle position367

accurately, compared to other VO and Standalone INS methods.368

Except for scenario 4, at least 1 VO method showed adequate localization perfor-369

mance for each of the scenarios. However, in scenario 4, as mentioned in Section 5.5, the370

accuracy of VO methods is degraded badly. DSO has failed, VINS Stereo also totally371

diverged from the ground truth, and so for the remaining 2 methods. This is due to the372

moving and homogeneous feature extraction in 3 consecutive tunnels. Our proposed373

method however, uses the robust learning based lane detection model, which means374

that "features" extracted for implementation(i.e., lane information) are consistent and375

very stable for analysis. Based on these lane detection results and proposed model, we376

succeeded in achieving accurate localization performance even for tunnel scenario.377
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6. Conclusion378

6.1. Overall Summary379

This study proposed a novel lane detection based online Dead Reckoning method380

in GNSS denied situations. Using IMU measurements and robust learning based lane381

detection results as input to the system, vehicle kinematics and observer were designed.382

Vehicle position estimation was implemented by using Unscented Kalman Filter with383

the model structure at Section 2. For the various highway drive scenarios, the evalua-384

tion of localization performance of our proposed method was done by comparing with385

state-of-the-art VO methods and standalone INS results. Although positional shifting386

was inevitable for long trajectories, proposed method showed much better results than387

the comparison sets by successfully restraining the diverging vehicle states with the388

previewed lane geometry. Moreover, it was verified that using previewed lane infor-389

mation up to certain distances enhanced the vehicle localization accuracy but showed390

degrading performance when using too far-previewed lane detection results.391

6.2. Future Research Direction392

In this paper, we have implemented vehicle localization method by fusing learning393

based lane detection results with IMU mechanization. However, this method does not394

take into account the pitching and rolling motion of the vehicle during the highway395

drive. Underestimation of these additional vehicle states may have caused unwanted396

localization errors in the proposed model and filter design. For further research, expan-397

sion of the vehicle and lane kinematics model to 3D scale, considering the rolling and398

pitching motion of vehicle, can be done to enhance localization accuracy.399

Moreover, together with the loop closure algorithm, the proposed method could be400

further improved to create an accurate digital lane map along the vehicle trajectories and401

is also expected to show enhanced performances when the lane lines are not presented402

continuously or rapidly changing.403
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