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ABSTRACT−In recent times, localization and positioning techniques have rapidly developed with the increasing 

demand for unmanned vehicles. Most positioning systems for land vehicles based on GPS-IMU, use a non-holonomic 

constraint to determine misalignment between sensor and vehicle body frame; however, misalignment estimation 

depending on non-holonomic constraint has limitations in high speed environments and there is a lack of observability 

for roll misalignment. 

This paper suggests an online misalignment estimation method under dynamic conditions that violates the non-

holonomic constraint. It provides roll, pitch and yaw misalignment angles of IMU mounted on a vehicle, and 

corresponding sideslip angle of the vehicle at the position of IMU. The misalignment estimator is designed as a linear 

error state Kalman filter, which takes the results of a strapdown inertial navigation working simultaneously. Computer 

simulations and real environment experiments with consumer grade GPS and MEMS IMU are performed to 

demonstrate the performance and reliability of the given method.  
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NOMENCLATURE  

𝒙𝒊 : Vector x in i-frame 

𝒑 : Position 

𝒗 : Velocity 

𝚿 : Attitude in Euler angles (Z-Y-X) 

𝒂 : Acceleration with gravity 

𝒇 : Specific force 

𝝎 : Angular rate 

𝜸 : Misalignment angle 

𝜷 : Sideslip angle 

𝑪𝒊
𝒌 : Transform matrix from i-frame to k-frame 

𝒍𝒈, 𝒍𝒐 : GPS/Odometer lever arm 

𝒈 : Gravitational vector 

𝐈𝐢, 𝐎𝐢 : Identity/Zero square matrix in i-dimension 

𝝓, 𝜽, 𝝍 : Roll, pitch and yaw angles 

 

SUBSCRIPTS 

 
𝒏 : Local navigation frame 

𝒃 : IMU body frame 

𝒗 : Vehicle body frame 

𝟎 : Sensor bias 

𝒊𝒌 : Measurement for i-frame with respect to k-frame 

× : Cross product matrix 

 

* Seibum Choi. e-mail: sbchoi@kaist.ac.kr  

 

1. INTRODUCTION  

Land vehicle navigation has become standard equipment 

on many cars. Navigation systems are based on the global 

navigation satellite system (GNSS). GNSS provides 

location and velocity measurements, but has a limitation 

due to signal obscuration in the operation environment, 
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such as underpasses or urban areas. The strapdown 

inertial navigation system (SINS) is broadly used to 

compensate for position and velocity during GNSS signal 

outage. SINS with GNSS aiding can fill in signal outages, 

suppress sensor drift accumulation, and provide attitude 

information (Abbott and Powell, 1999). Furthermore, 

through information on vehicle attitude and velocity in 

the vehicle body frame, the integrated system opens the 

possibility of its being used as a vehicle dynamics sensor 

as well as a navigation system.  

Several studies have been presented on using SINS to 

estimate vehicle dynamics parameters. Measurements 

from GNSS in conjunction with the vehicle dynamics 

control system have potential benefits for precise 

velocity estimation during anti-lock braking system 

actuation (Beiker et al., 2006). Based on a global velocity 

measurement of GNSS, a sideslip estimation including 

cornering stiffness estimation is also introduced. (Bevly 

et al., 2001). Moreover, GNSS combined with vehicle 

and tire models, tire force estimation can be performed in 

nonlinear regions (Daily and Bevly., 2004). 

While most common navigation systems use a single 

antenna, a dual antennae system can widely expand the 

usage of GNSS in vehicle dynamics. A dual antennae 

system has the ability to measure the attitude of the 

vehicle directly, based on the longitudinal force balance, 

vehicle mass, rolling resistance, and drag coefficient 

(Bae et al., 2001). The roll dynamics is also identified 

using a lateral antenna baseline (Ryu et al., 2002). Also, 

a dual antennae system has the advantage of direct 

sideslip angle measurement, while IMU based systems 

require accurate vehicle models for the sideslip angle 

estimation (Oh and Choi, 2013). 

Meanwhile, the methods suggested above can provide 

acceptable estimation performances with consumer grade 

GNSS. However, there is a prerequisite that IMU should 

be accurately aligned with respect to the vehicle. A small 

misalignment of the IMU can result in an erroneous 

solution (Syed et al., 2008). To reduce the misalignment 

errors and improve performance, miscellaneous methods 

are investigated.  

In the case of a vehicle moving on a level surface, a 

simple complementary filter can directly compute 

misalignment angles from the Earth’s rotation rate and 

gravity. During the alignment process, it is recommended 

that the vehicle remains stationary. Additionally, 

consumer grade MEMS sensors cannot distinguish the 

Earth’s rotation rate from measurement noise, hence the 

system loses observability of global yaw misalignment 

(Nebot et al., 1999). When the vehicle is moving, the 

gravity aided alignment is no longer available due to the 

translational acceleration. To deal with in-motion 

alignment, the non-holonomic constraint (NHC) has been 

adopted as virtual velocity aiding. A system integrated 

with odometers can provide pitch and yaw misalignments, 

though the roll misalignment is still unknown (Wu et al., 

2009, Chen et al., 2020). 

The absence of roll misalignment observability restricts 

the application of SINS as a vehicle dynamics sensor. 

Several approaches have been introduced to estimate roll 

misalignment. When a vehicle travels along straight line 

on a horizontal plane, the specific force and angular rate 

reconstructed from the trajectory can be used to 

determine misalignment angles (Bao et al., 2013). An 

alternative method has been proposed to estimate 

misalignment angles in general driving maneuvers rather 

than a straight line by assuming that only the centripetal 

force acts on the vehicle in the lateral direction. (Larsson 

et al., 2017, Zheng et al., 2017). 

The methods presented previously are built upon the non-

holonomic constraint, which violates the actual vehicle 

dynamics with lateral motion and the violation is 

transferred to alignment errors. A different approach 

based on the single-track model is proposed in order to 

avoid limitations of the non-holonomic constraint 

(Marco et al., 2021). The single-track model is widely 

adopted to approximate the lateral dynamics of vehicle, 

but it requires accurate prior knowledge of vehicle model 

parameters, such as cornering stiffness and moment of 

inertia of vehicle. 

This paper suggests an alternative method for in-motion 

alignment estimation of vehicle mounted SINS, which 

secures performance under highly dynamic conditions. 

The suggested method assumes that the vehicle is moving 

on a planar surface without a suspension motion. The 

misalignment angles are obtained using an error state 

Kalman filter from the virtual acceleration, including the 

rate of the sideslip angle as a pseudo measurement. 

The remainder of this paper is organized as follows. 

Section II presents the formulation of SINS in the local 

navigation frame. Section III presents the proposed 

misalignment estimation algorithm. Section IV shows the 

results of misalignment estimation through simulation 

and real environment experiments. Finally, section V 

provides the conclusions.  

 

2. STRAPDOWN INS FORMULATION 

 
Figure 1. System mounted on vehicle 
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The system used in this research is briefly illustrated in 

Figure 1. IMU is mounted on vehicle body in the position 

of 𝑙𝑜 from the center of the rear axle. Note that there are 

misalignments in installation between the IMU and the 

vehicle body frame. The GNSS antenna is located on the 

loop, with lever arm 𝑙𝑔 from IMU. 

In this section, the mathematical formulation and cor-

responding error state model of SINS are presented. 

 

2.1. Strapdown System Mechanization  

 
The SINS mechanization can be represented in several 

frames, e.g., Earth-Centered Earth-Fixed frame, local 

navigation frame, or vehicle body frame. In this paper, 

the mechanization equations follow the local navigation 

frame representation (Titterton et al., 2004).  

 

2.1.1. Attitude Update Equation 

The SINS attitude matrix is represented by three Euler 

angles, 𝜙  (roll), 𝜃  (pitch), and 𝜓  (yaw), with Z-Y-X 

order of successive rotation from the IMU frame to the 

local navigation frame. 

 

𝐶𝑏
𝑛 = 𝐶𝜙𝐶𝜃𝐶𝜓 

= [

𝑐𝜃𝑐𝜓 −𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓
𝑐𝜃𝑠𝜓 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] (1) 

 

Here, c and s refer to sine and cosine. The time update of 

𝐶𝑏
𝑛 satisfies the kinematic equation, as follows 

 

𝐶𝑏
�̇� = 𝐶𝑏

𝑛𝜔𝑛𝑏
𝑛

×
     (2) 

𝜔× = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
]   (3) 

 

where 𝜔𝑛𝑏
𝑏  is the angular rate of the IMU frame with 

respect to the navigation frame. The operator ⋅×  denotes 

a skew-symmetric matrix for a vector, which satisfies the 

cross product of vectors, 𝑎 × 𝑏 = 𝑎×𝑏. 

 

2.1.2. Velocity and Position Update Equation 

Applying general three-dimensional equations of motion 

on a rotating frame, the derivative of velocity takes the 

form,  

 

𝑓𝑏
𝑛 = 𝐶𝑏

𝑛𝑎𝑏 − 𝑔𝑛     (4) 

𝑣�̇� = 𝑓𝑏
𝑛 − (2𝜔𝑖𝑒

𝑛 + 𝜔𝑒𝑛
𝑛 ) × 𝑣𝑛   (5) 

 

where 𝑓𝑏
𝑛  is the specific force represented in the local 

navigation frame, 𝑎𝑏 is the acceleration of IMU frame, 

𝑔𝑛  is the gravity in local navigation frame, 𝜔𝑖𝑒
𝑛  is the 

Earth rotation rate and 𝜔𝑒𝑛
𝑛  is the transport rate. However, 

the magnitudes of 𝜔𝑖𝑒
𝑛  and 𝜔𝑒𝑛

𝑛   are in the order of 10−6, 

while the specific force 𝑓 has a value on the order of ∼
10. (Hong et al., 2005) 

Therefore, by assuming that the rotation rate of the local 

navigation frame with respect to the inertial frame is 

negligible, the velocity and position update can be 

simplified as follows 

 

𝑣�̇� = 𝑓𝑏
𝑛      (6) 

𝑝�̇� = 𝑣𝑛       (7) 

 

where 𝑣𝑛 and 𝑝𝑛 denote the velocity and position in the 

local navigation frame. 

Through a series of inertial measurements, Equations (2), 

(6) and (7) provide navigation solutions for position, 

velocity and attitude from the initial state of the SINS. 

Since the mechanization process has only integration 

steps, there are two major factors that contribute to 

increasing the error: one is the sensor bias, the other is 

the initial alignment. (Dissanayake et al., 2001, Syed et 

al., 2019) Thus, to suppress the error growth with time 

integration, an estimation algorithm for both sensor bias 

and misalignment is required.  

 
2.2. Error State Kalman Filter 

 
In this paper, an error state Kalman filter is used for a 

loosely-coupled integration of GNSS and SINS 

(Woodman, 2007). The GNSS measurements, position 

and velocity, are utilized to correct the SINS solutions 

introduced in the previous section. The Kalman filter 

takes position, velocity and attitude as its states. In 

addition, sensor bias and lever arm estimations are also 

implemented to compensate for the raw measurements. 

 

2.2.1. Error Propagation 

The result of the SINS and GNSS solution can be divided 

into estimated states and corresponding errors. The error 

state is defined as the residual between ground truth and 

estimated state, 

 

𝑝𝑛 = �̂�𝑛 + 𝛿𝑝𝑛     (8) 

𝑣𝑛 = �̂�𝑛 + 𝛿𝑣𝑛      (9) 

𝐶𝑏
𝑛 = 𝛿𝐶𝑏

𝑛�̂�𝑏
𝑛                           (10) 

𝑙𝑔 = 𝑙𝑔 + 𝛿𝑙𝑔                (11) 

 

where 𝛿𝑝 , 𝛿𝑣 , 𝛿𝐶𝑏
𝑛  and  𝛿𝑙𝑔  refer estimation errors in 

position, velocity, rotation matrix from IMU to local 

navigation frame and GNSS antenna lever arm. Since the 

attitude errors are assumed to be small, 𝛿𝐶𝑏
𝑛  can be 

approximated using Euler angles, 𝛿𝜙, 𝛿𝜃 and 𝛿𝜓, 

 

𝛿𝐶𝑏
𝑛 ≈ [

1 −𝛿𝜓 𝛿𝜃
𝛿𝜓 1 −𝛿𝜙
−𝛿𝜃 𝛿𝜙 1

] = [𝐈 + Ψ×]                  (12) 

𝐶𝑏
𝑛 ≈ [𝐈 + Ψ×]�̂�𝑏

𝑛                (13) 
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where Ψ is the attitude error vector Ψ = [𝛿𝜙 𝛿𝜃 𝛿𝜓]. 
The measurements from accelerometer and gyroscope 

are augmented into the error state to eliminate the effect 

of measurement biases. The sensor biases are constants 

or very slow varying quantities compared with other state 

variables, hence the acceleration and angular rate acting 

on IMU frame become 

 

𝑎𝑏 = �̂�𝑏 + 𝑎0
𝑏                (14) 

𝜔𝑛𝑏
𝑏 = �̂�𝑛𝑏

𝑏 + 𝜔0
𝑏                 (15) 

 

where �̂�𝑏 and �̂�𝑖𝑏
𝑏  are the compensated acceleration and 

angular rate, and 𝑎0
𝑏 and 𝜔0

𝑏 are sensor biases. Note that 

equation (15) represents the angular rate of IMU frame b 

with respect to the local navigation frame n, since the 

Earth rotation rate and transport rate are negligible. 

Substituting equations (8)-(15) into the mechanization 

equations (2)-(7), the error state model of strapdown 

navigation can be derived. Assuming the errors have 

small values, the error state model can be linearized as 

 

𝛿�̇�𝑛 = 𝛿𝑣𝑛               (16) 

𝛿𝑣�̇� = 𝑓𝑏
𝑛

×
Ψ + 𝐶𝑏

𝑛𝛿𝑎0
𝑏               (17) 

 
The error propagation of attitude error uses the Euler 

angle vector Ψ, rather than the rotation matrix 𝛿𝐶𝑏
𝑛. From 

the definition of 𝛿𝐶𝑏
𝑛  and 𝛿�̇�𝑏

𝑛 , the time derivative of 

rotational error in matrix form is  

 

𝛿𝐶𝑏
�̇� = �̇�𝑏

𝑛�̂�𝑛
𝑏 + 𝐶𝑏

𝑛 �̇̂�𝑛
𝑏 

= 𝐶𝑏
𝑛𝜔𝑛𝑏

𝑏
×
�̂�𝑛

𝑏 + 𝐶𝑏
𝑛�̂�𝑛

𝑏�̂�𝑏𝑛
𝑛

×
              (18) 

 

where both ωnb
b  and ω̂bn

n  are the angular rate of IMU, but 

represented in different perspectives. Applying inverse 

rotation matrices and substituting 𝛿𝐶𝑏
𝑛 with Ψ (12),  

 

𝐶𝑛
𝑏𝛿𝐶𝑏

�̇��̂�𝑏
𝑛 = 𝜔𝑛𝑏

𝑏
×

+ �̂�𝑛
𝑏�̂�𝑏𝑛

𝑛
×
�̂�𝑏

𝑛 

         = 𝜔𝑛𝑏
𝑏

×
− �̂�𝑛𝑏

𝑏
×

 

   ≈ 𝐶𝑛
𝑏Ψ̇×𝐶𝑏

𝑛 = [𝐶𝑛
𝑏Ψ̇]

×
                         (19) 

 

Then, the vector form of attitude error propagation can be 

written as follows 

 

Ψ̇ ≈ 𝐶𝑏
𝑛(𝜔𝑛𝑏

𝑏 − �̂�𝑛𝑏
𝑏 ) = 𝐶𝑏

𝑛𝜔0
𝑏                (20) 

 

With the error state model (14)-(20), the corresponding 

system dynamics in discrete-time system is 

 

𝛿𝑥 = [𝛿𝑝𝑛 𝛿𝑣𝑛 Ψ 𝑎0
𝑏 𝑤0

𝑏 𝛿𝑙𝑔]              (21) 

𝛿𝑥𝑘+1 = Φ𝛿𝑥𝑘 + 𝐺𝑤𝑘                 (22) 
 

where 𝑤𝑘 is unknown input noise.  

Taking derivative of equations (16)-(20) with respect to 

the error state 𝛿𝑥, corresponding state transition matrix F 

and discrete-time transition matrix Φ can be calculated 

as follows 

 

𝐹 =

[
 
 
 
 
 
 
𝐎𝟑 𝐈𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑

𝐎𝟑 𝐎𝟑 𝑓𝑏
𝑛

×
𝐶𝑏

𝑛 𝐎𝟑 𝐎𝟑

𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐶𝑏
𝑛 𝐎𝟑

𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑

𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑

𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑 𝐎𝟑]
 
 
 
 
 
 

               (23) 

Φ = 𝑒𝑥𝑝(𝐹) ≈ 𝐼 + 𝐹Δ𝑡                (24) 
 

where 𝐎𝟑 refers 3 by 3 null matrix and 𝐈𝟑 refers identity 

matrix. 

The measurement noise of an inertial sensor is typically 

defined with a combination of white noise and random 

walk (Quinchia et al., 2013). Then input noise covariance 

matrix G can be simplified as follows 

 

𝐺  =  

[
 
 
 
 
 
𝐎𝟑   𝐎𝟑    𝐎𝟑   𝐎𝟑 

𝐶𝑏
𝑛   𝐎𝟑    𝐎𝟑   𝐎𝟑 

𝐎𝟑    − 𝐶𝑏
𝑛    𝐎𝟑   𝐎𝟑 

𝐎𝟑   𝐎𝟑    𝐈𝟑   𝐎𝟑 
𝐎𝟑   𝐎𝟑    𝐎𝟑   𝐈𝟑 
𝐎𝟑   𝐎𝟑    𝐎𝟑   𝐎𝟑 ]

 
 
 
 
 

                 (25) 

 

Applying 𝑄𝑑 = 𝐸[𝑤𝑘𝑤𝑘
𝑇] , the covariance of process 

noise Q is obtained in terms of IMU characteristics, 

 

𝑄𝑘 = 𝐺 

[
 
 
 
 
𝜎𝑎𝑐𝑐,𝑠𝑡𝑑

2 𝐎𝟑 𝐎𝟑 𝐎𝟑

𝐎𝟑 𝜎𝑔𝑦𝑟,𝑠𝑡𝑑
2 𝐎𝟑 𝐎𝟑

𝐎𝟑 𝐎𝟑 𝜎𝑎𝑐𝑐,𝑟𝑤
2 𝐎𝟑

𝐎𝟑 𝐎𝟑 𝐎𝟑 𝜎𝑔𝑦𝑟,𝑟𝑤
2

]
 
 
 
 

𝐺𝑇Δ𝑡  

       = 𝐺𝑄𝑑𝐺𝑇𝛥𝑡                       (26) 

 

where 𝜎𝑠𝑡𝑑 means the standard deviation of white noise 

and 𝜎𝑟𝑤  is the random walk in discrete-time. 𝛥𝑡 is the 

sampling time between IMU measurements. 

 

2.2.2. Measurement Model 

Considering a general scenario of mounting GNSS and 

SINS on a vehicle, a lever arm 𝑙𝑔, between the IMU and 

the GNSS antenna, exists in most cases. This lever arm 

directly affects the position measurement, and also 

influences on the velocity measurement, depending on 

the angular rates of motion. Then, the difference between 

the SINS solution and the GNSS measurement can be 

represented with lever arm 𝑙𝑔 

 

𝑧 = [
𝑝𝑔𝑛𝑠𝑠

𝑛

𝑣𝑔𝑛𝑠𝑠
𝑛 ]                 (27) 
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�̂� = [
𝑝𝑛 + 𝐶𝑏

𝑛𝑙𝑔
𝑣𝑛 + 𝐶𝑏

𝑛𝜔𝑏𝑛
𝑛

×
𝑙𝑔

]                (28) 

 

where z is GNSS position and velocity measurement 

from the receiver, ẑ is the estimated measurement with 

antenna lever arm compensation. The error of estimated 

position and velocity becomes 

 

𝛿𝑧 = [
𝑝𝑛 + 𝐶𝑏

𝑛𝑙𝑔 − 𝑝𝑔𝑛𝑠𝑠

𝑣𝑛 + 𝐶𝑏
𝑛𝜔𝑏𝑛

𝑛
×
𝑙𝑔 − 𝑣𝑔𝑛𝑠𝑠

]               (29) 

 

When all of the error states 𝛿𝑥  have exact values, the 

difference between �̂� and 𝑧, is expected to be zero. Thus, 

𝛿𝑧  becomes the measurement error itself.  

Substituting equations (8)-(15) into (29) and taking the 

derivative of the measurement error 𝛿𝑧, with respect to 

the state vector 𝛿𝑥, the measurement matrix H becomes, 

 

𝐻 =                  (30) 

[
I3 O3 �̂�𝑏

𝑛𝑙𝑔×
�̂�𝑏

𝑛𝑇
O3 O3 �̂�𝑏

𝑛

O3 I3 −[�̂�𝑏
𝑛(𝑙𝑔 × �̂�𝑏𝑛

𝑛 )]
×

O3 −�̂�𝑏
𝑛𝑙𝑔×

�̂�𝑏
𝑛�̂�𝑏𝑛

𝑛
×

] 

 

while the high order terms are neglected under the small 

error assumption. 

The integration process of SINS and GNSS is slightly 

modified from the standard Kalman filtering sequence. 

Since the update rate of GNSS is much slower than that 

of the IMU, the correction step is only performed when 

GNSS provides measurements, while several prediction 

steps are processed using IMU measurements, during the 

GNSS interval. 

 

Table 1. Update sequence for multi rate measurements. 

IMU  

measurement 

 

�̂�𝑘
− = Φ�̂�𝑘−1

−     
𝑃𝑘

− = Φ𝑃𝑘−1
+ Φ𝑇 + 𝐺𝑄𝑑𝐺𝑇   

 

GNSS 

measurement 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1  

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘�̂�𝑘
−)  

𝑃𝑘
+ = (𝐈 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−(𝐈 − 𝐾𝑘𝐻𝑘)  

  +𝐾𝑘𝑅𝑘𝐾𝑘
𝑇  

 

3. MISALIGNMENT ESTIMATION  

The position, velocity and attitude estimations from SINS 

are resolved in the IMU coordinate, not in the vehicle 

body frame. In this section, an estimation method for the 

misalignment angles between the IMU and the vehicle 

body frame is introduced. 

In this section, two models are introduced and fused with 

SINS solutions via Kalman filtering, in which the state is 

three misalignment angles 𝛾, which satisfies 𝐶𝑏
𝑣 ≈ [𝐈 +

𝛾×]�̂�𝑏
𝑣 . It is assumed that misalignment 𝛾  has small 

values, with proper coarse initial alignment. In this paper, 

the fast-optimal attitude matrix (FOAM) method is 

implemented to initialize coarse alignments (Markley, 

1993).  

 

3.1. Non-holonomic Constraint Model  

 
In the case of land vehicles, the motion on a surface is 

restricted by non-holonomic constraints. When the 

sideslip angle of vehicle is negligible, the axle without 

steering should not move sideways, and all wheels should 

maintain contact with the ground. Under these constraints, 

the virtual measurement of the velocity of a rear axle can 

be derived as 

 

𝑣𝑛ℎ𝑐
𝑣 = 𝐶𝑏

𝑣𝑣𝑏 + 𝐶𝑏
𝑣𝜔𝑛𝑏

𝑏 × 𝑙𝑜 ≈ [
𝑣𝑜𝑑𝑜

0
0

]              (31) 

 

where 𝑙𝑜 stands for the distance vector between the IMU 

and the rear axle center, which is unknown for most cases. 

Since non-holonomic constraint is regulating the motion 

of the rear axle, it is required to estimate the odometry 

lever arm as well as the misalignment angles 

simultaneously. Hence, in-motion alignment algorithms 

based on NHC require additional velocity measurement 

for lever arm estimation such as an odometer (Xue et al., 

2017). 

However, when using NHC to estimate misalignment 

angles, there is a lack of observability because the Euler 

angle 𝜙  is irrelevant to the measurements (Wu et al., 

2012, Lee et al., 2012). Expanding the rotational matrices 

with the Euler angle, Equation (31) becomes  

 

𝐶𝑣
𝑏𝑣𝑜𝑑𝑜 = [

cos 𝜃𝑏
𝑣 cos𝜓𝑏

𝑣

cos 𝜃𝑏
𝑣 sin 𝜓𝑏

𝑣

−sin 𝜃𝑏
𝑣

] 𝑣𝑜𝑑𝑜 = 𝑣𝑏 + 𝜔𝑛𝑏
𝑏 × 𝑙𝑜      (32) 

 

Thus, roll misalignment 𝜙𝑏
𝑣 is unobservable regardless of 

the motion of vehicle. 

In the same manner as in chapter 2, Equation (31) can be 

rewritten for small errors 

 

𝛿𝑣𝑛ℎ𝑐
𝑣 = [𝐈 − 𝛾×]𝐶𝑏

𝑣𝑣𝑏 + [𝐈 − 𝛾×]𝐶𝑏
𝑣𝜔𝑛𝑏

𝑏 × (𝑙𝑜 + 𝛿𝑙𝑜) 

     = 𝑣𝑛ℎ𝑐
𝑣 − 𝐻𝑛ℎ𝑐𝛿𝑥                                              (33) 

𝐻𝑛ℎ𝑐 = [�̂�𝑏
𝑣𝑣𝑏�̂�𝑏

𝑣𝑇
− 𝑙𝑜×�̂�𝑏

𝑣𝜔𝑛𝑏
𝑏 �̂�𝑏

𝑣𝑇
�̂�𝑏

𝑣𝜔𝑛𝑏
𝑏 �̂�𝑏

𝑣𝑇]    (34) 

 

where 𝛾 is the misalignment rotation matrix of the IMU 

with respect to the vehicle body frame, 𝛾 = [𝜙𝑏
𝑣, 𝜃𝑏

𝑣 , 𝜓𝑏
𝑣], 

𝛿𝑙𝑜 is an odometer lever arm vector in the vehicle body 

frame and 𝛿𝑥  is the error state for misalignment 

estimation, 𝛿𝑥 = [𝛾 𝛿𝑙𝑜]. 
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3.2. Planar Dynamics Model  

 
The sufficient condition of the NHC model is only valid 

for cars moving at low speed without tire slip. Thus, to 

maintain the estimation performance in high speed or 

high acceleration scenarios, a new approach is required. 

Without considering the suspension movement, the 

vehicle motion on a surface can be represented as the sum 

of the translation on a plane and the rotation about the   

axis perpendicular to the plane. 

 

 
Figure 2. Motion of vehicle on surface 

 

In a short period of motion, the centrifugal force, toward 

the instantaneous center of rotation, can be represented 

with the angular rate and magnitude of the velocity. As 

shown in Figure 2, the direction change of the velocity 

contains the slip rate �̇�, so the centrifugal force also has 

a relationship with �̇�. This can be seen in Figure 3, where 

the black line represents the centrifugal force from the 

computer simulation, and the red and blue lines represent 

the centrifugal forces reconstructed from the motion with 

or without considering the slip rate. 

 

 
Figure 3. Planar acceleration reconstructed from motion 

of vehicle with sideslip 

A surface can be treated as a plane locally during the 

short-term motion. Then, the specific force aligned with 

the direction of the velocity in the vehicle body frame can 

be approximated as follows 

 

�̇�𝑡𝑎𝑛 =
𝑣𝑛

|𝑣𝑛|
⋅ 𝑓𝑏

𝑛 ≈ |�̇�𝑛|                 (35) 

 

and the specific force toward the instantaneous center of 

rotation is given by 

 

�̇�𝑛𝑜𝑟 = −�̇̂�|𝑣𝑛|                 (36) 

 

where �̂� is estimated sideslip angle at the point of IMU, 

defined as �̂� = tan−1(
�̂�𝑦

𝑣

�̂�𝑥
𝑣)  with the velocity in vehicle 

body frame �̂�𝑣 = �̂�𝑏
𝑣𝑣𝑏 . Similarly, the angular rate 

resolved in the planar coordinate becomes 

 

𝜔𝑏𝑖𝑛𝑜𝑟 = |𝜔𝑛|                 (37) 

 

𝜔𝑏𝑖𝑛𝑜𝑟  only has the value along the binormal axis, since 

it is assumed that the vehicle lies on a plane locally. 

However, the derivative of the velocity in the vehicle 

body frame is 

 

𝑣�̇� = 𝐶𝑏
𝑣(𝑎𝑏 − 𝐶𝑛

𝑏𝑔𝑛 − 𝜔𝑛𝑏
𝑏 × 𝑣𝑏)               (38) 

 

Now, based on above assumptions (35), (36) and (37), 

the errors on virtual measurements of specific force and 

angular rate on vehicle body frame is given by 

 

𝛿𝑣�̇� = [𝐈 − 𝛾×]�̂�𝑏
𝑣(𝑎𝑏 − 𝐶𝑛

𝑏𝑔𝑛 − 𝜔𝑛𝑏
𝑏 × 𝑣𝑏) 

−�̂�× [

|𝑣𝑛|̇

�̇̂�|𝑣𝑛|
0

]     (39) 

𝛿𝜔𝑣 ≈ [𝐈 − 𝛾×]�̂�𝑏
𝑣𝜔𝑛𝑏

𝑏 − [
0
0

|𝜔|
]               (40) 

 

where �̂�× is the transform matrix, rotating �̂� about the z 

axis of the vehicle body frame. 

The corresponding matrix derivative of (39) and (40), 

with respect to the misalignment 𝛾, is as follows 

 

𝐻𝑝𝑙𝑎𝑛𝑎𝑟   =   [
 [�̂�𝑏

𝑣(𝑎𝑏   −  𝐶𝑛
𝑏  𝑔𝑛   −  𝜔𝑛𝑏

𝑏   × 𝑣𝑏)]
×

�̂�𝑏
𝑣𝜔𝑛𝑏

𝑏
×
�̂�𝑏

𝑣𝑇 ]

𝑇

 (41) 

 

With the virtual measurements (33) and (39), a linear 

Kalman filter is formulated to estimate the misalignment 

angles. The misalignment KF introduced in the previous 

section has 6 state variables, 3 misalignment angles 𝛾 and 

odometer lever arm error δ𝑙𝑜 . However, applying the 

planar dynamics model, odometry lever arm error δ𝑙𝑜 is 
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fully isolated from the estimation process because the 

measurement model (41), does not contain additional 

states more than misalignment angles 𝛾. 

The misalignment KF is updated when there is a SINS 

update with new IMU measurements. The solution of 

SINS is basically the result of the integrations. Thus, the 

magnitude of states does not drastically change. However, 

when the measurement update occurs with new GNSS 

measurement, the estimated state changes significantly 

over a short period of time. This gap between two 

successive states results in an irrational value of slip rate 

�̇̂� . In order to handle the potential instability, the 

misalignment estimator re-initializes its states when the 

solution of SINS has been updated from the GNSS 

measurement. 

4. SIMULATION AND EXPERIMENT RESULTS  

In this section, simulation and real vehicle test are 

performed to evaluate the estimation performance of the 

suggested algorithm. 

 
4.1. Simulation Results  

 

Before moving on to the field test, a simulation based on 

CarSim and MATLAB was performed to ensure the 

stability and performance of the suggested algorithm. 

GNSS measurements are replaced with local positions 

and the velocity in the reference frame; proper Gaussian 

noise is added to emulate real GNSS measurements. 

A low cost IMU has an output error that is a combination 

of bias, sensitivity shift and noise. In this simulation, a 

sensor error model considering bias and white noise is 

implemented. The parameters of the sensor noise follow 

those of typical consumer grade IMU (Gebre-Egziabher, 

2004). 

 

Table 2. Simulated sensor geometry 

 

Table 3. Simulated noise parameters 

In order to show the differences between NHC and the 

suggested method, a closed loop track is chosen so as to 

maintain harsh driving during the entire simulation. 

Although the acceleration is bounded to a value under 

0.7g, the sideslip occurs on the rear axle, which violates 

NHC.  

 
Figure 4. Simulation track layout 

 
Figure 5. Slip on rear axle center 

 

The simulation results of the misalignment estimation are 

illustrated in Figures 6-8. Both the NHC and the 

suggested methods are implemented using the same data. 

The NHC method converges to wrong values of yaw and 

pitch misalignment, whereas roll misalignment is not 

observable, as described in the previous section. 

The suggested method yields enhanced performance 

compared with the conventional NHC method. The roll 

misalignment, now can be observed, and estimation 

errors of misalignment angles are reduced under harsh 

maneuvers.  

Additionally, the proposed method can operate with roll 

and pitch angles when the vehicle stops, whereas NHC 

methods totally lose their observability when there is no 

motion. As can be seen in Equation (39), the virtual 

measurement 𝛿𝑣�̇�  contains gravitational components, 

even though |𝑣𝑛|̇  and |𝑣𝑛| are zero.  

Antenna lever arm X: 0, Y: 0.4, Z: 0.2 m 

Odometer lever arm X: -1.8, Y: 0, Z: 0 m 

IMU Misalignment Roll: 0.1, Pitch: -0.1, Yaw: 0.2 rad 

Position accuracy 2.55 ( 3.0 CEP ) m 

Velocity accuracy 0.2 m/s 

Accelerometer 
Noise 

Bias 

0.1 

[0.2, -0.1, 0.2] 
m/s2 

Gyro 
Noise 

Bias 

0.01 

[-0.01, 0.008, 0.004] 
rad/s 
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Figure 6. Yaw misalignment estimation (simulation) 

 
Figure 7. Pitch misalignment estimation (simulation) 

Figure 8. Roll misalignment estimation (simulation) 

 

4.2. Experimental Results 

 
A field test was performed to verify the estimation 

performance under real conditions with uncertainties. 

Oxts RT3100 is equipped in the test vehicle as a reference 

measurement. A Ublox M8U GNSS receiver and TDK 

ICM-42605 IMU are used in the test. The update rate of 

the IMU is set to 200Hz, while the update rate of the 

GNSS receiver is set to 10Hz. 

In order to align the IMU along the reference sensor and 

add artificial misalignment, a high-precision rotational 

stage is used. The true misalignment angles used in the 

experimental setup are shown in Table 4. 

 

Table 4. Misalignment angles in tests 

 Yaw(rad) Pitch(rad) Roll(rad) 

Vehicle-RT 0.02 -0.0471 0.0157 

RT-IMU 0.1745 0 0 

Vehicle-IMU 0.1945 -0.0471 0.0157 

 

The misalignment between the vehicle and RT3100 is 

obtained using fine calibration on a near-level surface. 

The rotational stage is set to additional 10 degrees in yaw 

angle(0.1745 in radian) for target IMU. 

  

 
Figure 9. Sensors with rotational stage used in test 

 

The experiment was performed at the Taebaek Speedway 

in S. Korea, which is a small race track with 2.5km length.  

 

 
Figure 10. Test track layout (Taebaek Speedway) 
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Note that the experimental data have much longer lengths 

than those of the simulated data used in the previous 

section. Due to the surrounding environment, there is a 

shaded area in the route, where GNSS receiver cannot 

lock onto enough satellite for a position fix. Thus, error 

covariances of measurement have higher values than 

those of simulated data, which means that the system 

requires a longer time for stabilization. 

Figures 11-13 present the results of misalignment angle 

estimation, comparing the NHC and suggested methods. 

As was seen before in the simulation results, the 

suggested model gives better performance for yaw and 

pitch estimation. 

Figure 13 shows the roll misalignment estimation. Both 

the suggested and NHC methods have estimation errors, 

but the state covariance of the suggested method tends to 

find a steady state value, whereas that of the NHC method 

floats around the initial value.  

 

 
Figure 11. Yaw misalignment estimation (real vehicle) 

 

 
Figure 12. Pitch misalignment estimation (real vehicle) 

 

 
Figure 13. Roll misalignment estimation (real vehicle) 

 

Even though the test vehicle generates severe suspension 

motion during the experiment maneuvers, which violates 

the assumption presented in Section 3, the proposed 

alignment method provides acceptable accuracy under 

highly dynamic conditions. 

However, the initial response of the experimental results 

differs from the simulated results. In the simulation, each 

misalignment angle tends to converge from the beginning 

of estimation, while the experimental results show some 

fluctuations. These fluctuations are considered to be 

caused by initial errors of the SINS attitude. Because the 

misalignment estimator uses attitude to construct virtual 

measurements in vehicle body frame, the global attitude 

error can directly affect the performance of misalignment 

angle estimation. 

 

 
Figure 14. Vehicle roll and pitch angle. 

 

Corresponding attitude estimation results for vehicle roll 

and pitch angles are presented in Figure 14. Since the 

suggested method estimates sensor bias as well as 

position, velocity, and attitude simultaneously, the error 

seems fluctuating within stabilization period, while the 

error decreases as other states, such as sensor bias, 



Author 

 

converge. After misalignment estimation is settled, 

compensated attitude also follows the reference, with 

RMSE less than 1.5°.  

As demonstrated in these results, the online misalignment 

estimation based on the planar dynamics model shows 

improved performance compared to the non-holonomic 

constraint method, regardless of the motion of the target 

system.  

5. CONCLUSION 

This paper has shown the feasibility of a novel mis-

alignment estimation method for SINS on land vehicles 

using IMU and GNSS integration. The proposed method 

uses simple planar dynamics constraints to obtain IMU 

to vehicle body frame misalignment. As mentioned 

earlier, the proposed method can estimate misalignment 

angles without non-holonomic restrictions, including roll 

observation. 

A real environment experiment on a race track was 

performed to demonstrate the estimation performance 

under dynamic maneuvers with consumer grade sensors. 

The results show an improvement of the misalignment 

estimation compared with conventional approaches 

regardless of motion constraints or prior knowledge of 

vehicle model parameters.  
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