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Sensor fault detection and isolation using a support
vector machine for vehicle suspension systems

Kicheol Jeong, Seibum B. Choi, Member, IEEE and Hyungjeen Choi

Abstract—In this paper, a means of generating residuals based
on a fault isolation observer (FIO) and evaluating them using a
support vector machine (SVM) is proposed. The proposed FIO
generates the isolated residual signals and they shows robust
performance regardless of unknown road surface conditions. This
FIO is designed using a linear time-invariant quarter-car model.
While quarter-car models have the form of a bilinear system,
in this study the authors convert this bilinear model to a linear
model with model uncertainty based on the assumption that the
control input is limited. Therefore, the proposed FIO can be used
regardless of the type of damper or controller. Furthermore, the
SVM based residual evaluator without empirically set thresholds
is used to evaluate the generated residuals. The proposed fault
diagnosis algorithm is expected to reduce the effort required in
the design procedure and it can also detect a small amount of
sensor fault that cannot be detected by traditional limit-checking
method. The proposed fault diagnosis algorithm is verified using
low cost production accelerometers and a quarter-car test rig.
Consequently, the fault diagnosis algorithm proposed in this
paper can detect the faults of a sprung mass accelerometer and
an unsprung mass accelerometer independently, and this algo-
rithm can reduce the effort required in designing the diagnosis
algorithm greatly.

Index Terms—fault detection and isolation, support vector
machine, eigenstructure assignment, vehicle suspension, sensor
fault diagnosis

I. INTRODUCTION

THE suspension system of modern vehicles is an essential
component to guarantee the ride quality, stability and

handling performance of the vehicle. In terms of the control
method, the vehicle suspension system can be classified as pas-
sive, semi-active, or active suspension. The passive suspension,
which does not utilize any control input, is generally used in
the automotive industry. However, this type of suspension can-
not satisfy the desired ride quality and handling performance
since these two characteristics have a trade-off relationship.
To overcome this limitation, semi-active and active suspension
systems are increasingly used in the automotive industry. Ac-
tive suspension achieves control objectives using an additional
actuator such as a motor. Although this type of suspension
can provide high performance, it is not widely used due to
excessive energy consumption, load increase, and packaging
issues. In contrast, majority of automotive manufacturers adopt
semi-active suspensions that adjust the damping characteristics
of the suspension to solve packaging and energy issues. Since
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the semi-active suspension is widely adopted in the automotive
industry, many researchers have conducted studies to enhance
the performance of semi-active suspension systems [1]–[10].
These control algorithms improve the ride quality and stability
of the vehicle. However, if a fault occurs on the control sys-
tem components, it impacts vehicle performance and stability
negatively. In particular, since the vehicle suspension control
system consists of many sensors and actuators, there is a
high probability that the system will collapse due to faults.
Therefore, in order to improve the performance and stability
of the vehicle, a fault diagnosis algorithm as well as a control
algorithm is required. In recent years, the electronization of
automobiles is a trend in the global automobile industry, and
various sensors are embedded in the vehicle. For this reason,
all vehicle manufacturers have implemented fault diagnosis
algorithms for vehicle sensor systems.
Today, most automotive manufacturers adopt the limit-
checking method [11] which determines sensor faults based on
predetermined sensor signal thresholds. However, this method
has poor fault detection performance since the sensor signal
threshold is set high to ensure robustness of the fault diagnosis
algorithm.
Therefore, a model-based fault diagnosis method [11]–[16]
using a physical model of a system has recently been studied
to design a robust and sensitive fault diagnosis algorithm. A
model-based fault diagnosis algorithm consists of a residual
generator that generates a fault-sensitive residual and a residual
evaluator that evaluates the residual signal.
Recently, model-based fault diagnosis algorithms for auto-
motive suspension systems have been extensively studied. In
particular, many studies have been conducted using a quarter-
car model which is mainly used for the design of a suspension
control algorithm. In general, quarter car suspension system
includes both the nonlinear characteristics of the damper and
unknown road input. Therefore, when designing a suspension
fault diagnosis algorithm, it is important to ensure robustness
against unknown road input and nonlinearity of the damper.
Recently, various methods have been proposed to achieve
these design objectives. Chamseddine [17] used a quarter-
car model based sliding mode observer to diagnose sensor
faults in the vehicle suspension system. Although the fault
diagnosis algorithm is robust to disturbance, an additional
sensor such as a displacement sensor is used instead of the
sensor configuration commonly used in commercial vehicles
[18]. Bornor [19] and Varrier [20] used the parity space
approach, a well-known model-based fault diagnosis method.
However, the residual generator constructed by the parity
space approach cannot guarantee robustness against modeling
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uncertainties. Alternatively, Kim [21] proposed a method of
diagnosing a sprung mass accelerometer based on a full-car
model, this method cannot diagnose a fault of unsprung mass
accelerometer and it is difficult to find roll dynamics properties
used in this paper.
In model-based fault diagnosis schemes, the residuals gen-
erated by a fault detection algorithm are not zero because
of model uncertainties, disturbances, and sensor noise that
are not considered. Therefore, the design of rational residual
evaluation algorithm is essential to the design of fault diag-
nosis algorithm. However, in most of the previous studies,
residual evaluation is performed using a fixed threshold de-
fined empirically. Although Kim [21] proposed an adaptive
threshold method, the form of the adaptive threshold was also
determined empirically. In addition, little research has been
carried out to diagnose fault of vehicle suspension system
using the sensor configuration of most vehicle produced today.
In order to overcome these limitations, this paper proposes a
robust quarter-car model based suspension sensor fault diagno-
sis algorithm for unknown road input and damping coefficient
changes. The quarter-car model of the semi-active suspension
is represented as a bilinear system [22] in which there is
coupling of the unmeasured state and the control input. In this
paper, this bilinear model is converted into a linear model with
unknown parametric uncertainty to design a fault detection and
isolation (FDI) algorithm using the eigenstructure assignment
method. The proposed FDI algorithm can generate residuals
using only the sensors built into the vehicle, regardless of the
type of controller or damper. In addition, this paper also uses
the support vector machine (SVM) [23]–[26], a widely used
machine learning technique, to evaluate residual signals. In
this paper, the feature required for the SVM learning process is
created by model-based fault diagnosis technique. This method
allows an accurate residual evaluation while reducing the effort
for threshold tuning to evaluate residuals.
This paper is organized as follows. In section II, faults in
the sprung mass accelerometer and the unsprung mass ac-
celerometer are represented by a state space linear model.
In this section, sensor faults are converted to pseudo-actuator
faults. In section III, FDI algorithm consisting of a fault
isolation observer (FIO) based residual generator and SVM
based residual evaluator is presented. The eigenvalues of the
proposed FIO are assigned considering the performance index
of the fault diagnosis algorithm in a specific frequency region.
In addition, the residuals generated by FIO based residual
generator are evaluated using SVM. Section IV presents exper-
imental verification using a quarter car test rig. In conclusion,
this paper shows that the proposed FDI algorithm provides
robust performance under various road inputs.

II. MODELING FAULTS OF THE VEHICLE SUSPENSION

In this section, faults in the sprung mass accelerometer and
unsprung mass accelerometer are demonstrated by the quarter-
car model. To apply the eigenstructure assignment method,
which is a linear fault diagnosis technique, this bilinear system
is transformed into a linear system containing bounded model
uncertainty. This conversion is performed under the reasonable

TABLE I
QUARTER-CAR MODEL PROPERTIES

Symbol Quantity Value
ms Sprung mass 374.03 kg
mu Unsprung mass 52.25 kg
ks Spring coefficient 22080 N/m
kt Tire vertical stiffness 248193 N/m

cn
Damper nominal damping
coefficient 1562 Ns/m

cu Control input 0≤ cu ≤6096.77 N/m

assumption that the damping coefficient is limited. In addition,
in order to design a diagnostic observer, faults in a sprung
mass accelerometer and an unsprung mass accelerometer are
transformed into a pseudo-actuator faults.

A. Quarter-car suspension model

A quarter-car suspension model has been widely used for
suspension control studies due to the simplicity and accuracy
of the model. The governing equations of a quarter-car sus-
pension model such as that in Fig. 1 are as follows:

Fig. 1. Quarter-car model of a vehicle suspension.

msz̈s = −ks(zs − zu)− (cn + cu)(żs − żu) (1)

muz̈u = −ks(zu−zr)−(cn+cu)(żu− żr)−kt(zu−zr) (2)

where ms is a sprung mass, mu is an unsprung mass, ks is a
spring coefficient, cn is a nominal damping coefficient, cu is a
control input, zs and zu are displacement of sprung mass and
unsprung mass and zr is the road displacement. As in previous
studies, the damping effect of tires is neglected. Table I lists
the quarter-car model properties.
This governing equations can be expressed as a bilinear
system. The state-space representation of this system is given
as

ẋ = Ãx+Aux · cu + Er żr
y = C̃x+ Cux · cu

(3)

where x =
[
zs − zu żs zu − zr żu

]T
,

Ã =


0 1 0 −1

−ks/ms −cn/ms 0 cn/ms

0 0 0 1
ks/mu

cn/mu −kt/mu −cn/mu

,
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Au =


0 0 0 0
0 −1/ms 0 1/ms

0 0 0 1
0 1/mu 0 −1/mu

, y =
[
z̈s z̈u

]T
,

C̃ =

[
−ks/ms −cn/ms 0 cn/ms

ks/mu
cn/mu −kt/mu −cn/mu

]
,

Cu =

[
0 −1/ms 0 1/ms

0 1/mu 0 −1/mu

]
and Er =

[
0 0 −1 0

]T
.

In the real world, the nominal damping coefficient cn of a
vehicle suspension has high nonlinear and hysteresis charac-
teristics. In addition, according to (3), the control input is
combined with a state variable, which is unknown. Further-
more, the damping control command and the actual damping
control input are not the same due to physical limitations
such as the actuator bandwidth. These system characteris-
tics make designing fault diagnosis algorithms and analyzing
fault diagnosis performance difficult. Although bilinear fault
diagnosis algorithms have been studied [27], it is difficult
to obtain robustness against damping coefficient uncertainty
in such fault diagnosis algorithms. Therefore, in this paper,
this bilinear system is transformed into a linear system with
bounded parametric uncertainty. This transformation is based
on a reasonable assumption that the damping coefficient of
vehicle suspension is limited. According to Table I, the overall
damping coefficient cu+cn is bounded between cmax (1562.00
Ns/m) and cmin (7658.77 Ns/m). Consequently, the bilinear
system (3) can be represented as

ẋ = Ax+ Eud+ Er żr
y = Cx+ Fud

(4)

where A =


0 1 0 −1

−ks/ms −c0/ms 0 c0/ms

0 0 0 1
ks/mu

c0/mu −kt/mu −c0/mu

,

C =

[
−ks/ms −c0/ms 0 c0/ms

ks/mu
c0/mu −kt/mu −c0/mu

]
,

Eu =
[

0 −cd/ms 0 cd/mu

]T
,

Fu =
[
−cd/ms

cd/mu

]T
, d = ∆Gx, |∆| ≤ 1,

G =
[

0 1 0 −1
]
.

where c0 = (cmax + cmin)/2 and cd = (cmax − cmin)/2.
Note that this linear system has bounded uncertainty since ∆
and system state x are bounded. Consequently, it is possible
to apply linear fault diagnosis techniques to the transformed
system. It is noteworthy that this converted model can be used
regardless of the type of damper controller and the hysteresis
characteristics of the damper. The proposed linear model can
be obtained under the assumption that cmax and cmin are
known variables.

B. Pseudo-actuator fault modeling

According to the quarter-car model obtained in the above
subsection, the fault model of the vehicle suspension can be
represented as

ẋ = Ax+ Eud+ Er żr + Ẽf f̃

y = Cx+ Fud+ F̃f f̃
(5)

where f̃ =
[
fs fu

]T
, fs is the fault of the sprung

mass accelerometer and fu is the fault of the unsprung mass
accelerometer.
Note that f̃ is an unknown fault vector that represents all
possible types of sensor faults and should be zero on a healthy
system. It is assumed that Ẽf is zero, since the actuator faults
are not considered in this paper. In (5), F̃f is modelled by
an identity matrix. In accordance with [28]–[30], the sensor
fault model can be represented by the pseudo-actuator model,
without loss of generality, such as

ẋ = Ax+ Eud+ Er żr + EfsFs + EfuFu
y = Cx+ Fud

(6)

where Fs =
[
ḟs −fs

]T
, Fu =

[
ḟu −fu

]T
, Efs =[

js Ajs
]
, Efu =

[
ju Aju

]
, js,u is the solution to

F̃fs,fu = Cjs,u. Note that the derivative of the sensor fault
signal is not important, and therefore it is considered another
disturbances. In conclusion, the final form of the fault model
of vehicle suspension is represented as

ẋ = Ax+ Eaugdaug + Eff
y = Cx+ Faugdaug

(7)

where Eaug = [ Eu Er js ju ], Ef = [ Ajs Aju ],
Faug = [ Fd 0 0 0 ], daug =

[
d żr ḟs ḟu

]T
, f =[

−fs −fu
]T

.

III. FAULT DETECTION AND ISOLATION ALGORITHM

In this section, the proposed model-based FDI algorithm is
designed. Generally, the model-based FDI algorithm consists
of a residual generator that generates a residual signal indica-
tive of a fault and a residual evaluator that determines whether
a fault occurs based on the residual. First, the FIO based
on the quarter-car model, developed in the previous section,
is designed using the eigenstructure assignment method. The
FIO generates a residual signal that indicates the fault of the
sprung mass accelerometer and the unsprung mass accelerom-
eter, respectively. Next, the SVM based residual evaluator is
proposed. This residual evaluator can reduce the time and
effort required for traditional threshold tuning. In conclusion,
the proposed FDI algorithm is implemented as shown in Fig.
2.

Fig. 2. Schematic description of the FDI algorithm.
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A. Fault isolation observer based residual generator design

In this subsection, a fault isolation observer is designed to
generate residuals for each sensor fault. The form of the fault
isolation observer proposed in this paper is given as

˙̂x = Ax̂− L(y − Cx̂)
r = V (y − Cx̂)

(8)

where x̂ is the estimated state, L is the observer gain, r is the
residual vector, and V is the post filter. Assume that the error
state is defined as e = x− x̂. The error dynamics is then given
as

ė = (A+ LC)e+ Eff + (Eaug + LFaug)daug
r = V Ce+ V Faugdaug

(9)

According to (7) and (8), the transfer matrix from the fault
vector f to the residual vector r is given as

Grf (s) = V C(sI − (A+ LC))−1Ef (10)

The purpose of the fault isolation observer is to diagonalize
the transfer matrix. Therefore, if one fault occurs, only one
residual signals is affected. In order to design such a fault
isolation observer, the eigenstructure assignment method
is used in this paper. Using the eigenstructure assignment
method, the observer gain L and the post filter V are obtained
by the following theorem [31], [32].

Theorem 1: If a system (7) fulfilled assumption described
below,
• Assumption 1: (A,C) is observable
• Assumption 2: rank(C) is equal to the number of mea-

surements
• Assumption 3: rank(P = CEf ) is equal to the number

of faults
• Assumption 4: The system (A,Ef , C, 0) is minimum

phase
the observer gain L and post filter V are then given as

L = (EfΛ−AEf )(P )† +R(I − PP †) (11)

V = MP † + S(I − PP †) (12)

where Λ = diag(λ1, λ2), λi < 0, M = diag(m1,m2) and
P † = (PTP )−1PT is the Moore-Penrose pseudoinverse of
matrix P . In addition, R and S are arbitrary matrices.
As a result, if there exist L and V , then the transfer matrix
Grf is given as

Grf (s) =

[
gs 0
0 gu

]
(13)

where gs = m1

s−λ1
and gu = m2

s−λ2
.

According to (7), the number of faults and the number of
measurements are equal. Thus, the matrix P is square and
invertible, and therefore (I − PP †) is a zero matrix. This
means that L and V are uniquely determined when Λ and
M are given. It is noteworthy that since the fault isolation ob-
server does not satisfy perfect fault isolation with an unknown
input decoupling (PFIUID) condition (rank

[
Grd Grf

]
=

rank(Grd) + rank(Grf )), the observer cannot decouple the
unknown disturbance Eaug . In conclusion, the problem of

designing robust fault isolation observers is the same as
determining Λ and M to make the observer robust against
unknown disturbances. At the same time, the fault sensitivity
performance should be considered. This paper uses the H−
and H∞ performance indexes [33]–[36] to evaluate the per-
formance of FIO. These performance indexes are defined as

‖Grf (s)‖− = inf
ω∈[ω1,ω2]

σ−(Grf (jω)) (14)

‖Grd(s)‖∞ = sup
ω∈[ω1,ω2]

σ−(Grd(jω)) (15)

where σ− is the largest singular value of Grd, σ− is the small-
est singular value of Grf , and ω1 and ω2 are the minimum and
maximum frequencies of the frequency range of interest. Note
that ‖Grf (s)‖− denotes the minimum influence of the fault
on the residual signal over the frequency range of interest.
Similarly, ‖Grd(s)‖∞ denotes the maximum influence of the
disturbance on the residual signal over the frequency range
of interest. Generally, these two performance indexes have a
trade-off relationship. Therefore, it is impossible to design an
FDI algorithm that is both robust to disturbances and sensitive
to faults. However, if the performance of the FDI algorithm is
defined as H−/H∞, then an optimized FDI algorithm using
this performance index can be designed. In this paper, the
eigenstructure Λ is set considering the performance index in
the frequency range from 0.2hz to 20hz where the driving
quality is mainly evaluated. Fig. 3 and Fig. 4 show the
performance indices of residual 1 and residual 2 obtained
by theorem 1 and the quarter-car model properties in Table
I. Based on these results, the eigenstructure Λ is defined as
diag(−1,−0.35) and M is defined as an identity matrix. As a
result, the observer gain L and the post filter V of the observer
based residual generator are as follows.

L =


0.0920 0.0027
−0.5368 0.1096
0.3697 0.1065
0.1289 −0.9628

 (16)

V =

[
−0.4632 −0.1096
−0.3682 −0.1062

]
(17)
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Fig. 3. Performance index for residual 1.
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B. Residual evaluation based on SVM

Ideally, if there are no faults, the residuals from the residual
generator have to be zero. However, in the real world there are
always unexpected model uncertainties, unknown inputs and
noise. Therefore, the residual evaluator is necessary to ensure
the robustness of the fault diagnosis algorithm. Most residual
evaluations are performed using fixed thresholds. However, it
takes a lot of effort to determine the thresholds for optimal
performance. Moreover, fixed thresholds are vulnerable to
model uncertainty and disturbance that are not considered.
Although an adaptive threshold concept was proposed in
some previous studies, designing adaptive thresholds is still
a difficult task.
Therefore, this paper proposes a SVM based residual evalua-
tion method. SVM is a kind of machine-learning algorithm
optimized for classification and requiring a small data set.
Therefore, it can be concluded that SVM is an appropriate
method to evaluate the residual signal. Fig. 5 shows the
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Fig. 5. Basic concept of support vector machine.

concept of the SVM classifier. In this figure, the positive
class (blue-o) and negative class (red-x) are separated by the
decision boundary. The decision boundary can be described as
a hyperplane, as follows:

f(x) = wT · x + b = 0 (18)

where x is a features of the data, w is the normal vector of the
hyperplane, and b is the bias factor. To classify the dataset, the
labels are assigned as yi = 1 for a positive class and yi = −1
for a negative class, where i = 1, 2, ..., N , N is the number
of data sets, and the hyperplane must satisfy the following
constraints:

f(xi) = 1 if yi = 1
f(xi) = −1 if yi = −1

(19)

These two constraints can be presented in a simple equation
as follows:

yi(w
T · xi + b) ≥ 1 (20)

SVM is based on the structural risk minimization principle
[25]. Therefore, it is necessary to solve the optimization
problem in order to find the optimal decision boundary having
the maximum classification margin. The classification margin
is described as the distance from the nearest dataset to the
hyperplane. In the SVM theory, the nearest dataset is named
a support vector. The distance r between the support vector
x and a point on the hyperplane xh is expressed as shown
below.

x = xh + r
w

‖w‖
(21)

f (xh) = 0 (22)

By substituting (21) and (22) into (18), the following equation
is obtained:

f(x) = wT ·x+ b = wT ·
(
xh + r

w

‖w‖

)
+ b = r ‖w‖ (23)

Therefore,

r =
f(x)

‖w‖
(24)

As a result, the problem of maximizing the distance r can be
expressed as follows.

min
w,b

1

2
‖w‖2 subject to (wT · x + b)y ≥ 1 (25)

To apply this theory in the real world, the noise and reliability
of the data set should be considered. Therefore, in most SVM
applications, a slack variable is assigned to handle errors in
the data set. Consequently, the optimal decision boundary can
be obtained by the following problem:

min
w,b

1
2 ‖w‖

2
+ C

N∑
i=1

ξi

subject to

{
(w · xi + b)yi ≥ 1− ξi

ξi ≥ 0

(26)

In addition, using the mathematical techniques such as the
Lagrangian multiplier and the Karush-Kuhn-Tucker (KKT)
condition [37], the optimization problem (26) can be converted
as follows [24]:

minL(w, b, ξ, α) =
1

2
‖w‖2

+ C

N∑
i=1

ξi − αiyi(wT · x + b− 1 + ξi) (27)
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Using the KKT condition to eliminate the duality gap,

∂L

∂w
= 0,

∂L

∂b
= 0 (28)

αi ≥ 0 for ∀i (29)

αi((w
T · xj + b)yj − 1) = 0 for ∀i (30)

Therefore,

w =

N∑
i=1

αiyixi,

N∑
i=1

αiyi = 0 (31)

Consequently, using (31) and (27), the quadratic optimization
problem is obtained by

maxL(α) =
N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjxi
Txj

subject toαi ≥ 0,
N∑
i=1

αiyi = 0

(32)

The above optimization problem can only be applied to clas-
sification problems with a linear decision boundary. However,
with kernel functions [25], a nonlinear decision boundary can
be designed while maintaining this concept. Based on the
kernel function, the optimization problem (32) can be rewritten
as

maxL(α) =
N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi,xj)

subject toαi ≥ 0,
N∑
i=1

αiyi = 0

(33)

In this paper, a residual evaluation is conducted by SVM
using different kernel functions such as linear, polynomial,
Gaussian RBF. In order to reduce the effect of sensor noise,
preprocessing such as low pass filtering is performed. The
feature for SVM learning consists of the mean and variance
of a scaled residual, which is commonly used in previous
machine learning applications. In the following section, the
residual evaluation performance of SVM is verified using well-
known performance measures for machine learning.

IV. EXPERIMENTAL VALIDATION

In this section, an experimental validation is conducted
using a quarter-car test rig. This section is organized as
follows. First, the performance of FIO proposed in this paper
is verified using experimental results. The experimental road
input consists of sine wave, sine sweep and rectangular wave
modes. Next, SVM learning is conducted using the sensor
signal and the residual signals obtained with the proposed FIO.
Finally, the performance of the residual evaluator is measured
using well-known machine learning performance indexes.

A. Experimental set-up

To verify the proposed FDI algorithm, a quarter-car test rig
is used, which is used widely to develop suspension control
systems in many previous studies. In this study, the front
suspension of a Hyundai Genesis Coupe (midsize coupe) is
used. In order to obtain actual states such as the suspension
displacement and relative velocity, a linear variable differential

TABLE II
EXPERIMENTAL SCENARIOS

Case Road input Frequency range of interest
1 Sine wave Low
2 Sine sweep Mid range
3 Rectangular wave High

transformer (LVDT) (SLS130) is attached to the suspension.
In addition, to ensure practicality of the proposed algorithm,
a MANDO accelerometer, which is actually used in the
Hyundai Genesis Coupe, is attached to a sprung mass and
an unsprung mass. The measuring range of the sprung mass
accelerometer is ±2g and the measuring range of the unsprung
mass accelerometer is ±50g.
The experimental validation is performed under three road
surfaces. First, a low frequency sine wave road test with an
elevation of +0.02 meter to -0.02 meter was performed to eval-
uate the performance of the proposed FDI algorithm in a low
frequency range. Nest, a sine sweep road test with an elevation
of -0.018 meter to +0.018 meter was performed. Finally, a
rectangular wave road test with an elevation of -0.02 meter
to +0.02 meter was performed to evaluate the performance
of the proposed FDI algorithm in a high frequency range.
The sensor faults are implemented with a data acquisition unit
consisting of Micro AutoBox, Matlab&Simulink and Lenovo
Thinkpad. Fig. 6 shows the experimental equipment and Table
II summarize the experimental scenarios to verify the fault
diagnosis performance. The physical characteristics of the
quarter-car test rig are listed in Table I.

Fig. 6. Overall experimental scheme.

B. Experimental results

1) Case 1 - Sine wave test: Fig. 7 shows the results of the
sine wave test. In this test scenario, a +0.5m/s2 fault signal
is added to the sprung mass accelerometer at four seconds
and this fault signal is also added to the unsprung mass
accelerometer at 17 seconds. To emphasize the performance of
the model-based fault diagnosis algorithms, this paper did not
consider fault signals such as signal loss that can be detected
by traditional limit checking methods. According to the test
results, it is verified that residual 1 responds only to a fault
in the sprung mass accelerometer. Likewise, the other residual
responds only to a fault of the unsprung mass accelerometer.
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(au) (b) Absolute value of residual 1 (r1) and residual 2 (r2).

This phenomenon appears prominently between four and 17
seconds in Fig. 7. In accordance with this experimental results,
it is confirmed that the observer gain (16) and the post filter
(17) obtained using theorem 1 make the fault transfer matrix
a diagonal matrix, as in (13). The experimental results show
that there is a slight response delay in the residual signal since
the signal preprocessing process such as low pass filtering.
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Fig. 8. Sine sweep test results for fault detection and isolation: (a) Raw sensor
signal of sprung mass accelerometer (as) and unsprung mass accelerometer
(au) (b) Absolute value of residual 1 (r1) and residual 2 (r2).

2) Case 2 - Sine sweep test: Fig. 8 shows the results of the
sine sweep test. In this test scenario, a +0.5m/s2 fault signal
is added to the sprung mass accelerometer at two seconds
and this fault signal is also added to the unsprung mass
accelerometer at seven seconds. Unlike the sine wave test in
case 1, the signal range of the unsprung mass accelerometer
is as large as ±30m/s2. The experimental results show that
residual 1 responds only to a fault of the sprung mass
accelerometer and residual 2 responds only to a fault of the
unsprung mass accelerometer. Fig. 8 shows that the residual 2
tends to increase finely between 0 and 7 seconds. This is due
to the initial sensor bias in the unsprung mass accelerometer.
This sensor bias is converted to a bias of residual 2.
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Fig. 9. Rectangular wave test results for fault detection and isolation: (a)
Raw sensor signal of sprung mass accelerometer (as) and unsprung mass
accelerometer (au) (b) Absolute value of residual 1 (r1) and residual 2 (r2).

3) Case 3 - Rectangular wave test: Fig. 9 shows the results
of the rectangular wave test. In this test scenario, a +0.5m/s2

fault signal is added to the sprung mass accelerometer at
three seconds and this fault signal is also added to the
unsprung mass accelerometer at nine seconds. In accordance
with the experimental results, it is verified that FIO has robust
performance against high frequency road input. As in case 2,
residual 2 showed a slight increase between 0 and 9 seconds
due to the initial sensor bias. This experimental results show
that the disturbance effect on the residual is attenuated as
compared with the low frequency road surface test such as case
1. This is because the fault transfer matrix (13) is in the form
of a first order low pass filter. In addition, the preprocessing
of the residual signal also reduces the effect of high frequency
disturbance.

C. Residual evaluation result

In this paper, the authors propose to evaluate the residual
signal obtained by FIO using the SVM classifier. This section
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presents and discusses the residual evaluation results obtained
using various SVM classifiers with different kernel functions.
The data set for learning the SVM classifier is obtained by
various experiments using quarter-car test equipment. Sensor
signals and residual signals obtained from various experiments
were classified as faulty data and healthy data respectively and
used for learning. In this paper, 189003 data sets were used
and the standard deviation and mean value of each data set
were chosen as the features to be used for SVM learning.
In order to verify the performance of the SVM based residual
evaluation, five-cross validation and the F0.5-Measure are
used. Generally, the fault diagnosis algorithm used in vehicle
systems should be designed to minimize false alarms where
faults are detected in the absence of actual faults. Therefore,
it is reasonable to use the F0.5-Measure, which emphasizes
precision rather than recall, to evaluate the performance of the
fault diagnosis algorithm. In this paper, various types of SVM
classifiers are constructed using Matlab & Simulink quadratic
programming solver.
Table III and Table IV show the classification results using

TABLE III
SVM CLASSIFIER PERFORMANCE OUTCOMES FOR RESIDUAL 1

Kernel function Kernel scale F0.5-Measure
Linear - 0.997
Quadratic - 0.997
Gaussian RBF 0.5 0.998
Gaussian RBF 2 0.999

TABLE IV
SVM CLASSIFIER PERFORMANCE OUTCOMES FOR RESIDUAL 2

Kernel function Kernel scale F0.5-Measure
Linear - 0.994
Quadratic - 0.996
Gaussian RBF 0.5 0.996
Gaussian RBF 2 0.997

SVM classifiers with various kernel functions. As presented
in the tables, the SVM based residual evaluator achieves
high accuracy. Since the initial bias is on the unsprung mass
accelerometer, the classification performance for residual 2 is
slightly lower than the classification performance for residual
1. Overall, the SVM classifier achieved high accuracy. In
order to investigate the effect of residuals on fault decision,
SVM leaning was conducted using only sensor signals with no
residuals. From the results of SVM leaning without residuals,
the SVM classifier accuracy is around 0.75. In conclusion,
it is confirmed that residuals have a positive effect on SVM
classifier learning.
Fig. 10 and Fig. 11 show confusion matrices of the SVM
classifiers for residual evaluation. These figures show that
as the nonlinearity of the decision boundary increases, false
positive error tends to increase. Generally, a nonlinear deci-
sion boundary exhibits higher accuracy than linear decision
boundaries, but over fitting can occur. In conclusion, the false
positive error in Fig. 10 and Fig. 11 is due to overfitting. As
mentioned above, the fault diagnosis algorithm used in vehicle
systems should be designed to minimize false positive errors.

In accordance with Fig. 10, neither the linear nor quadratic
SVM classifier exhibits false positive error.
Fig. 12 and Fig. 13 show the residual evaluation results of

Fig. 10. Confusion matrix of SVM classifiers for evaluation residual 1: (a)
Linear SVM (b) Quadratic SVM (c) Gaussian RBF SVM with Kernel scale
= 2 (d) Gaussian RBF SVM with Kernel scale = 0.5.

Fig. 11. Confusion matrix of SVM classifiers for evaluation residual 2: (a)
Linear SVM (b) Quadratic SVM (c) Gaussian RBF SVM with Kernel scale
= 2 (d) Gaussian RBF SVM with Kernel scale = 0.5.

the sine wave and sine sweep experiments. Note that these
experiments are conducted in order to verify the performance
of the SVM based residual evaluator. Therefore, the data sets
of these experiments are different from the learning data.
In these experiments, a +0.5m/s2 fault signal is added to
the sprung mass accelerometer at five seconds and this fault
signal is also added to the unsprung mass accelerometer at 10
seconds. According to the experimental results, false alarms do
not occur and error cases consist only of false negative error.
This false negative error is caused by the residual response
delay due to the preprocessing such as low pass filtering. In
conclusion, the SVM based residual evaluator presents reason-
able performance for a vehicle suspension sensor system.
Fig. 14 and Fig. 15 show the residual evaluation results
for signal loss fault. According to Fig. 14, the sprung mass
accelerometer signal is lost at seven seconds and this signal
is recovered at 15 seconds. In this experimental scenario, the
unsprung mass accelerometer is fault free but residual 2 is
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not zero due to the sensor bias. However, the fault index Fu
is zero during the experimental scenario. This experimental
result show that the SVM-based residual evaluation algorithm
makes accurate decision despite the presence of unconsidered
sensor bias. Likewise, according to Fig. 15, the unsprung
mass accelerometer signal is lost at seven seconds. In this
experimental scenario, the sprung mass accelerometer is fault
free and the fault index Fs is zero during the experimental
scenario same as Fig. 14.
Fig. 16 and Fig. 17 show the residual evaluation results for
random noise fault. According to Fig. 16, the sprung mass
accelerometer signal is contaminated with random noise at 12
seconds. Likewise, according to Fig. 17, the unsprung mass
accelerometer signal is contaminated with random noise at
12 seconds. As a results of these experiments, it is conclude
that the proposed fault diagnosis algorithm has robust perfor-
mance for random noise fault. Consequently, the experimental
results show that the proposed residual evaluation method has
reasonable performance against unconsidered sensor bias and
untrained type of fault.
It is note worthy that the SVM classifier used in this paper does
not learn about signal loss fault. In general, machine learning
algorithms are vulnerable to untrained data types. However,
the proposed SVM classifier uses the residuals obtained by
the model-based fault diagnosis technique in the learning
procedure. This can complement the weaknesses of traditional
machine learning algorithms and show reasonable performance
against untrained type of fault.
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Fig. 12. Experimental result for sine sweep test: (a) Raw sensor signal of
sprung mass accelerometer (as) and unsprung mass accelerometer (au) (b)
Absolute value of residual 1 (r1) and residual 2 (r2) (c) Fault indicator for
sprung mass accelerometer (Fs) and unsprung mass accelerometer (Fu).

V. CONCLUSION

In this paper, a fault diagnosis algorithm for a vehicle
suspension sensor is proposed. The proposed fault diagnosis
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Fig. 13. Experimental result for sine wave test: (a) Raw sensor signal of
sprung mass accelerometer (as) and unsprung mass accelerometer (au) (b)
Absolute value of residual 1 (r1) and residual 2 (r2) (c) Fault indicator for
sprung mass accelerometer (Fs) and unsprung mass accelerometer (Fu).
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Fig. 14. Experimental result for signal loss(sine sweep test): (a) Raw sensor
signal of sprung mass accelerometer (as) and unsprung mass accelerometer
(au) (b) Absolute value of residual 1 (r1) and residual 2 (r2) (c) Fault indicator
for sprung mass accelerometer (Fs) and unsprung mass accelerometer (Fu).

algorithm consists of FIO that generates a residual signal
and a SVM based residual evaluator. Using the eigenstructure
assignment method and H−/H∞ performance index, FIO,
which is both robust against unknown disturbance and sensi-
tive to sensor fault, is designed. In addition, using the residuals
generated by FIO for SVM training, this paper combines
model-based fault diagnosis with machine learning based fault
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Fig. 15. Experimental result for signal loss(sine wave test): (a) Raw sensor
signal of sprung mass accelerometer (as) and unsprung mass accelerometer
(au) (b) Absolute value of residual 1 (r1) and residual 2 (r2) (c) Fault indicator
for sprung mass accelerometer (Fs) and unsprung mass accelerometer (Fu).
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Fig. 16. Experimental result for random noise fault(sine sweep test): (a)
Raw sensor signal of sprung mass accelerometer (as) and unsprung mass
accelerometer (au) (b) Absolute value of residual 1 (r1) and residual 2 (r2)
(c) Fault indicator for sprung mass accelerometer (Fs) and unsprung mass
accelerometer (Fu).

diagnosis. This paper also validates the performance of FIO
and SVM based residual evaluator using a quarter-car test rig
and commercial sensors. From the results, it is confirmed that
an isolated residual signal is generated by FIO regardless of
an unknown disturbance. Furthermore, it is verified that the
SVM based residual evaluator has high accuracy for various
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Fig. 17. Experimental result for random noise fault(sine wave test): (a)
Raw sensor signal of sprung mass accelerometer (as) and unsprung mass
accelerometer (au) (b) Absolute value of residual 1 (r1) and residual 2 (r2)
(c) Fault indicator for sprung mass accelerometer (Fs) and unsprung mass
accelerometer (Fu).

road inputs and robust against untrained type of fault.
This paper provides the following contributions. First, the
proposed fault diagnosis algorithm considers a practical sus-
pension sensor system. A commercial accelerometer used in
practical fields is used to verify the performance of the fault
diagnosis algorithm. In addition, using a quarter-car test rig
and the commercial accelerometer, the practicality of the
proposed fault diagnosis algorithm is confirmed. Next, the
proposed fault diagnosis algorithm can be used in any kind of
semi-active suspension system. Since the bilinear term coupled
with control input and unknown system state is converted to
modeling uncertainty, it is possible to adopt the proposed fault
diagnosis algorithm when the damping coefficient range of
the vehicle suspension system is known. Finally, this paper
verified that the SVM based residual evaluator can replace the
heuristically tuned residual threshold. It thus becomes possible
to reduce the effort required to design fault diagnosis algo-
rithms. In conclusion, the proposed fault diagnosis algorithm
can be used to detect sensor faults in vehicle suspension.
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