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Abstract—This paper proposes a new control strategy to
improve vehicle cornering performance in a model predictive
control framework. The most distinguishing feature of the
proposed method is that the natural handling characteristics
of the production vehicle is exploited to reduce the complexity
of the conventional control methods. For safety’s sake, most
production vehicles are built to exhibit an understeer handling
characteristics to some extent. By monitoring how much the
vehicle is biased into the understeer state, the controller attempts
to adjust this amount in a way that improves the vehicle cor-
nering performance. With this particular strategy, an innovative
controller can be designed without road friction information,
which complicates the conventional control methods. In addition,
unlike the conventional controllers, the reference yaw rate that
is highly dependent on road friction need not be defined due to
the proposed control structure. The optimal control problem is
formulated in a model predictive control framework to handle the
constraints efficiently, and simulations in various test scenarios
illustrate the effectiveness of the proposed approach.

Index Terms—Model Predictive Control, Constrained Control,
Vehicle Handing Characteristics, and Cornering Performance.

I. INTRODUCTION

THE demand for high-performance vehicles has increased
recently [1], and active vehicle chassis control systems

have emerged, allowing for agile vehicle maneuvering [2],
[3]. For example, one representative technology called torque
vectoring varies torque independently on each wheel to in-
crease the vehicle dynamic performance. Since the vehicles
with larger lateral acceleration for the same steering wheel
angle have the ability to be dynamically driven [4], previous
studies have attempted to increase lateral acceleration at a
given steering angle. To achieve this objective, control methods
based on yaw rate and/or sideslip have been suggested by
many researchers [5]–[9]. The common objective of these two
schemes is to maximize the lateral acceleration of the vehicle
by making the most of the given road friction. In other words,
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when the vehicle reaches its handling limit, which is physically
bounded by road friction, the control goal can be achieved.

A. Literature Review

One method to increase the vehicle dynamic performance is
to generate additional yaw moment by appropriately distribut-
ing the driving and/or braking torque to individual wheels.
This is referred to as the “yaw rate-based control” scheme,
and the vehicle’s yaw rate is controlled to track the reference
yaw rate. Yaw rate-based control has been widely adopted due
to its ease of implementation and intuitiveness. However, this
method is not appropriate for the high-performance vehicle
control. This method is usually recommended for vehicle
stabilization when a certain amount of deviation of the current
yaw rate from the reference value is detected [8], [9].

In addition to yaw rate-based control, other control schemes
may be appropriate for maximizing the lateral acceleration,
e.g., “sideslip-based control”. Among these technologies, ac-
tive front steering (AFS) directly modifies road wheel angles
[10], [11]. Unlike in the yaw rate-based method, lateral tire
force can be directly controlled to track the reference sideslip
without intervention of longitudinal force. In general, AFS is
combined with differential braking to enhance both corner-
ing performance and vehicle stabilization. However, the very
sophisticated coordinating of AFS and differential braking is
still challenging and the extra cost of installing an AFS device
is not practical for the automotive industry. Furthermore,
estimating the sideslip required to implement this method is
another significant challenge.

As mentioned, the control performance is significantly
affected by road friction. Since the maximum achievable
vehicle lateral acceleration is physically bounded by road
friction, accurate information on road surface conditions is
the most useful information for designing the controller. That
is, the more road surface information we have, the easier it
is to control the vehicle’s lateral acceleration to reach the
friction limit. However, road friction information is not easily
obtained in reality, and real-time estimation of road friction
still also remains as an unresolved issue. Although there
have been many efforts to construct the friction estimator,
the robustness and accuracy of the estimators developed are
not sufficient to be implemented in production vehicles [12],
[13].
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Figure 1. Powertrain configuration of the target vehicle (RG: reduction gear,
M/G: motor/generator, and Con/Inv: converter/inverter.

B. Original Contributions

As an approach to overcome the above-mentioned problems,
we present an innovative control method that exploits the
natural handling characteristics of production vehicles. More
specifically, most production vehicles are designed to have
understeer handling characteristics to prevent oversteer, which
most critically needs to be avoided. The controller designed
in this paper adjusts the amount of this understeer in such
a way as to improve the cornering performance. To the
authors’ knowledge, such an approach based on this handling
characteristics has not been previously reported for designing
vehicle chassis controller.

As described in Fig. 1, the target vehicle is the pure electric
vehicle with front wheel drive. However, in-wheel motors
(IWMs) are additionally employed for the rear wheels, so an
additional yaw moment can be applied to the vehicle. There-
fore, the proposed method shares key strategies with yaw rate-
based control, but it is distinguished in that the available road
surface friction is utilized as much as possible by exploiting
handling characteristics. Unlike a conventional yaw rate-based
control, we do not explicitly define the desired yaw rate in
this paper. Instead, the difference in wheel sideslip between
the front and rear wheels is controlled to maintain a constant
gap. As a result, the vehicle is steered to a nearly neutral steer
condition in which the rear wheel sideslip increases up to a
similar magnitude of the front wheel sideslip. Moreover, the
proposed approach is applicable regardless of the type of road
surface. Therefore, the most challenging task in controlling
the vehicle, i.e., road friction estimation, can be completely
excluded from the proposed approach.

The original contributions of this paper can be summarized
as follows. (i) Using natural handling characteristics of pro-
duction vehicles, an innovative control strategy that is robust
to road friction is presented. (ii) Unlike a conventional yaw
rate-based control, the proposed controller designed attempts
to utilize road friction as much as possible to increase the
vehicle dynamic performance. The controller is designed based
on our newly established model that describes the wheel
sideslip angle difference, which has not been reported so far
in previous studies.

C. Paper Layout

The remainder of this paper is organized as follows. Section
II briefly compares the proposed method with the conven-
tional methods. We analyze vehicle handling characteristics

Figure 2. Comparison of traditional and proposed control methods: (a) yaw
rate-based control, (b) sideslip-based control, and (c) proposed method.

in Section III. Section IV presents the control strategy, which
is the central part of this paper. The effectiveness of the
proposed method is verified by simulations in Section V, and
we conclude the paper in Section VI.

II. COMPARISON OF TRADITIONAL AND PROPOSED
CONTROL METHODS

This section discusses the inherent shortcomings of the
traditional vehicle control methods, and briefly introduces the
structure of the proposed controller to address the issues of
the conventional methods.

Figure 2(a) describes a block diagram of a conventional
“yaw rate-based control” approach. Since yaw rate measure-
ment, r, is very accurate, with no offset, the controller can be
easily designed by defining the desired yaw rate rd. Depending
on the driver’s intention and the road environment, the desired
yaw rate is often defined as follows [14]:

rd =
vx

L+

(
mlr
CfL

− mlf
CrL

)
︸ ︷︷ ︸

κ

vx2
≤ µg

vx
. (1)

where vx is the vehicle speed, m is the vehicle mass, lf and lr
are the distances from the center of gravity to the front and rear
axles, Cf and Cr are the front and rear tire cornering stiffness
values, µ is the road friction coefficient, g is the gravitational
constant, and L = lf + lr.

Traditionally, the parameter κ, called the understeering gain
[15], determines the dynamic characteristics of the vehicle. If
the constant κ is specified using the nominal values of tire
cornering stiffness, and the controller is designed to track
the rd, a steady-state cornering condition can be achieved.
Therefore, the lateral instability of the vehicle can be stabilized
by this nominal κ. In contrast, κ can be updated online to
increase the vehicle cornering performance. In theory, the
lateral acceleration of the vehicle can be increased up to the
road friction limit, as described in (1). Therefore, if µ is given
accurately in real-time, the desired yaw rate that maximizes
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the vehicle lateral acceleration with the given driver’s inputs
can be easily defined:

rmax
d = 0.85 · µg

vx
. (2)

Here, 0.85 is set as the safety margin [14], and the controller
can be designed to minimize the error between r and rmax

d .
Because r is a precisely measurable value, this is very straight-
forward control structure. However, estimation of µ is very
difficult and still a challenge in the field of vehicle dynamics
research. For these reasons, it is very important to determine
the appropriate desired yaw rate, which depends heavily on
the driver’s inputs and road friction.

An even better solution to maximizing the utilization of
surface friction is to design a “sideslip-based controller”, as
described in Fig. 2(b). Since sideslip β is directly related
to the tire lateral force, the appropriate control of β is a
promising method for enhancing cornering performance. How-
ever, sideslip-based control scheme in Fig. 2(b) requires the
development of a β estimator, which requires huge effort [16],
[17]. Further exacerbating the situation, the desired sideslip
βd cannot be easily determined due to the inaccuracy of the
road friction information, which is the case in yaw rate-based
control. Therefore, when designing β-based control, neither
the desired state variable nor the current state variable is
given. For these reasons, the vehicle controller is traditionally
designed by heuristically tuning with the yaw rate-based and
sideslip-based control together.

To overcome the above mentioned issues, we present a
new method that does not need to determine the desired state
variable. As exhibited in Fig. 2(c), the desired constant value
is always specified as a constant value, and the feedback
value is the wheel sideslip difference between the front and
rear wheels, i.e., αf − αr, which can be measured in real-
time [18]. The set value is specified as constant regardless of
road friction, and hence the proposed method is effective on
any type of road surface. This is possible because we exploit
the natural handling characteristics of the production vehicle;
more details are introduced in the following sections.

In this paper, the problem is formulated in the framework
of model predictive control (MPC) [19], which can solve the
constrained optimal control problem. In general, the nonlinear
controller is effective for systems with constraints. MPC is
a general, systematic and flexible nonlinear controller for
constrained systems based on prediction and optimization.
Basically, MPC uses the receding horizon control principle,
which has the ability to predict a future response and can
accordingly take the best control action at the current time slot.
Based on a model of the system dynamics, MPC computes the
optimal input profile during a finite time horizon with respect
to a specified performance index. This process for calculating
the control input profile is repeated every control cycle when
new information on the system is updated. Due to this prop-
erty, MPC needs an excessive amount of computational effort
compared to the classical control approach. Therefore, over
the past few years, MPC has only been applied to systems
with slow dynamics, such as in process control industries.
However, the recent development of computational algorithms

Figure 3. Bicycle model.

and numerical analysis techniques enables MPC to be applied
to systems with fast dynamics such as the vehicle dynamic
control research area [20]–[22], and we also employ MPC to
ensure the vehicle stability by enforcing the state and control
within acceptable bounds.

III. VEHICLE CORNERING DYNAMICS AND HANDLING
CHARACTERISTICS

A. Vehicle Cornering Dynamics

The vehicle cornering dynamics can be approximated by the
bicycle model in Fig. 3, which captures key cornering dynamic
characteristics. By assuming a constant vehicle speed, which
is a reasonable assumption in normal vehicle turns, the bicycle
model is defined with state vector x = [β, r]′as follows [14]:

β̇ =
Fyfcosδf + Fyr

mvx
− r, (3)

ṙ =
lfFyfcosδf − lrFyr +Mz

Iz
. (4)

where β is the body sideslip, Fyf and Fyr are the front and
rear axle lateral forces, Iz is the yaw moment of inertia, Mz

is the corrective yaw moment, δf is steered wheel angle, and
we assume cosδf ≈ 1 using small angle approximation.

For small tire slip angles, the lateral tire forces are expressed
by a piecewise affine function [5]:

Fyj(αj) =


dj(αj + αpj )− ej , if αj < −αpj
−Cjαj , if − αpj ≤ αj ≤ α

p
j

dj(αj − αpj ) + ej , if αj > αpj
(5)

where j ∈ {f, r}, f and r represent the front and rear tires,
αj is the wheel sideslip angle, and Cj is the tire cornering
stiffness, which is highly dependent on road friction and
normal tire force. αpj is the point at which the lateral force
begins to saturate and wheel sideslip angle increases rapidly,
which eventually leads to vehicle instability, dj and ej are
determined experimentally.

Since the purpose of this paper is to improve vehicle
cornering performance within the stable region, we mainly
exploit a linear tire model, i.e., Fyj = Cjαj (|αj | ≤ αpj ),
in the following sections. When the αj is about to go above
the saturation point αpj , the vehicle stability control system
should be activated to reduce the excessive αj . However, this
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stability issue is out of the scope of this paper and the designed
controller here attempts to prevent this stability problem in
advance by adopting the predictive control. Specifically, the
state and control constraints are enforced to avoid the excessive
wheel sideslip in advance.

Because the vehicle is eventually controlled by the com-
bination of applied tire forces, the state variable αj can be
used to more intuitively express the objective of the proposed
approach. Therefore, the state variables defined in (3) and (4)
are represented in terms of the wheel sideslip angles.

In high-speed turns, the wheel sideslip angles in the stable
region are approximated by [14]:

αf = β +
lf
vx
r − δf , (6a)

αr = β − lr
vx
r. (6b)

From (6), the wheel sideslip angle difference between the
front and rear wheels is easily calculated as follows:

αf − αr =
lf + lr
vx

r − δf . (7)

Note that (7) does not depend on the body sideslip β, which
cannot be measured in production vehicles. Therefore, it is
enough to express (7) with the standard sensor signals in
production vehicles and constant parameter values. This is the
basis of our approach. Moreover, the vehicle handling charac-
teristics that is an essential part of the proposed approach is
also determined by the sign of wheel sideslip difference, i.e.,
sign(|αf | − |αr|).

Differentiating (6) with respect to time leads to:

α̇f = β̇ +
lf
vx
ṙ − δ̇f , (8a)

α̇r = β̇ − lr
vx
ṙ. (8b)

Substituting (3), (4), (5) and (7) into the above equations
gives the following dynamic models in terms of wheel sideslip
angles:

α̇f =

(
− Cf
mvx

−
l2fCf

Izvx
− vx
L

)
αf +

(
− Cr
mvx

+ · · · (9)

· · · lf lrCr
Izvx

+
vx
L

)
αr +

lf
Izvx

Mz −
vx
L
δf − δ̇f (10)

(11)

α̇r =

(
− Cf
mvx

+
lrlfCf
Izvx

− vx
L

)
αf +

(
− Cr
mvx

− · · · (12)

· · · l
2
rCr
Izvx

+
vx
L

)
αr −

lr
Izvx

Mz −
vx
L
δf (13)

Here, the control input is Mz , and δf is purely determined by
the driver’s input. Furthermore, vx is assumed to be constant,
and the cornering stiffness Cf,r can be estimated by our
previous study [18] and is assumed to be constant. Therefore,
in this model, the only varying parameter is the steering wheel
angle.

In the next sub-section, the vehicle handling characteristics
are categorized based on these equations of the motion.

Figure 4. Phase plot of the front and rear wheel sideslip angles.

B. Vehicle Handling Characteristics

The vehicle handling characteristics are classified into
three types at steady-state cornering: understeer, oversteer,
and neutral steer conditions [14]. In general, these handling
characteristics are distinguished by the difference between the
front and rear wheel sideslip angle as follows.

For safety reasons, most production vehicles are built to
exhibit some understeer characteristics, i.e., |αf |>|αr|. That
is, when the vehicle is steered, the front wheel sideslip
angle increases more than the rear one in magnitude. This
understeer-biased handling is allowed to a certain extent during
actual cornering.

In contrast, the oversteer condition, |αf |<|αr|, which
should be avoided in most real driving, causes severe lateral
instability of the vehicle if this condition persists. Therefore,
the vehicle stability control system should be activated at this
moment to reduce the excessive rear wheel sideslip.

And finally, neutral steer, |αf |=|αr|, is the ideal handling
condition to improve cornering performance, but it is very
difficult to achieve this condition all the time. Therefore, most
production vehicles have been designed to show understeer
handling characteristics.

Fig. 4 provides the phase plot of the front and rear wheel slip
angles based on (9) and (12) with the constant δf ≈ 2.09 [rad].
The control input, namely, the additional yaw moment, is not
applied to see the natural vehicle handling characteristics. As
shown in Fig. 4, we can verify that the equilibrium point [23]
is located where the absolute value of the front slip angle is
larger than the rear one:

|αf,e| > |αr,e|. (14)

where subscript e denotes the equilibrium.
Although the vehicle occasionally exhibits oversteer or

neutral steer conditions during transient maneuvers, the wheel
sideslip angles eventually converge to the understeer area. This
paper aims to modify this understeer-biased characteristics by
applying additional yaw moment, and hence the vehicle can
be controlled to display a nearly neutral steering.
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Figure 5. Behavior of front and rear sideslip angles during normal turning
on various road surface conditions.

IV. CONTROL DESIGN

A. Objective

Figure 5 illustrates the behavior of the front and rear wheel
sideslip angles during normal turning on various road friction.
As mentioned, the vehicle exhibits understeer-biased handling
characteristics for all cases, i.e., |αf | > |αr|, regardless of the
type of road surface. For example, in the case of a medium
road friction surface, there is room for increasing the rear
lateral tire force, i.e., ∆F , while maintaining the vehicle
stability. Given driver input vx and δf , the sum of lateral tire
forces can be maximized when the vehicle is steered to a
neutral handling condition, i.e., αf = αr. Therefore, we can
draw this potential force up to its limit. More specifically,
the wheel slip angle difference between the front and rear
wheels is controlled to maintain a constant gap because the
exact neutral condition can easily cause vehicle instability
by the unexpected uncertainties, as shown in Fig. 5. In fact,
both sideslip angles increase together due to the applied yaw
moment, as depicted in Fig. 5. Therefore, the control objective
can be defined as follows:

sign (αf − αr) (αf − αr)→ ζ. (15)

where ζ is a positive constant safety margin.
If αf is about to go into an unstable region (αf > αpf )

or change to an oversteering condition (αf − αr < 0), the
stability control system must be activated. We can monitor
the vehicle stability status by calculating the magnitude of
αf − αr or estimating αf in real-time, which provides the
activation timing of the stability system. In order to ensure
the safety, the current αf should be less than an allowable

wheel sideslip angle bound αmax
f regardless of road type. This

constraint is specified in our optimal control problem. In short,
the defined models in (9) and (12) are enforced to the region
where αf < αmax

f and |αf | > |αr|, and the other regions are
not in the scope of this paper.

B. Control Oriented Model

In this sub-section, the developed cornering dynamics model
in terms of wheel sideslip angles in (9) and (12) are ma-
nipulated to explicitly express the purpose of this paper.
Subtracting (12) from (9) and manipulating the equations gives
the following new system dynamics:

ẋ(t) = Acx(t) +Bcu(t) + Ec(t), (17)

y(t) = Ccx(t) +Dc(t), (18)

where x(t) ∈ R2, y(t) ∈ R2, u(t) ∈ R are the state, output
and control input vectors, respectively.

The state vector in (17) is x = [x1, x2]′ = [αf − αr, αr]′,
the output in (18) is y = [r, ay]′, and the control input is the
additional yaw moment Mz as follows:

Mz =
lw

2rw
(Tm,r − Tm,l). (19)

where rw is the tire radius, lw is the track width, Tm,r and
Tm,l are the applied motor torque at the rear right and rear
left wheels, respectively. The matrices Ac, Bc and Cc are time
invariant, but Ec and Dc vary depending on driver’s input δf ,
as defined in (16).

It should be noted that the defined models here were first
introduced in related studies, and we can expect the behaviors
of sideslip difference x1 and rear wheel sideslip αr according
to control input u based on these models.

As mentioned, the state variable x1 is readily available by
(7). However, it is difficult to measure the state x2 directly,
so an estimation method should be considered to fully exploit
the developed model.

In fact, numerous efforts have been made to estimate the
vehicle sideslip in the literature [24]. Since x2 is a function
of β as described in (6), we address β estimation instead of
αr, which is a more general expression. In the literature, the
main effort has been made to robustly estimate β even if the
vehicle is traveling at the unstable region, e.g., |αf | < |αr|
or |αpf | < |αf |. The reason β estimation is challenging is that
the matrices Ac, Bc and Cc are still not constant values when
the tire slip angle begin to be saturated. At that time, the
tire cornering stiffness Cf,r reduces nonlinearly. Therefore,

Ac =

[
− lfCf

Izvx
L L

Izvx
(−lfCf + lrCr)

− Cf

mvx
+

lf lrCf

Izvx
− vx

L −Cf+Cr

mvx
+

lf lrCf

Izvx
− l2rCr

Izvx

]
, Bc =

[ L
Izvx

− lr
Izvx

]
,

Ec =

[
−δ̇f
−vxL δf

]
, Cc =

[ vx
L 0

−Cf

m −Cf+Cr

m

]
, Dc =

[
vx
L δf
0

]
.

(16)
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additional cornering stiffness adaptation is often considered
[25]. However, this compensation may not always capture the
accurate variation of cornering stiffness, so this additional task
generally reduces model accuracy in (17) and (18).

However, as mentioned, our interest area of sideslip angles
in the tire force curve is the stable region, i.e., −αpj ≤ αj ≤
αpj , so the assumption that Cf,r is constant can accompany it.
Therefore, a typical Luenberger observer can be developed to
estimate x2 as follows [24]:

˙̂x(t) = Acx̂(t) +Bcu(t) + Ec(t) + l · Cc(x− x̂)︸ ︷︷ ︸
y−ŷ

. (20)

where l ∈ R2×2 is the observer gain matrix, and x̂ = [x̂1, x̂2]′

is the estimated state variable.
The system stability can be guaranteed by choosing the

appropriate observer gain matrix. The interested readers can
refer to [24], [26]. Now the system in (17) is full state available
system, and the optimal control problem can be formulated in
MPC framework.

C. MPC Problem Formulation

In this sub-section, the optimal control problem to be
solved is formulated in a MPC framework. As mentioned,
the control objective of the proposed approach is to keep the
desired constant gap for the wheel sideslip difference while
maintaining the rear wheel sideslip within acceptable bounds.

To ensure the control input within physically admissible
ranges for all actuation times, the following motor torque range
is specified:

Tmin
m (vx)

rw
lw ≤ u(t) ≤ Tmax

m (vx)

rw
lw. (21)

where u(t) is the corrective yaw moment, and Tmax
m (vx)

and Tmin
m (vx) are the maximum and minimum motor torques

according to the vehicle speed, as depicted in Fig. 6. The
state variables also needs to be constrained by the following
inequality condition to avoid the tire force saturation:[

ζmin

αmin
r

]
≤
[
x1(t)
x2(t)

]
≤
[
ζmax

αmax
r

]
. (22)

where x1(t) = αf (t)− αr(t), and x2(t) = αr(t).
The limits ζmin and ζmax are the maximum and minimum

allowable distance between the front and rear wheel sideslip
angles, and the rear wheel sideslip angle is additionally
constrained by αmin

r and αmax
r to keep the vehicle within the

stable region.
To formulate the MPC framework, the defined models in

(17) and (18) are discretized using the Euler’s method with
sampling period Ts as:

x(k + 1) = Adx(k) +Bdu(k) + Ed, (23a)
y(k) = Cdx(k) +Dd. (23b)

Using these discrete models, the MPC problem can be
formulated as follows:

min
UN (t)

J =

N−1∑
k=0

‖x(k + 1|t)− xr(t)‖2Q + ‖u(k|t)‖2R

+ ‖∆u(k|t)‖2W (24)
s.t.

x(k + 1|t) = Adx(k|t) +Bdu(k|t) + Ed (25a)
x(0|t)= x(t) (25b)

umin ≤ u(k|t) ≤ umax (25c)

xmin ≤ x(k + 1|t) ≤ xmax (25d)
k = 0, ..., N − 1,

where expression ‖x‖2Q means xTQx, N is the time horizon,
∆u(k|t) = u(k|t) − u(k − 1|t) is the control change rate
included to prevent a large control change. Here, the control
change rate is described as: ∆u(0|t) = u(0|t) − u(−1|t) at
initial time step k = 0, and u(−1|t) illustrates the previous
control one step before, i.e., u(t − 1). x(t) in (25b) is the
estimated and measured state vector at step t that gives the
feedback functionality. The predicted state variables over the
time horizon, i.e., x1(k+1|t) and x̂2(k+1|t), are constrained
between xmin and xmax in (25d), xr(t) = [ζ αdes

r ]′ is the
constant desired values for states, but αdes

r is not explicitly
assigned because no road friction information is given. Instead,
αdes
r is specified as an appropriate constant value according to

its sign to assign the correct direction of each motor torque in
the initial phase.

In addition, Q ∈ R2×2, R ∈ R, and W ∈ R are non-
negative weighting matrices. The weight matrix for the state
vector is specified as, Q = diag(Q11, Q22). Since the main
purpose of the controller is to track the desired value of
x1(k + 1|t), weighting Q11 should be set to be larger than
Q22, i.e., Q11 >> Q22. This is reasonable because x1(k+1|t)
and x2(k+ 1|t) are highly related to each other as (17), so if
x1(k+ 1|t) is properly controlled to track the set value while
satisfying the constraint (22), x2(k+1|t) can be automatically
bounded, i.e., x2(k + 1|t) ∈ [αmin

r , αmax
r ], while tracking an

appropriate desired value.
By solving the formulated MPC problem, we obtain the

following locally optimized control sequence at time t:

UN (t) = {u(0|t), ..., u(N − 1|t)} . (26)



7

Algorithm 1 Control Allocation
1: function MOTORTORQUE(Mz(t), T

max
m,j(vx)) , j ∈ {l, r}

2: if |Mz(t)| ≤Mmax
z then

3: if Mz(t) ≥ 0 then
4: Tm,r = 2 rwMz(t)

lw
and Tm,l = 0

5: else
6: Tm,r = 0 and Tm,l = −2 rwMz(t)

lw
7: end if
8: else
9: if Mz ≥ 0 then

10: Tm,r = Tmax
m,r and Tm,l = −2

rw(Mz(t)−Mmax
z )

lw
11: else
12: Tm,r = −2

rw(−Mz(t)−Mmax
z )

lw
and Tm,l = Tmax

m,l

13: end if
14: end if
15: end function

All elements in the obtained control sequence (26) are
constrained between umin and umax, and only the first ele-
ment is applied to the vehicle in the MPC framework, i.e.,
Mz(t) = u(0|t), and all of these processes from (24) to (26)
are repeated at every control cycle to update the new state
information.

D. Control Allocation

The obtained yaw moment from MPC framework Mz(t) can
be generated by appropriately allocating the motor torques to
the rear left and rear right wheels. The maximum yaw moment
that can be created using only a single motor’s maximum
torque1 is as follows:

Mmax
z =

lw
2
·
Tmax
m,j(vx)

rw
. (27)

where j ∈ {l, r}.
Since the proposed method aims to improve the vehicle

cornering performance, negative torque that decreases the
vehicle agility should be minimized. With this in mind, we
exploited the daisy chain allocation method [27] in this study.
The overall strategy is summarized in Algorithm 1.

As shown in Fig. 6, the static motor characteristics curve is
utilized to obtain the maximum motor torque according to the
vehicle speed. Given a required moment Mz(t) by the MPC
framework, only positive motor torque is applied as much as
possible to only a single wheel. However, negative torque is
also taken into account on the other side wheel, if the required
yaw moment exceeds the maximum yaw moment that can
be generated by only positive torque, |Mz(t)| > Mmax

z . For
example, if the positive yaw moment is required, the positive
motor torque of the right wheel is generated as much as
possible, but the negative torque of the left wheel is produced
only if required, as explained in Algorithm. 1. In this paper,
we assume that the required Mz(t) can be covered by given
maximum torques, i.e., Tmax

m,l and Tmax
m,r in Fig. 6.

1We assume the symmetrical motor torque for positive and negative torque
areas, i.e., Tmax

m,j(vx) = −T
min
m,j(vx), and only the positive torque is exploited

when computing the maximum yaw moment for simplicity. Therefore, Mmax
z

is always positive.

V. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed
approach by simulation studies with the B-class sport vehicle
model stored in CarSim, a commercial vehicle dynamics solver
package. The model parameter values are summarized in Table
I, and the simulations are conducted in the following various
test scenarios.

Table I
MODEL PARAMETER VALUES.

Symbol Description Value [Unit]
m vehicle total mass 1140 [kg]

lf
distance from the center for gravity

to the front axle 1.165 [m]

lr
distance from the center for gravity

to the rear axle 1.165 [m]

Cf front tire cornering stiffness 150000 [N/rad]
Cr rear tire cornering stiffness 170000 [N/rad]
rw tire radius 0.333 [m]
lw track width 1.481 [m]
g gravitational constant 9.81 [m/s2]
Ts sampling time 5 [msec]
N prediction horizon 5 [-]

A. Control performances on different road surfaces

One of the major advantages of the proposed method is its
robustness to varying road surface conditions. To verify this
robustness, two test scenarios are designed on different road
surfaces. Except for road friction, the other test conditions
including vehicle maneuvering are identical for both scenarios.
The plots in Fig. 7 describe the simulation results at the
high-mu road surface with mild steering input, as in Fig.
7(a). The vehicle speed is controlled by an internal speed
controller in CarSim to stay at around 65km/h, as shown in
Fig. 7(b). It should be noted that the appropriate amount of
control input is dependent on driver inputs, i.e., steering wheel
angle and vehicle speed. Thus, the designed controller does
not simply apply excessive torques but rather increases the
dynamic performance of the vehicle according to the given
driver inputs. In this scenario, the mild steering input and
relative low vehicle speed are executed by the driver, so
only a small amount of motor torque input is appropriate.
Consequently, the resulting torques also satisfy the control
constraint, as depicted in Fig. 7(c).

The control performance is evaluated by the magnitude
of lateral acceleration, as shown in Fig. 7(d). We see the
increased lateral acceleration for the same steering in 7(a)
compared to the uncontrolled case (Baseline). As mentioned,
the reference trajectory for the state variable and road friction
is not explicitly assigned and given in this paper, so the
amount of increased lateral acceleration as shown in Fig. 7(d)
is appropriately determined by the driver’s inputs. That is, the
designed controller can increase the lateral acceleration up to
the appropriate magnitude regardless of road type.

In addition, we confirm that the state variable x1, i.e., αf −
αr, is enforced to track the desired gap ζ when the control flag
is turned on while satisfying bound constraints as described in
Fig. 7(e). However, the gap between the front and rear wheels
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Figure 7. Simulation results with mild driver inputs at high-mu road friction.

is not reduced for the baseline case, and the state variable
profile violates the specified constraints. As illustrated in Fig.
7(f), the state variable x2, i.e., αr, is slightly increased due to
the small amount of applied torques within acceptable bounds.

The robustness to road surface change of a controller with
the same performance criteria and the same constraints as in
the case of Fig. 7 is verified in Fig. 8. In this scenario, the
vehicle is maneuvered at the medium-mu road friction. We
impose the same driver inputs compared as those for Fig. 7,
as shown in Fig. 8. Compared with the previous case, more
vehicle slippage is observed due to the reduced road friction,
as illustrated in Figs. 8(e) and 8(f). By enforcing the state
variables to satisfy the constraints in the MPC framework, we
verify that the vehicle is controlled to turn dynamically by
applying appropriate motor torques to individual wheels.

Table II shows the overall control performances in terms of
the maximum lateral acceleration, which is increased around
7% ∼ 9% for both cases. Note that our approach produces a
larger ay at the slippage than the ay at the high-mu for the
baseline. Nevertheless, we cannot conclude that the proposed
MPC is the best controller to improve cornering performance.
It is very apparent that additional yaw moment generated by
the MPC increases the lateral acceleration to some extent.
Therefore, comparing it with the uncontrolled results are unfair
to confirm the benefit of the proposed controller. Therefore,
we compare the MPC with the conventional controller in
next test scenario. This sub-section, however, verifies that the
proposed MPC can handle several specified constraints, which
can prevent vehicle instability. In addition, we confirm that
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Figure 8. Simulation results with mild driver inputs at medium-mu road
friction.

the proposed MPC is applicable regardless of road surface
condition.

Table II
CONTROL PERFORMANCES IN TERMS OF MAXIMUM LATERAL

ACCELERATION.

Max |ay | [g]
(baseline)

Max |ay | [g]
(proposed) Improvement [%]

Fig. 7 0.5069 0.5456 7.09
Fig. 8 0.4758 0.5206 8.61

B. Comparison between proposed and conventional con-
trollers

Compared to conventional feedback error-based controllers,
the most distinguishing feature of MPC is that it can handle
the constraints by predicting the model deployment during
a specified prediction horizon. To show this strength, we
compare proposed MPC with the conventional controller.

For the purpose of comparison, the following conventional
controller designed in a such a way as to react immediately
to sideslip difference feedback error is introduced.

The control law should satisfy the following condition for
the asymptotic stability:

ṡ = −λs. (28)

where s is the sliding surface that is defined by s =
sign (αf − αr) (αf − αr) − ζ (sideslip difference feedback
error), and λ is a non-negative control gain.
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Figure 9. Comparison of simulation results between the developed MPC and
the conventional controller at high-mu road friction.

Substituting the developed model in (17) into (28) leads to,

sign (x1) ẋ1 = −λs, (29)

and x1 = αf − αr, that is defined by (7).
Now, the following control law can be derived by substitut-

ing (7) and (4) into (29):

sign (x1)

{
L

vx
ṙ − δ̇f

}
= −λs,

sign (x1)

{
L

vx

(
lfFyfcosδf − lrFyr +Mz

Iz

)
− δ̇f

}
= −λs,

To satisfy stability condition in (28), the control law u is
derived as,

Mz = −lfFyfcosδf + lrFyr +
Izvx
L

δ̇f −
Izvx

L · sign(x1)
λ · s,

≈ −lfFyf + lrFyr +
Izvx
L

δ̇f − sign(x1)
Izvx
L

λ · s (30)

Here, we assume the small steered wheel angle.
We denote this controller the conventional control method.

To compare the conventional controller and the proposed
MPC in a fair manner, we use the same values of the
desired set value and control allocation method. Moreover, the
conventional controller’s gain is tuned to their full potential
for optimum control performances. However, it is obvious
that the designed control in (30) lacks the ability to predict
the model deployment and handle the constraints. Figure
9 compares the simulation results for the conventional and
proposed methods. To verify the ability to handle constraints,

the vehicle is more aggressively maneuvered than in the test
scenarios in the previous sub-section but the same steering
input is applied, as illustrated Figs. 9(a) and 9(b). Therefore,
control input reaches its allowable bound, as described in Fig.
9(c). Since the developed MPC framework can predict the
model deployment for a specified time horizon, the controller
immediately decreases its input magnitude to prevent vehicle
instability, as shown in Fig. 9(c). However, the conventional
method shows severe oscillation when it reaches the control
limit due to the accumulated feedback error, which eventu-
ally causes the vehicle instability. By elaborating the control
gain tuning, we can avoid the vehicle becoming completely
unstable, but it may easily lose stability when unexpected
uncertainties come from the environment. Fig. 9(d) shows that
the similar lateral acceleration trajectories for both controllers.
However, since the conventional controller is designed to react
to feedback error immediately, the vehicle is actually at the
border between stable and unstable areas when the actuator
reaches to its limit. In contrast, the proposed MPC enforces the
state variable within allowable limits in advance by predicting
model deployment and gives the locally optimal control for
the given environments (driver’s input and road friction), see
Figs. 9(c) - 9(f).

From this simulation results, it cannot be concluded that
the MPC always outperforms other controllers in terms of
cornering performance, see Fig. 9(d). However, although con-
ventional control can show better or similar control perfor-
mance by tuning the gains in a such a way as to minimize the
feedback error as much as possible, excessive control without
considering constraints may cause control saturation, which
eventually leads to vehicle instability. In contrast, multiple
aspects such as state and control constraints can be handled
by the MPC simultaneously, so the vehicle can be maneuvered
with a certain amount of safety margin. In that sense, the
proposed method with MPC framework is a better choice than
a conventional controller, although control performance is not
always better.

C. Path following with the driver model
In the previous test scenarios, to guarantee the reproducib-

lity of test conditions and environments, the same steering
inputs were applied for all cases, whether the vehicle followed
the desired path or not. However, in reality, the driver tries to
maneuver the vehicle according to changes in the road profile.
In other words, keeping in mind that the vehicle should follow
the desired path, the driver applies the appropriate steering,
accelerator, and barke pedal inputs to the vehicle in real-
time. Therefore, the designed controller in this paper needs
to adaptively provide corrective yaw moment according to the
driver’s intention and maneuvers.

To verify this ability, we employ the driver model stored
in CarSim. With this model, regardless of control inputs, the
driver always tries to follow the defined trajectory (double
lane change maneuvering) as much as possible unless it is
sometimes physically difficult to track the path.

As shown in Fig. 10(a), unlike the previous scenarios, the
applied steering wheel angle by the driver model for the base-
line and proposed cases are different. We can see that a smaller
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Figure 10. Simulation results with the driver model in a double lane change
scenario at high-mu road friction.

steering input is applied to the proposed case. Nevertheless, the
vehicle exhibits a larger or similar lateral acceleration assisted
by the corrective yaw moment, as described in Figs. 10(c) and
10(d). By enforcing the state variables within the specified
bounds, the vehicle is also prevented from losing its stability,
as shown in Figs. 10(e) and 10(f). In this scenario, compared
to previous cases, more relaxed constraints are specified due
to the severe maneuvering, and these variations of constraints
according to the driver maneuvers are reasonable and possible
in real-world applications. Via CarSim, we corroborate that the
developed controller fulfills its role faithfully in collaboration
with driver who maneuvers the vehicle adaptively depending
on the driving conditions.

VI. CONCLUSIONS

In this paper, we present a new control strategy to im-
prove the vehicle cornering performance in a model predictive
control framework. The main contributions of this paper that
distinguish it from other studies are two fold. (i) By exploiting
vehicle natural handling characteristics, the optimal corrective
yaw moment is determined in such a way as to utilize the
road friction as much as possible without defining the desired
yaw rate. Furthermore, the proposed method is effective for
any road friction. (ii) A new mathematical model that predicts
the behavior of the wheel sideslip difference between the
front and rear wheels is established. Using this model, the
controller is designed to keep the constant gap of the wheel
sideslip difference to improve the cornering performance.
Moreover, the state and control are enforced to satisfy the

constraints, which enables the vehicle to be appropriately
controlled without losing its stability. We confirmed these
advantages through the various simulations, and we believe
that the proposed method creates a new possibility to reduce
the complexity of the existing heuristic control methods.
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