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ABSTRACT Every land moving object accelerates or decelerates based on the frictional coefficient of the road 

surface. It has been known that this coefficient on the road is determined by the type of road surface. In this work, we 

propose a simplistic, machine-learning based solution to estimate the road type using the reflected ultrasonic signals 

paired with ultrasonic transmitter and receiver. Since the reflected signal contains the material information of the 

surface due to the difference in the surface roughness and acoustic impedance, different characteristics can be observed 

for each frequency of the reflected signal. To exploit such characteristics, the signals are transformed into the frequency 

domain using short-time Fourier transform. In addition, a deep convolutional neural network is applied as the road 

identifier due to its well-known representational power. In order to verify the aforementioned ideas, the ample database 

consisting of eight types of road surfaces are obtained with the ultrasonic sensors. And then, the database is used to 

train the model, as well as to evaluate the accuracy of the trained model. It can be seen that the proposed method makes 

it easier and more accurate to identify the type of road surface than the conventional methods. 

 

KEY WORDS : Ultrasonic sensor; Road type identification; Friction coefficient; Short-time Fourier transform; 

Machine-learning; Deep convolutional neural network 

NOMENCLATURE  

Fl : feature of l-th layer 

b : bias of convolutional layer  

w : weight of convolutional layer  

B : bias of classifier layer 

W : weight of classifier layer 

Cin : number of input channel 

 

1. INTRODUCTION 

All land mobile objects, including humans and robots, 

cannot accelerate or decelerate well on slippery surfaces 

like ice. That is, the friction coefficient of the road 

surface where the wheel will step on is a very important 

parameter for the movement of land moving objects (Li 

et al., 2016; arnioli et al., 2016; Persson, 2013). The 

dynamic-based methods, and vision-based methods have 

been used to obtain this parameter. 

The dynamic-based method (Li et al., 2016; Rajamani 

et al., 2012; Dahiya et al., 2010; Han et al., 2016) is able 

to measure this value using the dynamic information of 

the land vehicles. However, additional vehicle dynamics 

models, GPS and accelerometer sensors are required to 

check the state of the vehicle. It is possible to estimate 

the condition of the road surface only on which the tire is 

stepped by applying the brakes once in a while without 

driver’s intention. That is, there is a limitation in that this 

process may affect ride comfort and the condition of the 

road surface cannot be known in advance. In addition, 

this physical excitation process affects the energy 

efficiency for the land vehicle. 

While on the subject, the vision-based method (Omer 

and Fu, 2010; Raj et al., 2012; Elunai et al., 2011) has the 

advantage as it allows for prior knowledge of the type of 

road surface approaching; a physical excitation process 

is unnecessary. However, expensive vision sensors and 

processing devices are essentially required. Also, a 

calibration process should be done based on the sensor 

setup, and a costly pre-processing must be performed 

from the acquired vision data to locate the road and to 

eliminate outliers. Furthermore, the use of a vision-based 
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approach can potentially mislead non-road surfaces to 

road surfaces due to ambient illumination effects. 

To overcome all of aforementioned limitations, we 

propose a method for road type identification using the 

fact that the acoustic characteristics of each object are 

different (Kinsler et al., 1999). When sound waves are 

emitted to each material, the reflected waves are 

dependent on material properties such as the acoustic 

impedance and surface roughness of the material. That is, 

even though ultrasonic waves are transmitted in the same 

waveform each time, different reflected waves are 

generated according to the material of the surface and can 

be classified using the difference. Therefore, this paper 

proposes a method of classifying the type of the road 

surface by transmitting ultrasonic waves perpendicular to 

the road surface using an ultrasonic transmitter, and by 

receiving sound waves reflected from the road surface 

using an ultrasonic receiver. This paper also proposes a 

modeling method using machine-learning based on 

acoustic big data from the reflected wave to distinguish 

the type of road surface, and the effectiveness of the 

proposed method is verified through experiments. 

 

 

Figure 1. An ultrasonic look-ahead sensor module under 

the front of the vehicle for vehicle predictive control. 

 

2. PREVIOUS WORKS  

Ultrasonic sensors have been applied to various fields 

because they are inexpensive and easy to apply. Almost 

of the previous methods (Kim and Choi, 2016; Carullo 

and Parvis, 2001) using ultrasonic signals on the road 

focused on estimating the distance from the road surface 

to the sensor system as shown in Fig. 1. These studies 

showed that the road surface can be profiled before the 

vehicle passes by using the time-of-flight (ToF) preview 

information. On the other hand, several studies were done 

that estimated the friction coefficient of the road surface 

by passively analyzing the acoustic components from the 

tire made noise when slipping on the road surface 

(Masino et al., 2017; Gailius and Jačėnas, 2007; Alonso 

et al., 2014; Kongrattanaprasert et al., 2009; Nakashima 

et al., 2016). In more detail, (Nakashima et al., 2016) is 

to analyze the intensity of the reflected signal after 

transmitting ultrasonic waves to the road surface. The 

road surface was classified by simply fitting the intensity 

of the signal reflected from the road surface according to 

the type and distance of the road surface. In other words, 

it is impossible to apply to various road surfaces due to 

the inferiority in the case of other road surfaces with 

similar intensity reflection. On the other hand, (Gailius 

and Jačėnas, 2007) conducted a study to detect ice road 

surfaces by frequency analysis of the friction noise 

produced by tires. Similarly, (Kongrattanaprasert et al., 

2009) classified the dry, wet, or snowy state into 

microphones and showed 81% accuracy. Recent studies 

(Masino et al., 2017; Alonso et al., 2014) used a machine-

learning technique called support vector machine (SVM) 

to classify the road surface, and showed its classification 

performance from 70% to 92%. However, (Masino et al., 

2017) used not only acoustic sensor but also additional 

pressure and temperature sensors are required inside each 

tire. In addition, since these aforementioned methods 

measure both tire noise and ambient noise, the SNR is 

relatively low. Also, the condition of the road surface can 

be known only after the tire has stepped on the road 

surface. Another study  

The SVM used as a machine-learning model for these 

studies (Masino et al., 2017; Alonso et al., 2014) is 

widely used for its robustness and quick convergence. 

However, the SVM requires a well-designed feature 

extractor, which may require much expert knowledge and 

efforts. That is, a lot of human effort is required for 

parameter tuning. On the other hand, a deep neural 

network (DNN) (LeCun et al., 2015; Krizhevsky et al., 

2012) jointly learns the feature extractor and the classifier, 

and does not require much heuristic hand-tunings. Also, 

with the recent advances of DNN (Goodfellow, et al, 

2016), 1D convolutional neural network (CNN) is widely 

used as a universal function approximator to process 

large collected dataset. Due to its simplicity and 

representational power, it shows faster data processing 

speed and accuracy than other models. 

In order to use a DNN as the function approximator by 

the data-driven method, the data type of input must be 

specified first. According to the study (Kinsler et al., 

1999), all materials have different acoustic impedances. 

That is, when observing the reflected signal in the 

frequency domain, the differences can be seen depending 

on the type of road surface. Therefore following previous 

approaches (Arandjelovic and Zisserman, 2017), a 

spectrogram extracted from short-time Fourier transform 

(STFT) is used as the input to analyze the frequency 

domain over time.  

In summary, this paper proposes a method of 

classifying the types of road surfaces with different 

acoustic characteristics for each material. These acoustic 

properties include the material's acoustic impedance and 
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surface roughness. In order to increase the SNR, an active 

method of transmitting ultrasonic waves that are invisible 

to the human ear is actively used on the road surface. In 

addition, the spectrogram converted to STFT is used as 

the input of DNN to observe the frequency domain of the 

received ultrasound. One type of DNN, 1D CNN, is used 

as a function approximator and consists of MLP as the 

final classifier.  

Here, the vertical velocity due to the heave motion of 

the ground moving object and the height change of the 

road surface is very small compared to the speed of the 

sound wave, so the Doppler effect is ignored. In addition, 

the tire road friction coefficient is assumed to be 

determined by the slip ratio of the wheel as suggested in 

the previous studies (Burckhardt, 1993; Rajamani et al., 

2010) if the type of road surface is determined through 

the output of our trained model. 

3. IDENTIFICATION MODEL AND 

ARCHITECTURE 

To identify the type of road surface from the reflected 

ultrasound waves, the modeling process must be 

performed first. The reflected ultrasonic signals from the 

road largely depends on the road material, surface 

roughness. However, it is almost impossible to 

mathematically model the relationship between sound 

waves and road surfaces by considering all circumstances. 

Therefore, a modeling method based on machine-

learning is used to generalize various input signals from 

the ultrasonic receiver. 

Our DNN is configured to consist of several 1D 

convolutional layers followed by non-linear layers and 

batch normalization (Ioffe and Szegedy, 2015) for feature 

extraction, as well as a multi-layered perceptron (MLP) 

at the end for classification process. It is common to treat 

spectrograms as images and may seem more sensible to 

use 2D CNN for feature extractor, but as the time 

dimension of spectrogram is narrow, we intuitively use 

1D CNN instead. Also, 2D CNNs have more parameters 

on average, which may lead to over-fitting in some cases.  

The design principles of the deep convolutional neural 

network (D-CNN) are simple and lightweight, so we 

designed them using only a few common layers. The 

designed CNN consists of a feature extractor of four 

convolution layers and a classifier of three layers fully 

connected. The filter size and stride for 4 convolutional 

layers are (201,5), (51,1), (51,1), (51,1), respectively as 

shown in Fig. 2. In addition, all convolutional layers have 

64 filters each. The padding for each layer is half of the 

filter size. Each convolutional layer is followed by a 

batch-norm layer and a LeakyReLU (Xu et al., 2015) 

layer: 
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feature map after layer l  and layer 1l  , outC

kw R  

and outC
bias R  denote conv weight and bias, 

respectively. In addition, BN and LReLU mean batch-

norm layer and LeakyReLU layer. In other words, this 

equation shows that batch normalization and LeakyReLU 

are applied to the results of a general CNN. 

In the classifier, the hidden sizes of the MLP are 512 

and 256, respectively, and the final output dimension is 

the number of classes. The LeakyReLU layers are also 

inserted in between all layers for non-linearity: 

 

1 ( )l lF LReLU W F B                    (2) 

 

where W and B denote weights and bias for the fully 

connected layer, respectively.  

The convolutional feature map F between 

convolutional layers are 2D shaped, and the last 

convolutional feature map is flattened to 1D shape. Thus, 

all feature maps F in MLP are 1D shaped. The last fully-

connected layer has no non-linear layer. Furthermore, a 

standard soft-max cross entropy loss is used for training. 

Additionally, we use the Adam optimizer with a constant 

learning rate of 0.0001 and a dropout with 0.3 rate in the 

classifier for regularization. To compare 2D CNN and 1D 

CNN, additional experiments are conducted, and 2D 

CNN has the same architecture with 1D, but the filter size 

along time axis is set to 3. 

Figure 2. Proposed network architecture. The numbers for 1D convolution layer are (window size, stride), the 

number for fully connected (FC) layer is the hidden output size, BN denotes the batch normalization layer, and 

LReLU denotes LeakyReLU. The number of convolutional filters is 64 for all layers. 
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4. EXPERIMENTAL DESCRIPTION 

This section describes the experimental environment 

for estimating the type of road surface in the manner 

suggested above. In addition, the dataset in which 

ultrasonic signals reflected on the road surface are 

collected is described. 

 

4.1. Experimental Equipment and Settings 

 
The ultrasonic sensor system, which is the set of 

transmitter and receiver, is installed perpendicular to the 

road surface as shown in Fig. 1. This sensor is used with 

a main frequency of 40kHz, which is twice the human 

audible frequency. To clearly sample the analog signal 

from the sensor, it is sampled at a frequency of 20 times 

higher than the main frequency that satisfies the 

condition of the Nyquist theorem (Nyquist, 1928). That 

is, the analog sampling module is used as an instrument 

that can obtain 1 million signal samples per second from 

an ultrasonic receiver. In addition, we apply GPU 

(NVIDIA GeForce GTX 1080 Ti) for parallel processing 

to train and test the road type model from the collected 

database. The details of the instruments used are shown 

in Table 1. 

 

4.2. Dataset Composition 

 
Well-trained models should be able to distinguish 

various road types, so the dataset must be collected from 

diverse road types in various environments. For this 

experiment, the reflected ultrasounds are collected on a 

total of eight road surfaces: asphalt, cement, dirt, marble, 

paint, snow, water, and ice. In addition, the time to 

receive the period is set to 20ms per sample such that the 

transmitted ultrasonic signal is sufficient to disappear, as 

shown in Fig. 3. 

More than 6,000 datasets from eight different types of 

road surface are collected to validate the approach, and 

the numbers of obtained dataset are shown in Table 2. In 

addition, the following efforts are made to ensure the 

generality of the dataset with more intra-class diversity. 

First of all, the dataset is collected while moving the 

sensor along the road to ensure diversity even on one 

class of road surface, and the dataset is obtained by 

varying the distance between the sensor and the road 

surface in preparation for the unevenness of the road 

surface. Furthermore, the database of the same class is 

collected over several days to accommodate multiple 

environments. 

Among the collected data, we use 70% for training and 

30% for testing as in other studies. All the data are pre-

processed with STFT (nperseg=5k, 10k, and 15k) 

without any augmentations. Here nperseg is used as one 

of STFT tuned parameter, and it represents the ultrasonic 

signal length of segment for the FFT. That is, it is a 

variable that determines the size of local section to which 

the Fourier transform is applied.  

 

Table 1. The equipment used for this experiment. 

 

 

Table 2. The number of obtained samples for each type 

of road surface 

 

5. RESULTS 

Through the dataset collected using the sensor module 

and controller described above, the training process 

converges within approximately 20 minutes, except for 

the STFT time, and each test inference takes 1 

millisecond per sample on our single GPU system 

described in Table 1. Here, all dataset for training and 

testing are randomly selected without overlaps, and the 

test results of our 1D D-CNN method are shown in Table 

4, 5, and 6. In addition, the result of 2D D-CNN for 

comparison with 1D is shown in Table 3. In these tables, 

each row represents the ground truth class label, and each 

column represents the inferenced class. 

For the asphalt, marble, and snow surfaces, this method 

provides complete estimation performance for all three  

Equipment Type  Manufacturer Model Name Specification 

Ultrasonic 

Transmitter 
Hagisonic HG-M40T 40kHz 

Ultrasonic 

Receiver 
Hagisonic HG-M40R 40kHz 

Controller NI cRIO-9036 Ethernet based 

Module of 

Controller 
NI NI 9223 

1MSamples/sec

ond 

DC Battery ROCKET Lead Battery 12V 

GPU for 

training 
NVIDIA GTX 1080 Ti 

3584 CUDA 

Cores 

Road Surface Type Train Set Test Set 

Asphalt 1661 712 

Cement 440 189 

Dirt 633 272 

Ice 447 191 

Marble 211 91 

Paint 214 93 

Snow 208 89 

Water 431 185 

Total 4247 1820 
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Figure 3. Sample signals of raw and spectrogram for all road types. In the spectrogram, the color represents the power 

of the corresponding frequency at the time. In other words the bright color means strong, the dark means weak. 



Min-Hyun Kim, Jongchan Park and Seibum Choi 

 

parameter settings in Table 4-6. In detail, when nperseg 

is 5k, it shows more than 99% accuracy on roads that are 

asphalt, cement, dirt, marble, paint, water and ice. Also, 

when nperseg is 10k, it shows 100% accuracy for asphalt, 

cement, marble, ice, and all roads except for snow and 

water at 15k. Comparing the result between Table 3 and 

Table 6, the average accuracy of 1D CNN (97.5%) is 

higher than 2D CNN (95.2%). This is partially due to 

increased parameter size, and support our assumption 

that 1D CNN is more intuitive to use. 

The proposed method shows totally over 97% 

accuracy for most of the road surface types. For some 

road surface types, the validation accuracies achieve a 

near-perfect level. Compared with the previous study 

(Alonso et al., 2014), it can be confirmed that the 

accuracy is improved by 1.8 to 2.5%. Especially in the 

case of asphalt, the performance is 12% higher. It also 

shows superiority in response time. In the study (Alonso 

et al., 2014), it takes a minimum of 0.2 seconds to 

recognize that the road surface has changed, but our 

proposed algorithms can fully appreciate the changes in 

the road surface in tens of milliseconds. 

In addition, Table 7 is the comparison result of 

modeling using the decision tree (Breiman N. 2017) and 

the SVM (Cristianini et al., 2000) technique, which are 

frequently used in machine-learning studies. The 

comparison is conducted using the same dataset we 

collected. From the table, the superiority of our proposed 

D-CNN method is validated. The proposed method 

shows the highest accuracy for all type of road surfaces. 

However, other methods (Breiman N. 2017; Cristianini 

et al., 2000) also have low accuracy for snow road surface. 

 It is notable that the accuracy of ice road. The 

characteristics of ice are usually intuitively hard to be 

captured by visual information. But, our approach that 

incorporates ultrasonic signals allows for successful 

distinguishing between ice and other road types. 

6. DISCUSSION AND CONCLUSION 

Identifying the type of road surface is an important 

factor in the movement of land vehicles including 

walking robots. In the beginning of this study, it is 

assumed that the reflected ultrasonic signals can convey 

the characteristics of the road material types. Therefore, 

a new method for estimating the type of road surface 

using ultrasonic transmitters and receivers with D-CNN 

is proposed. In addition, the assumption is verified and 

the type of the road surface can be estimated by analyzing 

the frequency component using the STFT from the road 

reflected ultrasonic wave. Furthermore, throughout the 

comprehensive ultrasonic sensor-based dataset collection 

and experiments, a high-performance road identification 

model is trained. 

Since ultrasonic sensors are inexpensive and easy to 

operate, they can be effortless to use and apply. Therefore, 

by attaching the sensor to the front of the robot or the 

front bumper of vehicle as shown in Fig. 1, it is 

possible to preview control the motion suitable 

according to the type of road surface. Moreover, this 

method can easily pre-estimate the road surface by 

installing an ultrasonic sensor without any physical 

excitation. In addition, since the ultrasonic sensor 

module transmitted ultrasonic waves with a cycle of 

20 ms, the type of road surface can be estimated every 

20 ms. Therefore, this sensor module can react 

robustly to the rapid change of the surrounding 

environment. Furthermore, since the database has been 

collected in various environments, the type of road 

surface can be estimated regardless of the flight time 

of ultrasound, ambient temperature, etc. 

Above all things, the main advantage of this 

proposed method is the ability to detect the ice-

covered roads that are not visually recognizable, such 

as black ice. Thus, a notification can be sent in advance 

Table 3. Confusion matrix for test data with nperseg=15k, with 2D convolutions. 

 asphalt cement dirt marble paint snow water ice 
Accuracy 

(%) 

asphalt 712        100 

cement  189       100 

dirt   272      100 

marble    91     100 

paint     93    100 

snow 45     44   49.4 

water      41 143 1 77.3 

ice        191 100 

Avg.         95.2 
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Table 4. Confusion matrix for test data with nperseg=5k, with 1D convolutions. 

 asphalt cement dirt marble paint snow water ice 
Accuracy 

(%) 

asphalt 712        100 

cement  188 1      99.5 

dirt   272      100 

marble    91     100 

paint     93    100 

snow 46     43   48.3 

water       185  100 

ice        191 100 

Avg.         97.4 

 

Table 5. Confusion matrix for test data with nperseg=10k, with 1D convolutions. 

 asphalt cement dirt marble paint snow water ice 
Accuracy 

(%) 

asphalt 712        100 

cement  189       100 

dirt 2  270      99.3 

marble    91     100 

paint 2    91    97.8 

snow 48     41   46.1 

water 2      183  98.9 

ice        191 100 

Avg.         97.0 

 

Table 6. Confusion matrix for test data with nperseg=15k, with 1D convolutions. 

 asphalt cement dirt marble paint snow water ice 
Accuracy 

(%) 

asphalt 712        100 

cement  189       100 

dirt   272      100 

marble    91     100 

paint     93    100 

snow 45     44   49.4 

water 1      184  99.5 

ice        191 100 

Avg.         97.5 
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to all moving objects, and acceleration and deceleration 

preview control becomes entirely possible before 

stepping on the ice. 

A limitation of our method is that the STFT 

conversion takes a certain amount of time, so real-time 

properties may not be guaranteed. In addition, the snow 

road database is classified to asphalt road. It is believed 

that both asphalt and snow are porous, and the acoustic 

characteristics for a particular frequency band are similar 

to each other, as well as the conversion through STFT 

results in loss of information in the acoustic signal. 

By observing the collected signal in Fig. 3, it can be 

observed that the ultrasonic signal disappears faster than 

the collection time of 20ms. Therefore, in the future work, 

it is necessary to shorten the signal collection time to 

improve the real-time performance by reducing the time 

required for signal processing and classification. In 

addition, the frequency domain observations through 

signal processing method other than STFT will 

complement performance on the snow roads. 
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