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ABSTRACTIn this paper, a means of generating residuals based on a quarter-car model and evaluating them using a support

vector machine (SVM) is proposed. The proposed model-based residual generator shows very robust performance regardless

of unknown road surface conditions. In addition, an SVM classifier without empirically set thresholds is used to evaluate the

residuals. The proposed method is expected to reduce the effort required to design fault diagnosis algorithms. While an

unknown input observer is used to generate the residual, the relative velocity of the vehicle suspension is obtained additionally.

The proposed algorithm is verified using commercial vehicle simulator Carsim with Matlab & Simulink. As a result, the fault

diagnosis algorithm proposed in this paper can detect sensor faults that cannot be detected by a limit checking method and can

reduce the effort required when designing algorithms.

KEY WORDS : Fault diagnosis, Support vector machine, Vehicle suspension, Unknown input observer

NOMENCLATURE

ms, mu : sprung/unsprung mass, kg 

ks, kt : spring/tire stiffness, N/m

cn : nominal damping coefficient, Ns/m

csky : sky-hook damping coefficient, Ns/m

 : damper bandwidth, -

zs, zu : sprung/unsprung mass position, m

zr : unknown road input, m

vs, vu : sprung/unsprung mass vertical velocity, m/s

f (x) : hyperplane of support vector machine, -

w : normal vector of hyperplane, -

r : geometrical distance, -

 : Lagrangian multiplier, -

K(xi, xj) : kernel function, -

1. INTRODUCTION

Suspension systems are an essential component in

determining the ride quality and handling performance of

vehicles. Due to an existing trade-off relationship, an

uncontrolled passive suspension system cannot improve

both the ride quality and handing performance at the same

time (Rajamani, 2011). To address this issue, various

studies have attempted to improve ride quality and

handling performance of vehicles simultaneously using a

controlled suspension system (Roh and Park, 1998;

Savaresi and Spelta, 2009). Especially in practical areas,

semi-active suspensions (Butsuen, 1989) are adopted

owing to energy savings, packaging and cost issues. For

this reasons, semi-active suspension is used more

extensively than active suspension. Thus far, various

algorithms have been developed which control the

damping characteristics of semi-active suspensions

effectively. To apply a control algorithm, most vehicles

currently produced are equipped with a body-vertical

accelerometer and wheel-vertical accelerometers (Kim et

al., 2005). Control algorithms use these sensors to improve

ride comfort and handling performance. However, if the

sensor constituting the suspension control system fails,

such a failure can affect the control performance seriously

and even causes a collapse of the vehicle stability.

Especially with regard to vehicle suspension control

systems, the possibility of a system collapse due to a sensor

failure is fairly high because various sensors are integrated

into the system. Therefore, in order to guarantee the

performance of a semi-active suspension system, the

control algorithm and the algorithm used to diagnose faults

in sensors are essential.

In accordance with these demands, sensor fault

diagnosis algorithms for vehicle suspensions have been

widely developed and applied for many years. For

example, a limit-checking method (Gertler, 2013) that

diagnoses a sensor fault when the measurement exceeds a

predetermined threshold value is widely used in practical

areas. However, the limit-checking method cannot

sensitively diagnose certain sensor faults, such as gain

faults and offset faults. Therefore, a model-based fault

diagnosis method (Ding, 2008) using a dynamic model of a

suspension system was recently proposed and studied in an*Corresponding author. e-mail: sbchoi@kaist.ac.kr
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effort to implement a more robust and sensitive diagnosis

algorithm. Addas (Chamseddine and Noura, 2008) used a

sliding-mode observer to diagnose sensor failures in

vehicle suspension systems. Although their study

demonstrated robustness against disturbances, additional

sensors were needed to implement fault diagnosis

algorithms. Börner et al. (2002) used parity equations to

detect sensor faults. Sebastien (Varrier et al., 2013) used

parity space analysis to diagnose sensor faults. However,

the parity relationship method of filtering system inputs

and outputs using parity vectors incurs a disadvantage

since the residual responds to unknown system

uncertainties. In order to overcome these drawbacks, this

paper proposes a vehicle suspension sensor fault diagnosis

algorithm based on an unknown input observer using a

quarter-car model. The proposed fault diagnosis algorithm

is designed for two vertical accelerometer type systems

commonly used in practical applications and to ensure

robustness against unknown road input factors. Since the

quarter-car model is described as a bilinear system with

bilinear measurements, this paper proposes a bilinear

system fault diagnosis algorithm (Kinnaert, 1999;

Zasadzinski et al., 2003). In addition, the suspension-

relative velocity required to control the vehicle suspension

is also derived from the diagnostic algorithm. Furthermore,

the support vector machine (SVM) is used to evaluate the

residuals generated by the unknown input observer. This

machine-learning application method can reduce the effort

required when designing fault diagnosis algorithms and

achieve excellent performance at the same time. Fault

diagnosis with machine learning (Widodo and Yang, 2007)

is rarely used in relation to vehicle suspension systems. In

particular, hybrid methods (Gao et al., 2015) which

combine model-based fault diagnosis and machine learning

(Liang and Du, 2007) have rarely been studied.

This paper is organized as follows. First, a quarter-car

model is introduced in Section 2. In Section 3, a residual

generator based on an unknown input observer is designed.

Using this residual, Section 4 introduces the SVM-based

decision-making process. Next, the simulation for

verification is performed. In the end, this paper shows that

the proposed diagnosis algorithm provides robust

performance under various road conditions.

2. SEMI-ACTIVE VEHICLE SUSPENSION 

SYSTEM

In this section, the quarter-car model using two vertical

accelerometers is described in terms of dynamic equations.

Owing to its simplicity and accuracy, the quarter-car model

has long been used in suspension control research. 

Figure 1 shows that the quarter-car model consists of a

sprung mass and an unsprung mass. The dynamic equation

for this model is given below.

 (1)

 (2)

In actual situations, the damping force of a vehicle

suspension system has highly nonlinear characteristics.

Due to its complexity, however, linearized suspension

damping force is used in many articles (Joo et al., 2000;

Szászi et al., 2002). Therefore, as in other studies, this

paper designs a fault diagnosis algorithm using a linearized

suspension damping model. Figure 2 shows the actual

damping force and linearized damping force. In this paper,

the least square approximation is used to linearize the

actual damping force. In addition, the sky-hook damping

control algorithm, widely used in practical applications, is

used to control the semi-active damper in this paper. The

sky-hook control (Savaresi et al., 2005) law is expressed as

follows:

 (3)

 (4)

The parameters used in this paper are described in Table 1.

Based on Equations (1) and (2), the state-space sensor
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
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( ) ( ) ( )c t c t c t c   �  

Figure 1. Quarter-car model of the semi-active suspension

system.

Figure 2. Linear and nonlinear damping characteristics.



MODEL-BASED SENSOR FAULT DIAGNOSIS OF VEHICLE SUSPENSIONS WITH A SUPPORT VECTOR MACHINE 963

fault model, which uses sprung and unsprung mass

accelerometers, is expressed as shown below.

 (5)

 (6)

In accordance with Equations (5) and (6), the sensor

fault of the suspension system is described as an additive

fault. Before designing a model-based fault diagnosis

algorithm, fault detectability should be contemplated with

regard to feasibility testing. Additive fault detectability can

be assessed using the following theorem (Ding, 2008):

Theorem 1: Given system Equations (5) and (6), an

additive fault f is detectable if and only if the following

equation holds:

 (7)

From Equation (7), E means the model fault of the

system. Since this paper mainly focuses on the suspension

sensor fault, the E matrix is assumed zero. It is noteworthy

that Equation (7) is applicable only to linear system.

Assuming that the bounded input csky is an arbitrary

constant in the control region, Equations (6) and (7) can be

represented as a linear system. Then, it is confirmed that

Equation (7) always holds within the control region

. In conclusion, sensor faults in the

vehicle suspension systems can be detected using a model-

based diagnosis method.

3. DESIGN UNKNOWN INPUT RESIDUAL 

GENERATOR

In this section, the residual generator based on an unknown

input observer for a quarter-car semi-active suspension

system is proposed. According to Section 2, since the

quarter-car model is not a linear system but is instead a

bilinear system, the residual generator proposed in this

paper has a different form to implement a bilinear residual

generator. Over the last few years, various methods have

been proposed to generate residuals for fault diagnoses of

bilinear systems. According to previous findings

(Zasadzinski et al., 2003), an unknown input residual

generator for a bilinear system expressed by Equations (5)

and (6) can be expressed in the following form:

 (8)

 (9)

where  is the estimated states, T is the transformation

matrix and  is the residual.

According to Equation (8), the unknown input observer

is also expressed as the bilinear system. In addition, from

Equation (9), it can be seen that the residual is generated by

the combination of the estimated states and the system

measurements. The residual generator with the form

defined by Equations (8) and (9) should meet several

conditions. First, the estimation error should be robust to

unknown inputs and states. In addition, the generated

residual should also be robust to unknown states. Finally, if

the system is healthy, the estimation error and residual must

converge. To design a residual generator satisfying these

conditions, the error dynamics is considered. The error

state is defined as follows:

 (10)

Then the error dynamics can then be described by the

equations below.

 (11)

In addition, the residual is described as

 (12)

Using the developed error dynamics, the matrices that

make up the unknown input residual generator are obtained

by the following theorem (Zasadzinski et al., 2003).
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Table 1. Vehicle parameters.

Parameter Variable

Sprung mass 441.5 kg

Unsprung mass 40 kg

Spring stiffness 99670 N/m

Nominal damping (Linear) 214.12 Ns/m

Tire vertical stiffness 268000 N/m

Umax 5285.3 Ns/m

Umin  1033.7 Ns/m
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Theorem 2: System Equations (8) and (9) represent an

unknown input residual generator if N, L, M, J, T and Q >

0 and a real  > 0 satisfying the following constraints:

 (13)

 (14)

 (15)

 (16)

where  (17)

According to Equations (13) and (14), it can be seen that

the estimation error is robust to the unknown input and the

system states. Similarly, Equation (15) indicates that the

residual is robust to the unknown input and the system

states. In addition, satisfying Equation (16) ensures the

stability of the unknown input observer.

Using the vehicle parameters and theorem 2, the

unknown input residual generator matrices are obtained as

follows:

 (18)

  (19)

  (20)

 (21)

  (22)

  (23)

4. SVM-BASED RESIDUAL EVALUATION

In the real world, residuals generated by a model-based

fault-diagnosis method are contaminated by unknown

model uncertainties and disturbances. Therefore, it is also

important to evaluate the ability of each generated residual

to perform robustly in the event of a fault diagnosis. This

residual evaluation is mainly performed using a

predetermined threshold. However, setting a threshold that

satisfies both robustness and sensitivity of the diagnostic

algorithm requires a great deal of effort. Therefore, a SVM-

based residual evaluation method is proposed in this paper.

SVM is a machine-learning technique optimized for binary

classification and requiring a small data set. Therefore, it is

an appropriate way to evaluate residuals under healthy and

faulty conditions.

4.1. SVM Classifier Design for Evaluating Residual

The SVM classifier used in this paper is designed based on

SVM theory as developed by Vapnik (2013). The basic

concept of SVM is to set the decision boundary that

classifies class to the maximum classification margin. For

N datasets xj with positive and negative states, the linear

decision boundary that separates this dataset can be

described as a hyperplane, as follows:

 (24)

Note that w is the normal vector of the hyperplane and b is

the bias factor.

Figure 3 describes the concept of SVM. In this figure, it

is assumed that blue-o represents a positive case, red-x

represents a negative case and D.B (opt) means the optimal

decision boundary (hyper plane) which obtained by solving

optimization problem. Similarly, D.B (b=/bopt) means the

decision boundary which has bias factor b deviated from

the optimal bias factor and D.B (w=/wopt) means the

decision boundary which has normal vector w deviated

from the optimal normal vector. The classifier with the

decision boundary represented by the dotted line becomes

more likely to discriminate that data between the red solid

line and the blue solid line as negative. This can degrade

the performance of the classification algorithm. Likewise,

in the case of a decision boundary depicted with a solid

black line, performance degrades compared to the

optimized decision boundary. Therefore, it is necessary to

solve optimization problem in order to find optimal w and

b.

To classify the dataset, it is assumed that the labels are

assigned as yj = 1 for a positive class and yj = 1 for a
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Figure 3. 2-Dimensional classification using SVM.
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negative class, and the hyperplane is set to have the

following properties:

  (25)

According to Equation (25), it can be seen that the positive

and negative class are divided depending on the sign of

f (xj). In general, the classification margin is described as

the distance from the nearest dataset to the hyperplane.

According to SVM theory, the nearest dataset is referred to

as a support vector. The distance r between support vector

x and data on hyperplane xp is expressed as shown below.

  (26)

By substituting the Equation (26) into the Equation (24),

the following equation can be obtained.

 (27)

Therefore,

  (28)

As a result, the problem of maximizing the distance r

without including data between the hyperplanes passing

through the support vector can be expressed as follows.

 subject to  (29)

To apply this theory to actual data, the noise and reliability

of the dataset should be considered. Therefore, in most

SVM studies, a slack variable is specified to cope with

errors in the data. When applying a slack variable, the

problem of obtaining the optimal hyperplane is expressed

as follows.

subject to  (30)

From Equation (30), a slack variable serves to penalize

object functions for errors that exceed a given decision

boundary. By using the Karush-Kuhn-Tucker condition

(Cristianini and Shawe-Taylor, 2000) and the Lagrangian

multiplier, Equations (29) and (30) can be presented as:

subject to  (31)

Additionally, a technique for generating nonlinear decision

boundaries using kernel functions is commonly used. A

kernel function is used to map the input space into a higher

dimensional feature space. In this paper, the residual is

evaluated using various kernel functions which are mainly

used in SVM applications, especially with regard to fault

diagnosis. According to earlier work, the design of the

SVM classifier used here can be expressed in the form of

the following optimization problem.

Subject to  (32)

4.2. Residual Evaluation

Using the designed SVM classifier, a residual evaluation is

conducted. The scaled residual, vehicle longitudinal

acceleration and lateral acceleration are considered as the

inputs and the prediction result is considered as the output.

The longitudinal and lateral acceleration values of the

vehicle, as determined by sensors built into the vehicle, are

used to account for the effects of uncertainty and

disturbances in the model. In addition, the mean and

variance of data commonly used in previous learning

applications are used as features to configure the data set of

the SVM classifier. The residual evaluation using the SVM

is shown in the following figure.

5. SIMULATION VERIFICATION

In this section, the simulation verification is performed

using the vehicle simulator Carsim and Matlab &

Simulink. This section is structured as follows. First, the

performance of the unknown input residual generator is

verified on various road surfaces. Next, SVM classifiers

composed of various kernel functions are derived using

residual signals obtained from various simulation

scenarios. Finally, the performance of the SVM classifier is

verified using well-known performance measures for

machine learning.

5.1. Simulation Set-up

In this paper, several road surface driving simulations are

conducted to verify the performance of the residual

generator. First, a low-frequency wavy road with a range of

0.02 m to 0.10 m is selected to verify the performance of

the residual generator when the motion of the sprung mass

is dominant. Next, a 3.6 m × 0.1 m speed-bump crossing

simulation is performed to verify the performance of the

residual generator when the motion of the unsprung mass is

dominant. Finally, to evaluate the effect of gravity on the

residual generator, a wavy uphill road simulation is
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Figure 4. Sensor fault diagnosis scheme.
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performed. In this section, the upper limit of the sprung

mass acceleration is assumed to be 2.5 g and the lower

limit is assumed to be  0.2 g. Furthermore, the types of the

sensor fault are a gain fault of 0.8 and a bias fault of + 2 m/

s2. The simulation scenarios are specified in the following

table.

5.2. Simulation Results

5.2.1. Wavy road simulation

Figure 5 shows the residual generated by the unknown

input residual generator. According to the figure, a gain

fault of 0.8, which is difficult to detect by the limit

checking method, occurred at one second. In order to be

used in the SVM classifier, a preprocessing method such as

low-pass filtering must be performed on the residual signal.

As a result of the simulation, it is confirmed that the

residual does not change significantly when there is no

fault, whereas the residual changes greatly if a fault occurs.

In another case, Figure 6 verifies that proposed residual

generator has also robust performance for sensor bias fault.

According to the simulation results, the limit checking

method with the aforementioned limit cannot detect the

sensor fault. In addition, the figure shows that the

performance of the unknown input observer is confirmed.

To verify the stability of the observer, an initial condition

error is added, but the estimated state converges to the

actual state.

5.2.2. Speed-bump simulation

Figures 8 and 9 show the result of the speed-bump

Table 2. Simulation scenarios.

Case Maneuver Variable

1 Wavy road 35 km/h

2 Speed bump 30 km/h

3 Wavy uphill road 30 km/h

Figure 5. Wavy road simulation results for residual

generation (gain fault): (a) Front left sprung mass

acceleration; (b) Residual generated by the unknown input

residual generator.

Figure 6. Wavy road simulation results for residual

generation (bias fault): (a) Front left sprung mass

acceleration; (b) Residual generated by the unknown input

residual generator.

Figure 7. Wavy road simulation results for the relative

velocity estimation: Front left suspension relative

velocity.
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scenario. Since the motion of the sprung mass is more

dominant, the effects of the damping nonlinearity have a

greater impact on the unknown input observer. Despite this

condition, the residual generator based on an unknown

input observer generated a robust residual in a healthy

condition. However, if a fault occurs, the residual changes

significantly. Given that preprocessing is performed on the

residual signal, the response of the residual is delayed. The

effects of this delay are covered in the following section.

As with previous scenarios, the proposed residual

generator exhibits robust performance against sensor gain

and bias fault. However, it has been determined that the

limit checking method cannot detect this fault scenarios.

Figure 8. Speed-bump simulation results for residual

generation (gain fault): (a) Front left sprung mass

acceleration; (b) Residual generated by the unknown input

residual generator.

Figure 9. Speed-bump simulation results for residual

generation (bias fault): (a) Front left sprung mass

acceleration; (b) Residual generated by the unknown input

residual generator.

Figure 10. Speed-bump simulation results for the relative

velocity estimation: Front left suspension relative velocity.

Figure 11. Wavy uphill road simulation results for residual

generation (gain fault): (a) Front left sprung mass

acceleration; (b) Residual generated by the unknown input

residual generator.
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5.2.3. Wavy uphill road simulation

The quarter-car model used in this paper does not take into

account the gravity read by the vertical accelerometer.

However, since the sensor attached to the vehicle measures

vertical acceleration while accounting for gravity, when the

road surface is inclined, the sensor signal has bias due to

gravity. Therefore, when designing a fault diagnosis

algorithm using an accelerometer, it is necessary to

consider the diagnostic performance on the inclined road

surface where bias of the sensor signal due to gravity

arises. According to the Figures 11 and 12, it can be

confirmed that the unknown-input-observer-based residual

generator shows robust performance even when not

considering gravity in the quarter-car model.

5.3. Residual Evaluation Results

In this paper, it is proposed to evaluate residual generated

by model-based fault diagnosis algorithm by statistical

method using SVM. Therefore, this section presents and

discusses the residual evaluation results using the SVM

classifier. To construct the SVM classifier, sensor signals

and residual are collected using various simulations that

describe the driving environment of the vehicle. Table

specifies various scenarios for collecting data to be used for

SVM classifier learning.

In order to verify the performance of the residual

evaluation method using the SVM, five-cross validation

and the F0.5-Measure are used. In general, a fault diagnosis

algorithm should be designed to minimize the number of

false-positive errors, i.e., the detection of a fault in the

absence of an actual fault. In other words, the F0.5-Measure

can be used more effectively in performance evaluations of

fault diagnosis algorithms since it emphasizes precision in

the representation of the ratio of the false-positive error. In

this paper, various types of SVM classifiers are constructed

and tested using the Matlab quadratic programming solver.

Figure 12. Wavy uphill road simulation results for residual

generation (bias fault): (a) Front left sprung mass

acceleration; (b) Residual generated by the unknown input

residual generator.

Figure 13. Wavy uphill road simulation results for the

relative velocity estimation: Front left suspension relative

velocity.

Table 3. Simulations for data collection.

Simulation Driving environment Number of data

1 Speed bump 30

2 Half bump 30

3 Hill, bank and curve 294

4 Wavy road 110

5 Hill and wavy road 110

6 Cross sign road 110

7 Hill and cross sign road 110

8 Sinusoidal road #1 390

9 Sinusoidal road #2 390

10 Sinusoidal road #3 390

11 Long straight road 2134

Table 4. SVM classifier performance outcomes.

Kernel function Kernel scale F0.5-Measure

Linear - 0.9958

Quadratic - 0.9969

Gaussian RBF 9.8 0.9937

Gaussian RBF 2.4 0.9940

Gaussian RBF 0.61 0.9768
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Table 4 shows the classification results using the SVM

classifier with various kernel functions. According to the

table, the SVM classifier using the residuals achieves high

accuracy. However, the classification performance

deteriorates as the kernel scale of the Gaussian RBF

function is reduced and the complexity of the SVM model

is increased. This occurs since data over-fitting arises as the

complexity of the model increases. As a result of checking

the error cases, it is confirmed that most of the errors are

false-negative errors. In addition, it is confirmed that a

false-negative error is caused by the residual response

delay due to the residual preprocessing. Hence, the

decision boundary generated using the SVM classifier acts

as a threshold of the residuals. In addition, according to the

principle of Occam’s razor, it can be concluded that the

SVM classifier with a simple structure such as a linear or

quadratic SVM is better suited for decision making using a

residual than other SVM classifiers.

6. CONCLUSION

In this paper, a model-based residual generation method

and a support-vector-machine-based decision making

process are proposed for vehicle suspension sensor fault

diagnoses. First, an unknown input residual generator is

designed for a vehicle suspension system, which is

described as a bilinear system. Next, the SVM classifier is

used to evaluate the generated residuals. This paper also

validates the performance of the unknown input residual

generator and SVM classifier using the commercial vehicle

simulator Carsim. As a result, it is confirmed that a robust

residual signal can be obtained by the unknown input

residual generator regardless of the road surface or the

model uncertainty. Consequently, the fault sensitivity and

robustness of diagnostic algorithms can be improved

relative to existing algorithm such as the limit checking

method. In addition, the SVM classifier is used to evaluate

a residual generated by a model-based method. With the

use of a performance measure, it could be confirmed that

the SVM classifier with an uncomplicated structure

achieves excellent performance. As a result of using the

performance measure, in this case the F-measure, it could

be confirmed that the SVM classifier with an

uncomplicated structure achieves excellent performance.

Since the SVM classifier replaces the heuristically tuned

residual threshold, it becomes possible to reduce the effort

required to design fault diagnosis algorithms. In

conclusion, the proposed fault diagnosis algorithm can be

used to detect sensor faults robustly in vehicle suspension

systems. The proposed fault diagnosis algorithm has a

limitation that there is a performance deviation depending

on the configuration of the residual data set used for

learning. In this paper, the data set is collected based on

simulations. However, if the proposed fault diagnosis

method is applied to an actual vehicle, actual vehicle test

data have to be collected in various scenarios.
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