
 

Fig. 1: An illustration for a fraud input. Two inputs are 
shown: a target class sample (PET bottle, above), and a 
fraud sample (printed PET bottle, below). 
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Abstract— Deep learning based recognition systems have 

shown high performances in various tasks. Most of them are 

single-modality based, using camera inputs only, thus are 

vulnerable to look-alike fraud inputs. Fraud inputs may 

frequently be abused when rewards are given to the users, such 

as in reverse vending machines. Joint use of multi-modal inputs 

can be a solution to fraud inputs since modalities contain 

different information about the target task. In this work, we 

propose a deep neural network that utilizes multi-modal inputs 

with an attention mechanism and a correspondence learning 

scheme. With an attention mechanism, the network can learn 

better feature representation for multiple modalities; with the 

correspondence learning scheme, the network learns intermodal 

relationships and thus can detect fraud inputs where modalities 

do not correspond to each other. We investigate the proposed 

approach in a reverse vending machine system, where the task is 

to perform classification among 3 given classes (can, PET bottles, 

glass bottles), and reject any suspicious input. Three different 

modalities (image, ultrasound, and weight) are used. As a result, 

we show that our proposed model can effectively learn to detect 

fraud inputs while maintaining a high accuracy for the given 

classification task. 

Keywords—Deep Learning; Fraud  Detection; Multi-modal 

I.  INTRODUCTION 

Advances in deep learning [1], [2] have shown state-of-the-
art performances in various recognition tasks [3], [4], [5]. 
Thanks to open-sourced deep learning frameworks, 
commercial applications [6], [7] based on deep learning are 
made possible. In many business models with recognition 
systems, the most important goal is to achieve high accuracy. 
However, preventing fraud inputs or adversarial attacks is also 
crucial in some business models such as for reverse vending 
machines [8], [9], because actual rewards will be given to users 
immediately. 

As most recognition systems have a single camera modality 
as input, they are vulnerable to fraud inputs. An example is 
shown in Fig. 1. Several adversarial attack methods [10], [11], 
[12] have been proposed to ‘fool’ recognition systems using 
image inputs. Also, vulnerabilities in commercial recognition 
systems have been reported [13], [14]. A simple solution is to 
use multiple modalities as inputs, such as RGB images with 
depth images, IR images or ultrasound. Multiple modalities 
contain information complementary to each other by providing 

different aspects of information for the given task. So far, 
multi-modal recognition systems have been proposed for 
robustness against noise [15] and for better performance [16], 
[17]. In this work, we propose a multimodal recognition system 
for fraud detection. However, as shown in our experiments, 
naive combinations of multiple modalities may not fully enjoy 
the efficacy of complementary information. We propose two 
techniques, an attention mechanism and a correspondence 
learning, to combine multi-modal features for recognition and 
fraud detection using deep neural networks. 

Attention methods have been used in visual question 
answering (VQA) tasks [18], [19] or image captioning tasks 
[20]. In the case of VQA tasks, the inputs are one image and 
one corresponding question. A common method is to aggregate 
the image features according to the attention gates produced 
from the question, and then the last classifier selects an answer. 
In such cases, the attention gate is generated for the image 
modality only, and so the attention is uni-directional. In this 
work, we exploit the correlation among modalities. We jointly 
use multiple modalities and generate attention gates for 
modalities. 

Inspired by recent studies in self-supervised learning [21], 
[22], we use a correspondence learning scheme to further 
exploit multi-modal correlation. If multi-modal inputs are 
naively used, the neural network tends to exploit the most 
discriminative parts, and may not fully utilize multi-modal 
information. To learn the correlation among modalities, we 
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Fig. 2: Overall architecture for our multi-modal recognition system. We use modality-specific feature extractors to extract 1D 
features from multiple modalities. All extracted features are concatenated, refined with multi-modal attention, and finally fed 
into the joint classifier. In addition, each modality feature is trained with modality-specific classifiers. 

create a synthetic class, called unmatched, in which the 
modalities are from different classes. When discriminating 
between unmatched class and matched classes (CAN, PET, 
GLASS), the neural network is encouraged to learn class 
related features as well as correlations among modalities. In 
this paper, we propose a multi-modal deep neural network for 
object recognition and fraud detection. As camera modality is 
frequently used as inputs, we focus on preventing look-alike 
frauds in reverse vending machine cases. Nevertheless, the idea 
can easily be extended to other situations. While naive joint 
learning may not fully utilize multi-modal information, we use 
two techniques, an attention mechanism and correspondence 
learning, to further exploit the correlation among modalities 
and learn better representations 

The paper contributes in the following way: 

1) We show that single modality based deep neural 

networks (DNNs) are vulnerable to fraud inputs and unseen 

class objects. When trained with known classes only, DNNs 

classify look-alike inputs and unseen objects with high 

confidence 

2) We propose a multi-modal DNN with an attention 

mechanism and correspondence learning. We show that the 

proposed DNN maintains high classification accuracy and 

fraud detection rate. 

3) We show that a DNN with non-contact ultrasound 

signals achieves high accuracy in material classification. We 

train and test the DNN with our own dataset of various shapes 

and poses. 

We will introduce the target problem in Sec. II, our 

proposed method in Sec. III, the experimental setup including 

deep network setups and hardware setups in Sec. IV, and the 

experiment results and analysis in Sec. V; the conclusion will 

follow, including future directions. 

 

II. FRAUD DETECTION IN REVERSE VENDING MACHINE 

A. Reverse Vending Machine 

A reverse vending machine (RVM) collects empty, 
recyclable containers from users and gives out rewards. There 
are several products in operation, such as TOMRA [8], RVM 
Systems [23] and Superbin [9]. Previous systems often use 

UPC or bar code scanners to specifically identify the incoming 
containers. However, such systems require a huge and up-to-
date database of containers and cannot handle deformed 
(crumpled) containers for which UPC or bar codes are not 
identifiable. To handle such problems, we have built a simple 
vision-based system with deep convolutional neural networks 
for garbage classification; it has shown over 99% accuracy for 
classification. Previously built system use image inputs only 
and is vulnerable to fraud inputs such as lookalike samples. 

Since an automated RVM gives back immediate rewards, it 
is crucial to not give a false positive classification. That is, to 
identify a non-target object as one of the target class. The 
system must reject any non-target inputs and ask the users to 
input target class objects. If the system accepts non-target 
objects, this vulnerability may be abused by malicious users, 
and can lead to huge loss to the company. It is a fundamental 
threat to the RVM business model. 

B. Fraud Inputs 

We define any malicious input that leads to 
misclassification as a fraud input. As stated in I, we focus on 
visually similar inputs as the fraud targets. Visually similar 
inputs include printed objects, as shown in Figure 1; non-target 
inputs include any random objects such as crumpled paper or 
plastic bags. Visually similar inputs exploit the uni-modality 
characteristic of the system. Many visual recognition systems 
depend solely on a single camera sensor, and can be easily 
fooled by visually similar inputs. There are famous failure 
cases of Facegate in Samsung Galaxy S8 [13], or Windows 
Hello facial recognition system [14]. A simple fix to this 
vulnerability is to jointly use multiple modalities and leverage 
the correlation among them. 

C. Non-target Inputs 

Non-target inputs can be easily rejected by thresholding the 
neural network output. However, the network output is a 
maximal likelihood prediction and is not an absolute 
confidence measure. Therefore, the network sometimes fails to 
reject non-target inputs. In this work, we show that joint 
training of multiple modalities also prevents such failures. 

Details for the dataset acquisition will be described in Sec. 
IV-B. Captured samples are shown in Fig. 3. 



 

Fig. 3: Captured images in the dataset. (a) is a target class 
sample of CAN. (b) is a visually similar fraud sample of 
printed CAN. (c) is a non-target sample of glove. 

 

Fig. 4: A synthesized dataset for correspondence learning. 
III. PROPOSED METHOD 

We propose a multi-modal DNN using an attention method 
and correspondence learning. Multiple modalities contain rich 
information from different domains, but a naive use of multiple 
modalities cannot fully utilize the rich information. With the 
attention method and correspondence learning, the multi-modal 
network shows superior performance, as shown in the 
experimental results in Table III. 

A. Deep Neural Network (DNN) 

 In order to build a powerful yet fast recognition system, we 
use different types of lightweight DNN-based feature 
extractors for input modalities, and a multi-layer perceptron 
(MLP) as the classifier. In short, the network output is 
computed as:  

 P(Ximg, Xus, Xw) = MLPcls  ( Fimg(Ximg), Fus(Xus), Fw(Xw)) 

where Fimg, Fus and Fw are feature extractors for image, 
ultrasound and weight inputs respectively, and MLPcls is the 
final classifier. 

1) Multi-modal Feature Extractor: We use ResNet18 [2] 

as the image feature extractor Fimg, stacked 1D convolutions 

for Fus, and an MLP for Fw. Image inputs are RGB images; 

ultrasound input is transformed into spectrograms; weight 

input is a one-hot encoded vector. Each feature extractor 

outputs a 1D feature vector for each input modality. 

2) Joint Classifier: The final classifier for multi-modal 

features is also an MLP. Before the 1D features are fed into 

the classifier, we simply concatenate them into one feature 

vector. We apply the attention mechanism to the concatenated 

feature vector to compute better representations. 

3) Modality-specific Classifier: Additionally, we use 

multi-task method for each modality. As shown in Fig. 2, there 

are auxiliary classifiers for image, weight, and ultrasound 

inputs. In this way, we can ensure that each modality feature 

contains its own information for the given task.  

Details for each part will be addressed in Sec. IV-A. 

B. Attention Method 

 Self-attention methods [24], [25] have recently been 
proposed for better representation learning. Self-attention 

refines feature maps by increasing or suppressing the scales of 
certain features. While previous methods have investigated the 
single modality case, we utilize the self-attention method for 
inter-modality and inter-channel re-calibration. The attention 
values for each modality are calculated from inputs consisting 
of each modality itself, and the two other modalities as well. As 
an equation, the attention process can be described as below: 

 F’ = F + F ⊗ σ(Matt(F))       

where Matt is an MLP for generating attention masks and F is 
the concatenated multi-modal feature. The attention mask is 
normalized with a sigmoid layer, and the attention weighted 
feature is added to the original feature map. Then the feature 
maps are weighted between 1.0 and 2.0. This kind of residual 
style attention is applied for stable gradient propagation. 

C. Multi-Modal Correspondence Learning 

A fraud input is a fundamental threat to single-modality 
recognition systems: for example, visually similar can often 
fool image-based recognition systems. We can detect fraud 
inputs by examining the inter-modal correlations. To explicitly 
learn the correlation among modalities, we apply 
correspondence learning during network training.  

In correspondence learning, we want to exploit the 
‘correspondence’ among modalities. That is, target class inputs 
have correspondences among modalities: for example, an 
aluminum CAN shows common visual characteristics of CANs 
and material characteristics of aluminum at the same time. 
With such intuition, we want the proposed DNN to classify the 
input object as one of the target classes only when the 
modalities correspond.  

As shown in Fig. 4, we synthesize an extra class named 
‘unmatched’, for which the image, ultrasonic signals and 
weight are not from the same class. As this is a simple mixture 
of existing data, no extra data are required. By training with the 
original matched classes and the unmatched class, we explicitly 
train the DNN to learn not only the original matched class but 
also the correspondence of the input modalities. 



 

Fig. 5: The hardware setup for data acquisition and raw 
materials used for the material database. (a) is the overview 
of the setup. From left, there are the box for object 
placement, the power supply, the controller and the laptop. 
Ultrasonic, camera (RGB), load cell sensors are attached to 
the box. (b) shows the inner-upper side of the box, where 
LED bars, ultrasonic transmitter/receiver and the camera 
sensor are attached. (c) are in flat shapes and (d) are in 
cuboid and cylinder shapes. 

IV. EXPERIMENT SETUPS 

A. Network Settings 

The network design has three parts: feature extractors, 
attention layers, and the classifiers. Also, if not otherwise 
specified, the networks are trained with the Adam optimizer, 
with learning rate 1e−4. 

1) Feature Extractors: For the image modality, we use 

ResNet-18 up to stage4 as the feature extractor, followed by a 

global average pooling layer. A linear layer is added at the 

end, and outputs a 1D feature vector of size 512. For the 

ultrasound modality, we use time-frequency data in the range 

(30kHz, 50kHz) as input. The feature extractor consists of four 

1D convolutions with (kernel size, stride) of [(201, 5), (51,1), 

(51,1), (51,1)] with ReLU. Similar to the image feature 

extractor, a linear layer is added at the end, and outputs a 1D 

vector of size 512. For the weight modality, we use one-hot 

encoding where the bin size is 3g per bin and maximum 

weight is 600g. The feature extractor consists of 3 linear layers 

where the hidden sizes are [512, 512, 512] with batch 

normalization and ReLU. 

2) Attention Module: Features from different modalities 

are fed into the attention layers for feature refinement. The 

attention layer generates gates for each modality feature. The 

attention module consists of 3 linear layers with output sizes 

[1536, 1536, 1536, 1536]. The last output is normalized with a 

sigmoid layer. The normalized output is divided into 3 vectors, 

and the 3 vectors are regarded as attention vectors for 3 

modalities. Each modality feature vector is multiplied with the 

attention vector for feature refinement. 

3) Classifiers: The refined modality features are 

concatenated and fed into the joint classifier. The joint 

classifier is a 4-layer MLP with batch normalization and 

ReLUs, with hidden sizes of [768,768,768], the last output is 

the number of target classes. When we use the synthesized 

unmatched class, one extra class is added. In order to train 

each modality feature well, we also assign separate classifiers 

for different modalities. In this way, even when an unmatched 

class instance is fed into the network, we can train separate 

branches with the real labels of each type of modality data. 

Each modality-specific classifier contains 3 linear layers with 

hidden sizes of [256,256]; the last output is the number of 

target classes. For modality-specific classifiers, we cannot use 

the extra unmatched class. 
Since neural networks are not usually designed for fraud 

detection, we use a heuristic method of fraud detection. Neural 
networks are usually trained with known classes, and are not 
aware of unseen class instances. In classification networks, the 
output is softmax normalized, and the answer is the maximum-
likelihood output. In order to detect fraud inputs, we have used 
a heuristic threshold for the likelihood: when the maximum-
likelihood output is below the threshold, we regard the input as 
a fraud input. In addition, in cases in which an unmatched class 
is used for training, the test inputs classified as unmatched class 
are also regarded as fraud inputs. 

B. Hardware Settings and Data Acquisition 

In this section, we introduce the data acquisition system and 

the types of databases for our experiments. 

1) Sample objects for databases: To build the databases 

for our multi-modal classification task, we acquire sensor 

inputs from various objects using ultrasonic, camera and load 

cell sensors. There are two types of databases: the raw 

material database in which the target objects have the same 

shapes and different material types, as shown in Fig. 5 (c)(d); 

and the real object database, in which the target objects are 

real world objects including our target class objects (can, PET 

bottles, glass bottles), fraud inputs, non-target, as shown in 

Fig. 3. The raw material types are stainless steel, aluminum, 

poly-carbonate, and polyvinyl chloride. To learn material 

features that are robust to sizes and shapes, we make the 

objects for the raw material database in various shapes and 

sizes. We use 3 shapes: flat, cuboid, and cylinder. Flat shapes 

have compositions of width 80, 100, 120 and 140mm, height 

100, 200, and 300mm, and 3T thickness. Cuboids are 

compositions of square bases with 50, 75, and 100mm sides 

and 100, 200, 300mm height. Cylinders are compositions of 

circle bases with 50, 75, and 100mm diameters and 100, 200, 

and 300mm heights. 

We collected as many real world samples as possible to 

ensure the diversity of the target class objects. We use 167 

cans, 141 PET bottles and 228 glass bottles as the target class 

objects. In addition to the target class objects, we made a 

simple fraud input dataset by printing out the target class 

objects. As shown in Fig. 1, the printed objects are realistic 

enough to ‘fool’ a deep neural network system. We collected 

60 fraud examples for evaluation purpose. For non-target data, 



we randomly collect 29 miscellaneous objects around, such as 

paper cups, gloves, plastic bags, human arms or clothes. 

2) Hardware setup: The hardware setup for data 

acquisition is as shown in Fig. 5 (a)(b). We use a single pair of 

transmitter/receiver ultrasonic sensors (HG-

M40TN2/HGM40RN2, Hagisonic), a USB webcam sensor 

and a 5kg load cell sensor. We use a controller (compactRIO-

9036, National Instruments) to trigger and receive raw signals 

of the ultrasonic and load cell sensors. We trigger the 

ultrasonic sensor transmitter every 200ms and record the raw 

input in the receiver at 1 mega samples per second. We record 

the load cell signal simultaneously. We acquire the image data 

with the USB webcam. All control is done on the laptop 

computer. The controller and the USB webcam are connected 

to the laptop. 

V. EXPERIMENT RESULTS 

A. Raw Materials with Ultrasound 

In this section, we use a single pair of non-contact 
ultrasonic sensors and 1D CNN to show that raw material 
classification is viable, especially when the objects are in 
various shapes and poses. In our target task of reverse vending 
machines, object material is important. It has been shown that 
material classification is viable with ultrasonic signals [26], 
[27], so we decide to use ultrasonic sensors as a new modality.  

However, the experiments conducted in [26], [27] are 
highly controlled in that the target objects are flat board shapes 
with the same pose and distance from the sensors. In real world 
cases, the target objects are in various shapes, sizes and poses. 
Therefore, we need to show that ultrasonic signals still contain 
enough information in such challenging cases.  

TABLE I.  RAW MATERIAL CLASSIFICATION WITH ULTRASOUND 

2D shapes 

Material type Accuracy(%) 

Acryl 100.0 

Aluminium 100.0 

Iron 100.0 

Plastic 96.0 

Avg acc 99.0 

3D shapes 

Material type Accuracy(%) 

Aluminium 100.0 

Plastic 91.6 

Iron 91.8 

Avg acc 94.4 

 

In the experiment, we use the raw material dataset acquired 
in Section IV-B with various shapes, sizes, and poses. The 
feature extractor and the classifier are the same as the ones 
specified in Sec. IV-A. According to the result in Table I, we 
empirically verified that material classification is possible with 
a single pair of non-contact ultrasonic sensors and a 1D CNN. 

B. Fraud Detection using Real World Data 

In this section, we show that our proposed model can learn 

to classify target inputs and detect fraud inputs. First, we show 

the effects and the limitations of naive use of multimodal 

inputs. Next, we show that the two proposed techniques 

achieve high fraud detection rate while maintaining high 

accuracy for target class objects. 

a) Multi-modal Inputs: When multiple modality inputs 

are used together, we expect a better performance of DNNs in 

general. As shown in Table II, joint use of multiple modalities 

can achieve higher fraud detection rate for both visually 

similar fraud inputs and non-target inputs. The change in 

target class object accuracy is negligible. In terms of fraud 

detection rate (visually similar fraud inputs and non-target 

inputs), the efficacy of multiple modality can be observed. 

Fraud inputs are all unseen classes for DNNs, and the features 

are different from those of target class objects. We conjecture 

that multi-modal inputs will show more differences in 

features, compared to single modal cases. Therefore, multi-

modal inputs achieve a higher fraud detection rate.  

TABLE II.  CLASSIFICATION RESULTS USING MULTI-MODAL INPUTS IN 

REAL WORLD DATABASE. W DENOTES THE WEIGHT MODALITY. TARGET 

DENOTES THE ACCURACY IN TARGET CLASS OBJECTS IN FIG. 3, FRAUD 

DENOTES THE FRAUD DETECTION RATE FOR VISUALLY SIMILAR FRAUD INPUTS, 
NON-TARGET DENOTES THE FRAUD DETECTION RATE FOR NONTARGET INPUTS. 

Modality Target (%) Fraud(%) Non-target(%) 

Image (IMG) 98.0 8.3 6.9 

Ultrasound (US) 82.3 15.0 6.9 

IMG + US 96.5 15.0 6.9 

IMG + US + W 97.5 18.3 13.7 

TABLE III.  CLASSIFICATION RESULTS USING CORRESPONDENCE 

LEARNING AND MULTI-MODAL ATTENTION IN REAL WORLD DATABASE. CL 

DENOTES CORRESPONDENCE LEARNING AND ATT DENOTES MULTIMODA. 

Modality CL Att Target (%) Fraud(%) Non-target(%) 

IMG+US+W   97.5 18.3 13.7 

IMG+US+W  


 
99.5 21.7 20.7 

IMG+US+W   81.8 86.7 93.1 

IMG+US+W   94.0 91.7 93.1 

 

b) Multi-modal Attention: The purpose of multi-modal 

attention is to refine the concatenated multi-modal features by 

self-attention. As all modality feature vectors are used to 

generate attention masks for each other, we expect the 

network to learn better representations. As shown in Table III, 

multi-modal attention achieves a higher target class accuracy, 

a higher fraud detection rate for both visually similar fraud 

inputs and non-target inputs. Generally improved performance 

indicates better representations. For fraud inputs, the inter-

modal relationships are different from those of target class 

objects. As for attention jointly use multi-modal features, we 

suspect that the network detects fraud inputs using the changes 

in the inter-modal relationship. 



c) Correspondence Learning: Correspondence learning 

explicitly trains the network to learn the correlation among 

modalities, and a much higher fraud detection rate is achieved, 

as shown in Table III. However, there is a decrease in target 

class accuracy. We argue that the fraud detection rate is 

improved because the classifier has learned the correlation 

between modalities through correspondence learning. As fraud 

detection is crucial to the RVM business model, large 

improvement on fraud detection rate is remarkable. The result 

is compliant with the results from [21], as the network learns 

to accept modality-matched inputs and reject modality-

unmatched inputs. Fraud inputs have unmatched modalities 

since visually similar inputs have visual appearance of various 

classes, but does not have matched ultrasonic or weight inputs. 

d) Final Model: Finally, we combine all the techniques. 

The last row of Table III is the final model we propose, in 

which all the proposed techniques are used. It achieves high 

accuracy with high fraud detection rate. When correspondence 

learning is used, the fraud detection rate becomes very high, 

while the target class accuracy is the most compromised value. 

The attention mechanism improved the fraud detection rate 

while maintaining the target class accuracy. We argue that this 

is due to better feature learning resulting from the multi-modal 

attention mechanism. When the two techniques are combined, 

the final model preserves high accuracy while detecting most 

of the fraud inputs. This is a remarkable improvement since 

fraud examples are hard to distinguish using only visual 

modality only, as shown in Fig 1 and Table II.  

Lower target class accuracy may be a concern, but a slight 
compromise is not a problem in the reverse vending machine 
task. Most mis-classifications are classified as ‘unmatched’, 
and users will be asked to try again. As the accuracy is 94%, 
the next trial is highly likely to be successful. 

VI. CONCLUSION 

In this paper, we have proposed a multi-modal DNN with 
attention mechanism and correspondence learning for object 
recognition and fraud detection. As single-modal systems are 
fundamentally vulnerable to fraud inputs, we utilize 
multimodal inputs. While a naive joint use of multi-modal 
features cannot fully enjoy the efficacy of multi-modal 
information, the two proposed techniques, multi-modal 
attention and correspondence learning, increase the fraud 
detection rate and preserve high target class accuracy.  

The proposed techniques are lightweight and simple. Both 
can be easily integrated into any DNN-based multi-modal 
systems, and jointly trained end-to-end. Also, no extra data are 
required. We are planning to integrate this mechanism in 
commercial reverse vending machines.  

Recently, many adversarial attacks are proposed against 
DNNs. Most of them target single-modal, image-only systems, 
but they can be extended to multi-modal cases. In this paper, 
we have only investigated physical visually similar fraud inputs 
and non-target inputs. In future works, we will extend our 
study to fraud detection mechanisms against adversarial 
attacks. Figures and Tables 
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