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A B S T R A C T

This paper presents a new method for estimation of vehicle sideslip angle, which is a critical factor in some
vehicle chassis control systems. Making use of easily available in-vehicle sensors and a standalone global po-
sitioning system (GPS), an integrated observer approach is developed, which includes a sensor offset compen-
sator and two kinds of extended Kalman filters (EKFs) based on a bicycle model and a kinematic model, re-
spectively. To properly combine the outputs of these EKFs, a weighting factor, a function of tire cornering
stiffness and tire force, is designed. The observability of each EKF is checked by observability functions of
nonlinear systems. As well as the sideslip angle, the longitudinal velocity, heading angle, and tire cornering
stiffness are simultaneously estimated by the proposed algorithm. Finally, the performance of the entire system
in various driving scenarios is verified using a test vehicle, and the superiority of the integrated observer is
confirmed through a comparative study.

1. Introduction

Over the last decades, varieties of mechatronics have been devel-
oped by many researchers and industry experts to improve vehicle
safety and agility [1]. In particular, the typical mechatronic systems
related to both steering maneuver and vehicle lateral motion are elec-
tronic stability programs (ESPs) and torque vectoring (TV), which have
already been implemented in modern production cars [2]. As well as
yaw rate, steering angle, and wheel speed information, vehicle sideslip
angle is also necessary for these mechatronic systems to provide both
appropriate actuation time and manipulated variables [3]. In fact, since
directly measuring the sideslip angle requires very expensive measuring
equipment and complex procedures for installation, an estimation al-
gorithm using easily available in-vehicle sensors is desired [4]. Gen-
erally, these in-vehicle sensors, such as wheel speed sensors, a gyro-
scope, an accelerometer, and a steering angle sensor are mounted on
production vehicles equipped with ESP [5]. Also, vehicle models cate-
gorized as a bicycle model and a kinematic model are utilized for the
estimation of sideslip angle. A bicycle model-based estimator is known
to produce accurate estimations, but susceptible to vehicle parameter
errors [2,6]. Especially, one of main issues of the bicycle model, the
estimation of tire cornering stiffness was discussed in some previous
works. An adaptive law proposed by Hahn et al. [7] estimated the tire-

road friction coefficient (TRFC) as well as the tire cornering stiffness,
but it was based on a differential global positioning system (DGPS), too
expensive equipment to be commercialized. Hsu et al. [8] developed a
novel logic to estimate tire slip angle and friction limit using both
steering torque and pneumatic trail model. Nevertheless, the estimation
results of tire cornering stiffness were not distinctly represented. A re-
cursive least square (RLS) method to estimate the cornering stiffness
was suggested by Nam et al. [9]. However, it was based on the tire force
sensor, which is unavailable for conventional vehicles.

In contrast, a kinematic model based-estimator is not affected by the
change of vehicle parameters. However, the integration errors due to
sensor offset would cause the estimation performance to deteriorate
[6]. Using a two-antenna GPS receiver, Ryu and Gerdes [10] proposed
kinematic Kalman filters which provide high-update estimates of the
vehicle states and the sensor biases, and also compensate for roll effects.
However, this two-antenna GPS system requires highly rigorous in-
stallation work and additional costs. Also, this high dependence on the
GPS may make the estimation accuracy deteriorate under some GPS
outage conditions.

Accordingly, in some previous papers, the combination of two es-
timators was proposed. Cheli et al. [11] implemented a fuzzy-logic
procedure to combine them, but there was no solution to the sensor
offset problem. The algorithm proposed by Chen and Hsieh [12] had
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the same limitation. Piyabongkarn et al. [13] designed a combination
method in which the bicycle model-based estimator was mainly used at
low frequencies and the kinematic model-based estimator at high fre-
quencies. However, the estimation performance was limited when large
sideslip angles were maintained for a long time period. Oh [2] sug-
gested a multiple-observer approach using a 6-D inertial measurement
unit (IMU) and verified its estimation performance, but this approach
had the potential to cause excessive computational burden due to its
complex structure.

In this paper, a new integrated observer approach for sideslip angle
estimation is introduced. In addition to the sideslip angle, other vehicle
states such as heading angle, tire cornering stiffness and longitudinal
velocity are simultaneously estimated. A flow chart of the integrated
observer approach is illustrated in Fig. 1. The combination of the global
positioning system (GPS) with data from the in-vehicle sensors is con-
sidered [14]. Some researchers stated that this combination was suffi-
ciently accurate and reliable, and had complementary characteristics in
terms of accuracy, bandwidth, and noise level [1,6,15–16]. Also, the
extended Kalman filter (EKF), an effective method for estimating the
states of nonlinear system is utilized for both bicycle model and kine-
matic model-based estimators.

The main differences distinguishing the proposed algorithm from
the previous sideslip angle estimation methods are as follows. First, to
prevent the estimation performance from deteriorating, a sensor offset
compensator is designed. Due to its simple and intuitive structure, it
requires only small computational burden. Second, tire cornering
stiffness values in tire nonlinear region are estimated by a bicycle
model-based EKF, so that they are usefully utilized to judge and im-
prove the reliability of the bicycle model. Third, in order that an in-
tegrated observer combines outputs of two EKFs appropriately, a novel
weighting factor is designed, which actively reflects the real-time lat-
eral motion of vehicle. This integrated observer design is applied to
multi-model fusion in this paper for the first time. Lastly, because only
standalone GPS (in a cost-effective price range) not 6-D IMU is installed
additionally, the main advantage of proposed approach is high price
competitiveness.

This paper is comprised of six sections. Section 2 describes the used
sensors and the algorithm of the sensor offset compensator. Section 3
presents the bicycle model-based EKF with tire cornering stiffness es-
timation. Then, Section 4 focuses on the kinematic model-based EKF
using the combination of GPS and in-vehicle sensors. Section 5 deals
with the weighting factor design and the integrated observer. In
Section 6, the proposed integrated observer approach is validated ex-
perimentally using a test vehicle, and a comparative study is presented.
Lastly, conclusions of this study are presented in Section 7.

2. Sensor offset compensator

2.1. Sensors

The speeds of four individual wheel can be obtained from wheel
speed sensors. Also, an accelerometer and a gyroscope provide accel-
erations at the vehicle center of gravity (CG) (i.e. longitudinal ax and
lateral ay) and yaw rate r, respectively. The data measured from the
steering angle sensor can be converted to the front steering wheel angle
δf with a constant reduction ratio. All data from these in-vehicle sensors
are shared by the vehicle controller area network (CAN). In the absence
of wheel longitudinal slip, the average of undriven wheel speeds vw is
assumed to be identical to the vehicle longitudinal velocity vx [2,5–6].

=
+

v
v v

2w
w L w R, ,

(1)

The standalone GPS receivers are available in a cost-effective price
range [5–6,15,17]. Among the outputs of the GPS, the vehicle speed vs
and course angle ν are used in the proposed algorithm. The principles
used in measuring them are the GPS Doppler shifts and the line of sight
between vehicle and satellites [14,18]. Here, vs is the 2-D planar speed,
excluding the vertical component (z-axis). Course angle ν represents the
direction of the velocity vector in north-east (NE) global coordinates. To
express ν in the vehicle body coordinates, a coordinate transformation
is performed: the range from 0 to 360° is converted to the range from
−270 to 90°.

2.2. Compensation algorithm

There are several reasons for measurement errors in the accel-
erometer and gyroscope data. Vehicle pitch and roll motions due to
severe driving maneuvers or irregular road conditions affect the accu-
racy of sensors. However, these factors generally result in temporary
errors [17,19]. Also, they cannot be measured without additional sen-
sors such as a 6-D IMU. For this reason, they are neglected in this paper.
The major cause of the error covered in this paper is a sensor intrinsic
offset. This is constantly and consistently included in the sensor output,
so that offset compensation is essential to prevent accumulative in-
tegration errors. It is assumed that the noise of each sensor is Gaussian
white noise.

The offset compensator is designed to be activated only when the
vehicle drives straight. The trigger signal with steering commands is
simply and intuitively expressed as follows:

Fig. 1. Flow chart of the integrated observer approach.

G. Park et al. Mechatronics 50 (2018) 134–147

135



= ⎧
⎨⎩

≤ ≤δ δ δ δɛ 1 If and ˙ ˙

0 otherwise
.f f th f f th, ,

(2)

The estimated offset of yaw rate, ̂br is derived as

̂ ̂
= +

= − +

r r b

b k b r˙ ɛ ( ).

m r

r r r m (3)

Here, rm and kr are the raw signal and positive tuning gain, re-
spectively. This tuning gain adjusts the convergence speed of offset
estimation. In the same manner, the notations mentioned later ax, m, ay,
m and vw, m are the raw signals, and kx, ky and kw the positive tuning
gains. During straight motion ( =ɛ 1), since the reference of the yaw
rate is zero, ̂br converges to a constant value. Otherwise, during the
other situation ( =ɛ 0), the estimated value ̂br is held constant.
Similarly, the reference of the lateral acceleration is zero, and the es-
timated offset of lateral acceleration ̂by is derived as follows:

̂ ̂
= +

= − +

a a b

b k b a˙ ɛ ( ).

y y m y

y y y y m

,

, (4)

To estimate the offset of longitudinal acceleration ̂bx , the vehicle
speed measured by the GPS is utilized. During only longitudinal
driving, the GPS measurement vs is almost identical to the vehicle
longitudinal velocity vx regardless of the slip ratio [20]. Therefore, the
differential value v̇s, which is processed by a low-pass filter, is con-
sidered the reference signal of ax.

̂ ̂
= +

= − − −

a a b

b k b v a˙ ɛ ( ( ˙ ))

x x m x

x x x s x m

,

, (5)

As well as the aforementioned sensor offsets, wheel speed errors due
to an incorrect value of effective rolling radius Re (nominal value) have
to be compensated. The actual wheel speed vw can be represented by
the measured wheel speed ( =v R ww m e m, ) considering the uncertainty of
rolling radius bR:

= +v v
v
R

b .w w m
w m

e
R,

,

(6)

When the vehicle drives straight at constant or slowly varying speed
(i.e. ≤v v˙ ˙s s th, ), the trigger signal ɛw is turned on and the estimated un-
certainty of the rolling radius ̂bR converges to a constant value. At this
point, the reference of wheel speed is vs measured by the GPS.
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where

= ⎧
⎨⎩

≤ ≤ ≤δ δ δ δ v vɛ 1 If , ˙ ˙ and ˙ ˙
0 otherwise

.w
f f th f f th s s th, , ,

In addition, the outputs of the sensor offset compensator ( ̂bx , ̂by, ̂br

and ̂bR) have to be held constant during the vehicle spin-out condition
i.e. >− v v βcos ( / )w s th

1 . They are transmitted to other estimators, and
ultimately contribute to improving the accuracy of the sideslip angle
estimation.

3. Bicycle model

In the bicycle model, also called the single-track model, it is

assumed that the wheels are located at the vehicle center line [21] (see
Fig. 2). Therefore, the tire forces of the wheels on both sides are lumped
at the center line. The lateral force balance and moment balance
equations are formulated in following equations: it is assumed that the
longitudinal velocity is constant or changes slowly.

+ = +mv β r F F( ˙ )x yf yr (8)

= −I r F l F l˙z yf f yr r (9)

where m is the vehicle mass, and Iz the vehicle yaw moment of inertia.
Here, lf and lr are the CG-front and CG-rear axle distances, and Fyf and
Fyr the lateral tire forces of the front and rear axles, respectively. The
wheel slip angles of each axle are expressed as

= + −α β
l
v

r δf
f

x
f (10)

= −α β l
v

r.r
r

x (11)

The lateral tire force is linearly proportional to the wheel slip angle,
and these have opposite signs.

= −F C αyf f f (12)

= −F C αyr r r (13)

where Cf and Cr denote the cornering stiffness of the front and rear
axles, respectively. It is assumed that the cornering stiffness is linearly
proportional to the tire vertical force, so that Cf and Cr can be nor-
malized by the front and rear vertical forces, respectively [2]. Hence,
they are written as the following detailed expressions. At this point, the
tire vertical forces can be obtained by the open-loop calculation (if the
6-D IMU is installed additionally, it is possible to consider the roll ac-
celeration effect of the tire vertical force [22]).

= +C C C F( Δ )f f n f n zf0 (14)

= +C C C F( Δ )r r n r n zr0 (15)

where

=
−
+

=
+
+

F
mgl mha

l l
F

mgl mha
l l

, .zf
r x

f r
zr

f x

f r

Here, h is the height of CG, and the normalized cornering stiffness
(C/Fz) is divided into the nominal parameter C n0 and unknown variable

Fig. 2. Diagram of the bicycle model.
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ΔCn. The nominal parameter is the slope in the linear region of the
normalized lateral tire force, as shown in Fig. 3. But, it cannot be denied
that fixed C n0 without any adaptation in the nonlinear region reduces
the accuracy of lateral tire forces in Eqs. (12) and (13) [2]. When the
nonlinear region is reached, the slope decreases. The unknown variable
ΔCn can be expressed as the change of slope. The nominal parameter C n0
also varies with the types of road surface. Thus, the lower the TRFC μ is,
the smaller C n0 is [23]. To be robust to this road uncertainty, the un-
known variables CΔ f n and CΔ r n, i.e. the changes of the cornering
stiffness are estimated by the bicycle model-based EKF. Also, it is as-
sumed that an adaptive law proposed by Han et al. [24] using only
wheel speed signals estimates the real-time μ in advance. Consequently,
the nominal parameters matched with the corresponding μ can be
predetermined as Cf n0 and Cr n0 .

3.1. Bicycle model-based EKF

The bicycle model-based EKF taking into account the cornering
stiffness variation was designed earlier [23]. However, a modified EKF
is proposed in this paper, and the features that distinguish it from the
previous method are as follows. 1) Because the cornering stiffness is
normalized by the tire vertical force in advance, the unknown variable
ΔCn estimated by the EKF can be used to detect the tire nonlinear region
in Fig. 3. 2) The yaw rate is added to the state vector of the EKF.
Therefore, this addition contributes to improving the estimation per-
formance of EKF. 3) The lateral tire forces Fyf and Fyr in the measure-
ment vector are easily obtained from simple calculations.

The basic idea of the EKF is a recursive linearization of the system
equation around the estimated state. The EKF provides an optimal state
estimation in nonlinear systems [25]. Consider the following discrete
system model (using a first-order Euler approximation, a differential
equation is discretized).

= + = +−x f x u w z h x u v( , ) , ( , )k k k k k k k k1 (16)

Here, x is the state vector, u the input vector and z the measurement
vector; w and v are the process and measurement noises, respectively
(assumed to be Gaussian white noise). Detailed procedures of the EKF
are described in [26].

By augmenting Eqs. (8)-(15), the state vector and model equation of
the bicycle model-based EKF are derived as follows:
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where

=u F F δ[ ] .k zf zr f
T

Here, Ts represents the sampling period. The covariance matrix of
process noise is obtained as = × ×− −Q diag (3.5 10 , 8 10 , 3, 3)bic

6 5 ,
based on the bicycle model characteristics. To increase the sensitivity of
cornering stiffness estimation, it can be increased up to

× ×− −diag (3.5 10 , 8 10 , 9, 9)6 5 . Accordingly, the slop of graph in Fig. 3
can be changed more sensitively. The measurement vector and output
equation are expressed as

=
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where
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˙
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˙
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r y z

f r
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Here, the derivatives of the yaw rate in Fyf and Fyr are processed by
the low pass filter. To minimize the effect of noise statistically, the
covariance matrix of measurement noise is obtained as

Fig. 3. Normalized lateral tire force versus wheel slip angle.

Fig. 4. Diagram of the vehicle kinematic model.
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= × × × −R diag (3.2 10 , 6.94 10 , 5.8 10 )bic
4 4 6 , based on the sensor noise

characteristics. Lastly, the Jacobian matrices F and H of the bicycle
model-based EKF are

Consider the Lie derivative functions Lf and observability function
Obic in terms of Eqs. (18) and (19) as below [27].

=

=
∂

∂
=

= ⎡
⎣⎢

∂
∂

∂
∂

∂
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∂
∂
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−

L h
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x
f i

O L
x

L
x

L
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L
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· 1, 2, 3

f

f
i f

i

bic
f f f f

T

(0)

( )
( 1)

(0) (1) (2) (3)

(22)

Because the observability function has a full rank of 4, this non-
linear system of the bicycle model is locally observable. From the wheel
speed and estimated sideslip angle, the estimated lateral velocity of the
bicycle model-based EKF can be obtained: ̂ =v v tan β( )y bic w bic, . The out-
puts of the bicycle model-based EKF play important roles. As shown in
Fig. 3, large CΔ f n and CΔ r n correspond to the nonlinear region where
the reliability of the bicycle model decreases more than that of the
kinematic model. In contrary, CΔ f n and CΔ r n are generally small in the
linear region of lateral tire force. In this case, the bicycle model is
known to be highly accurate, and it is wise to utilize ̂vy bic, from the
bicycle model-based EKF as much as possible. In conclusion, the in-
tegrated observer can determine how much to utilize ̂vy bic, through CΔ f n

and CΔ r n.

4. Kinematic model

As mentioned above, the kinematic model is robust against changes
in the vehicle parameters (mass, yaw moment of inertia, tire cornering
stiffness, etc.), type of road surface, and driving operations [13]. Fig. 4
shows the vehicle kinematic model with both vehicle body coordinates
for the in-vehicle sensors and NE global coordinates for the GPS. Note
that the subscripts denote their corresponding coordinates: (x, y) ve-
hicle body coordinates and (e, n) global coordinates. Here, vy is the
vehicle lateral velocity, and ψ the vehicle yaw angle (also called the
heading angle). Both the vehicle speed and the course angle measured
by the GPS can be expressed with respect to the vehicle body co-
ordinates.

= +v v vs x y
2 2

(23)

⎜ ⎟= + = + ⎛
⎝

⎞
⎠

−υ ψ β ψ tan
v
v

y

x

1

(24)

Although the offsets of in-vehicle sensors are estimated and elimi-
nated by the compensation algorithm in Section 2, some factors leading

to the integral drift phenomenon still exist, such as an approximation
error due to signal discretization, incorrect integral initial value, and
unexpected disturbance. To overcome these problems, the use of the

GPS measurements, which are free from sensor offset issues, can be a
sufficiently effective solution.

4.1. Kinematic model-based EKF

Similar to the Section 3.1, the state vector and model equation of
the kinematic model-based EKF are given as follows:

=x v v ψ[ ]k x k y k k
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where

=u a a r[ ] .k x y T

Then, the measurement vector and output equation are written as
follows:
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where the velocity components in the NE global coordinates ve, GPS and
vn, GPS are

= =v v υ v v υcos( ), sin( ).e GPS s n GPS s, ,

The Jacobian matrices of the kinematic model-based EKF are de-
rived as below.
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The observability function Okin in terms of the Eqs. (26) and (27) has
a full rank of 3, so that this system is locally observable [28]. As
mentioned above, it is certainly wise to utilize the kinematic model in
the nonlinear region of the lateral tire force [2].

As well as the estimated lateral velocity ̂vy kin, , the estimated heading
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angle ψ is a noticeable output of the kinematic model-based EKF. Since
the heading angle is important information for predicting the next
traveling direction of the vehicle, it can be used for various applications
from safety control systems (e.g. intelligent airbag systems to minimize
collision damage and collision avoidance systems) to autonomous
driving systems.

Actually, the accuracy of standard GPS significantly deteriorates
under some GPS outage conditions, such as use in tunnels or urban
areas with many tall buildings [5]. In this case, it is desirable to replace
the kinematic model-based EKF with an open-loop estimator that does
not use any GPS measurements. From the number of satellites asso-
ciated with the accuracy of the GPS measurements, the use of the open-
loop estimator can be determined [5].

5. Integrated observer

5.1. Weighting factor design

The integrated observer located at the end of the overall algorithm
synthesizes the EKFs in Sections 3.1 and 4.1. Finding the appropriate
weighting factor in real time is an important task in determining the
performance of the integrated observer approach. Firstly, the sub-
weighting factors of front and rear axles are defined as follows.
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Here, τ and ɛ are the positive tuning constants that make up the
saturation functions. Fig. 5 shows how these sub-weighting factors are
formulated as a function of the unknown variable ΔCn (i.e. change of
normalized cornering stiffness). A large ΔCn results in a high sub-
weighting factor; this implies that the reliability of vy, bic from the bi-
cycle model-based EKF decreases. In this case, the portion of vy, kin has
to be raised. On the other hand, a small ΔCn signifies that the bicycle
model is highly accurate and the kinematic model-based EKF is no
longer necessary.

Use of the kinematic model-based EKF corresponds with high lateral
acceleration (i.e. high normalized lateral force Fy/Fz). Therefore, the
final weighting factor K∈ {K|0≤K≤ 1} reflecting this tendency is
designed as follows:
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Here, the normalized lateral forces of front and rear axles Fyf/Fzf and
Fyr/Fzr are obtained from the simple calculation:
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Since the weighting factor K is based on the maximum function
(max (•, •)), it can be quickly increased whenever vy, kin from the kine-
matic model-based EKF is highly required. An unnecessary increase of K
at low lateral acceleration can be naturally inhibited. Also, by dividing
by μ(from the estimation algorithm), the sensitivity of the weighting
factor can be maintained even on the low-μ surface. It implies that vy, kin
gets more weight on the slippery road [29]. Compared with the pre-
vious weighting methods [2,13,30], this newly designed weighing
factor more actively reflects the real-time lateral dynamics of a vehicle,
such as normalized lateral tire force and cornering stiffness. In the next
Section 5.2, the weighting factor is used to develop the integrated ob-
server.

5.2. Observer design

To incorporate two EKFs based on the bicycle and kinematic
models, the integrated observer is proposed in this section. It is iden-
tical to the EKF algorithm, so that the above-mentioned EKF process is
repeated again. The model equation in terms of =x v v r[ ]k x k y k k T, , and

=u a a δ[ ]k x y f
T is derived as follows:
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where the tire cornering stiffness C• is equal to +C C F( Δ )n n z•0 • •. On the
right-side of Eq. (33), the first and second terms correspond to the bi-
cycle model and kinematic model, respectively. Then, the measurement
vector and output equation of the integrated observer are given as
follows.

= − + − +
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These measurements are the weighted sum of the estimated results
from two EKFs, not conventional forms of measurement. The Jacobian
matrices of the integrated observer are obtained as follows:
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Fig. 5. Weighting factor design.
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The observability function Oint in terms of the Eqs. (33) and (34) has
a full rank of 3, so that this system is locally observable. Through the
stability analysis of the general EKF demonstrated by Reif et al. [31],
the exponential stability of the EKF with several assumptions was
proven. Lastly, the integrated observer results in the estimated velo-
cities ̂vx,int and ̂vy,int, and in doing so, the estimated sideslip angle βint
( ̂ ̂= − v vtan ( / )y x

1
,int ,int ), the primary outcome of this research is generated.

Compared with the simple weighting sum (  = − +β K β Kβ(1 ) bic kin),
some advantages of the integrated observer are as follows. 1) The
predicted state vector −̂x of the EKF contributes to higher accuracy. 2)
The simple weighting sum may include high frequency noises, whereas
the integrated observer eliminates them without any phase lag issues.

Showing the flow chart in Fig. 1, the proposed approach proceeds
only in the forward direction, Therefore, both bicycle model and ki-
nematic model-based EKFs do not use the outputs of the integrated
observer. Accordingly, although βint is inaccurately estimated, the
model-based EKFs are not affected by this incorrect βint and are able to
generate their outputs ̂vy bic, and ̂vy kin, to recovery this inaccuracy.

6. Experiments

6.1. Experimental set-up

A real production vehicle, Hyundai LF Sonata (midsize vehicle) is
utilized for verification of the proposed algorithm. The vehicle speci-
fications are detailed in Table 1. As mentioned above, both TRFC and
initial cornering stiffness are predetermined by the TRFC estimation
algorithm [24,32]. Fig. 6 shows photographs of the test vehicle and of
the RT3002. The RT3002 (from Oxford Technical Solutions, Ltd.) is
based on a highly efficient differential GPS (DGPS) system, so that it is
accurate enough to measure the actual vehicle states such as vehicle
velocities and heading angles. It is assumed that the RT3002 is located
at CG of the vehicle. A standalone GPS receiver (for estimation pur-
poses) and DGPS antenna of the RT3002 (for verification purposes) are
mounted on the roof of the vehicle. The distance between the roof and
the RT3002 is approximately 600mm.

Using a Micro-Autobox, all of the data from GPS receiver, in-vehicle
sensors, and RT3002 are monitored in real time [33,34]. The integrated
observer approach is built into the Micro-Autobox. The sampling per-
iods of each sensor are as follows: 1 ms for RT3002, 10ms for in-vehicle
sensors, and 50ms for standalone GPS. Then, the sampling period of the
sideslip angle estimation algorithm, Ts is identical to that of the in-
vehicle sensors. Experiments are conducted at the test-drive course of
Hyundai-Kia R&D center [35,36], where the accuracy of the GPS is
reliable due to the open-sky environment. The test driving scenarios are
listed in Table 2. From a variety of driving maneuvers, the effectiveness
of the integrated observer approach proposed in this paper can be
verified. Especially, the robustness of the algorithm on the slippery

surface is evaluated in the experimental case 5.

6.2. Experimental results

6.2.1. Experimental case 1
In this test, severe sine steering with a frequency of 3 Hz and

maximum amplitude of 50° is conducted. Firstly, the estimation results
of the sensor offsets are all shown together in Fig. 7. During the first 3
seconds, the trigger signal for offset estimation in Eq. (2) is turned on,
and the estimated offsets converge to constant values. After the vehicle
engages in the sine steering maneuver, the trigger signal is turned off,
and the estimated offset values are exploited to compensate for the
offset errors. As shown in Figs. 7(e), (f), and (i), there are two kinds of
absolute errors made by the raw and compensated measurements. Also,
the absolute differences between actual vx and vw are shown in Fig. 7(j).
Although the irregular noise components still exist, it is confirmed that
the absolute errors of the compensated measurements are closer to zero.
Although this offset compensation is impossible to make the measure-
ment errors zero, it can contribute to improving the accuracy of the
sideslip angle estimation.

Fig. 8 shows other results, such as the estimated cornering stiffness
values and weighting factor. Since the tire slip angle of the front axle is
surely larger than that of the rear axle in vehicle under-steering
(αf> αr), the lateral tire force of the front axle enters the nonlinear
region more quickly. Fig. 8(b) shows that the cornering stiffness values
of both front and rear axles are changed according to the fluctuation of
ay in Fig. 8(a). Especially, that of front axle certainly drops to below the
initial value. But, this sine steering maneuver makes the cornering
stiffness less vigorously changed than other test maneuvers. The final
weighting factor in Eq. (31) is generated, as shown in Fig. 8(c). Fig. 9
compares the sideslip angle estimation results obtained by the in-
tegrated observer, open-loop estimator, bicycle model and kinematic
model-based EKFs. The kinematic model-based EKF prevents the in-
tegration drift of the open-loop estimator, but it still has noticeable
deviations from the actual values. In this experimental case, the in-
tegrated observer generally gives more weight to the bicycle model-
based EKF. When the bicycle model-based EKF estimates the incorrect
values unexpectedly (at 7 s and 11.5 s), the increment of weighting
factor leads the integrated observer to keep the high accuracy. Conse-
quently, it is apparent that the integrated observer yields the most ac-
curate estimation results. Unlike the other EKFs, the integrated observer
using the proper weighting factor does not show any noticeable errors.

6.2.2. Experimental case 2
The DLC test is known as a typical handling test to look into the

vehicle motion during extreme steering maneuvers. The severe steering
and lateral acceleration profiles are shown in Figs. 10(a) and (b), re-
spectively. Fig. 10(c) describes the abrupt changes of the cornering
stiffness values. To prevent the cornering stiffness from unreasonably
drifting away, ΔCn is intentionally set to zero during intervals of steady
state, such as 6–10 s. As can be seen in Fig. 10(c), CΔ r n considerably
smaller than CΔ r n at the start of cornering (at 2.5 s and 12 s) distinctly
indicates the under-steering tendency that the test vehicle lacks cor-
nering agility. Also noteworthy, the transient states are clearly revealed
in this experimental case. During the first DLC maneuver,  >C CΔ Δf n r n

(during 2–3.5 s, 4–5.5 s, and 6–8 s) and  >C CΔ Δr n f n (during 3.5–4 s and
5.5–6 s) occur alternately. Surely, the second DLC maneuver shows si-
milar trends. These are caused by the steering angle rate vigorously
changed in the DLC test.

Compared with the previous case, the weighting factor in Fig. 10(d)
changes more significantly. In doing so, it quickly induces the in-
tegrated observer to give more weight to the more appropriate vehicle
model at each moment. Furthermore, both longitudinal velocity and
heading angle are accurately estimated, as shown in Figs. 10(e) and (f).
Actually, it is known that the sideslip angle estimation in the DLC test is

Table 1
The specifications of test vehicle.

Parameter Quantity Value

m Vehicle mass+ people 1819 kg
lf CG-front axle distance 1.265 m
lr CG-rear axle distance 1.54 m
Iz Yaw moment of inertia 3566 kg m2

Re Effective rolling radius of tire 330 mm
h Height of CG 542 mm
Cf0 Initial tire cornering stiffness of front axle 191000 N/rad (μ≈ 1)

23500 N/rad (μ≈ 0.3)
Cr0 Initial tire cornering stiffness of rear axle 161000 N/rad (μ≈ 1)

18000 N/rad (μ≈ 0.3)
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quite difficult. As can be seen from Fig. 11, the bicycle model is in-
adequate to track the rapidly varying actual sideslip angle. To tackle
this difficulty, the integrated observer gives weights to the kinematic
model based-EKF to a great extent, which is advantageous in the
transient states. Instead, the bicycle model based-EKF prevents the es-
timation performance of the integrated observer from deteriorating at
both 6 s and 15.5 s. Thus, the integrated observer maintains acceptable
levels of error throughout the whole DLC test.

6.2.3. Experimental case 3
On a circular track with a long radius of gyration (25m), the driver

increases the vehicle speed for the first 5 sec (with the maximum
longitudinal acceleration of 0.2 g), then keeps it at constant speed after
that. While keeping both the steering angle and the vehicle speed
constant, the value of lateral acceleration is around 0.5 g (see
Fig. 12(b)). As can be seen from Fig. 12(c), this under-steered turn
causes the cornering stiffness of the front axle to drop more sharply

Fig. 6. Experimental set-up.

Table 2
The test scenarios.

Case Driving maneuver Typical longitudinal velocity Type of road surface

1 Sine steer 70 km/h Dry asphalt (μ≈ 1)
2 Double lane change (DLC) 65 km/h Dry asphalt
3 Acceleration in turn (AIT)+ Long circle turn: 25m of radius of gyration 35 km/h Dry asphalt
4 AIT+Short circle turn: 15m of radius of gyration 35 km/h Dry asphalt
5 Brake in turn (BIT) 50 km/h Packed snow (μ≈ 0.3)

Fig. 7. Sine steer test results for sensor offset estimation: (a) Sine steer profile, (b) Vehicle speed profile measured by the GPS. Estimated offsets: (c) bx, (d) by, (g) br and (h) bR. Absolute
errors of measurements: (e) ax, (f) ay and (i) r. (j) Absolute differences between actual vx and vw.
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than that of the rear axle. For safety reason, most of passenger vehicles
are designed to be under-steered in the steady state [17], so the results
of Fig. 12(c) are reasonable. The driver's minute handle manipulation to
follow the circular track in Fig. 12(a) causes the high frequency com-
ponents of cornering stiffness estimation in Fig. 12(c). Since the

centrifugal force is constant in the steady state of the circle turn, the
sideslip angle is also maintained at a constant value in the steady state.
Except for the open-loop estimator results fluctuating seriously, the
other estimators show acceptable levels of errors, as shown in Fig. 13.
Also, it is noteworthy that although the high-frequency components

Fig. 8. Sine steer test results: (a) Lateral acceleration profile, (b) Cornering stiffness values of front and rear axles, (c) Weighting factor.

Fig. 9. Estimated sideslip angle during sine steer test.
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exist in both the cornering stiffness estimation and weighting factor (see
Figs. 12(c) and (d)), the integrated observer provides relatively smooth
estimation results by attenuating high-frequency signals: it is one of
advantages of the integrated observer, as mentioned above.

6.2.4. Experimental case 4
For the first 10 sec, the longitudinal velocity increases from 20 km/h

to 35 km/h. The maximum longitudinal acceleration is approximately
0.1 g. After that, a more severe circle turn than the previous case is
performed: the radius of circle is shortened by 10 m, whereas the ve-
hicle speed is almost the same. As shown in Fig. 14(b), the high lateral

acceleration close to its limit implies the generation of a large sideslip
angle. The lateral tire force of the front axle is expected to approach the
saturation point, but that of the rear axle is not. The weighting factor in
Fig. 14(d) sharply increases to 1, so that the kinematic model-based EKF
exerts large influence on the final estimation results. Also, it is con-
firmed that the weighting factor is reduced to weight the bicycle model-
based EKF at the end of the severe circle turn. Fig. 15 shows the high
tracking performance of the integrated observer in both transient
(during 0–10 s) and steady states (during 10–30 s). On the other hand,
the other estimators have low accurate domains: the bicycle model-
based EKF has noticeable steady state errors, and the kinematic model-

Fig. 10. DLC test results: (a) Sine steer profile, (b) Lateral acceleration profile. (c) Cornering stiffness values of front and rear axles. (d) Weighting factor. (e) Estimated longitudinal
velocity, and (f) Estimated heading angle.

Fig. 11. Estimated sideslip angle during DLC test.
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based EKF is less accurate at low vehicle speeds due to GPS char-
acteristics.

6.2.5. Experimental case 5
During the first 4 seconds, the vehicle speed is increased to 50 km/h

on the slippery road. At 5 s, the driver begins to perform both the
braking and steering actions simultaneously. The maximum values of
the vehicle deceleration and steering angle are 0.2 g and 200°, respec-
tively. Since the safety control systems are intentionally deactivated to
confirm the robustness of the estimation algorithm, the vehicle is spun
out with the extremely excessive sideslip angle. Thus, the lateral ac-
celeration in Fig. 16(b) is much larger than the TRFC ( =μ 0.3). As
shown in Fig. 16(c), the initial cornering stiffness values are more

decreased than those of previous cases ( =μ 1). During 7–9 s, they fall to
near their minimum. Because of the wheel slip ratio in both accelera-
tion and braking operations, the estimated vehicle speed has some
slight differences from the actual value, as shown in Fig. 16(e).

It is shown in Fig. 17 that this BIT test causes the large sideslip angle
reaching up to 50°: even if the steering angle returns to zero at 7.5 s, the
sideslip angle is still large. But, due to the quickly increasing weighting
factor in Fig. 16(d), the integrated observer can follow vy, kin rapidly and
maintain the estimation performance even in this spin-out condition. In
summary, the errors of the sideslip angle estimation based on the in-
tegrated observer approach are presented in Table 3. There are both
maximum and root mean square (RMS) errors in each case. Table 3 shows
the error levels that can be applied to production car applications.

Fig. 12. Test results during AIT and long circle turn.

Fig. 13. Estimated sideslip angle during AIT and long circle turn tests.
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7. Conclusion

In this paper, a novel method has been proposed by which to esti-
mate the various vehicle states, such as sideslip angle, heading angle,
longitudinal velocity and tire cornering stiffness simultaneously. Three
subsystems (sensor offset compensator, two vehicle model-based EKFs)
are individually implemented using competitively priced sensor-fusion
(in-vehicle sensors and GPS). Lastly, an integrated observer, based on
novel weighting factor actively reflecting the real-time lateral dy-
namics, combines their estimation outputs. Through the real car-based
experiments, high performance in estimation during various driving
scenarios has been confirmed. The main contributions of the proposed

algorithm are summarized as follows.

(1) The sensor offset compensator has a simple and intuitive structure,
but it can easily eliminate the sensor intrinsic offset and improve
the accuracy of the entire estimation algorithms.

(2) The bicycle model-based EKF with the tire cornering stiffness esti-
mation provides the superior estimation performance in the tire
linear region and detects the tire nonlinear region. In contrast, the
kinematic model-based EKF solving the nonlinearity of the GPS
measurements is usefully utilized in the tire nonlinear region.

(3) The final integrated observer has some advantages, such as higher
estimation accuracy due to the prediction step of the EKF and

Fig. 14. Test results during AIT and short circle turn.

Fig. 15. Estimated sideslip angle during AIT and short circle turn tests.
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suppression of high-frequency noise without any phase lag issues.
(4) The proposed algorithm using only a minimal number of sensor

signals is a cost-effective method.
(5) This paper demonstrates that the proposed algorithm can be a

practical solution for vehicle state estimation of mass production
vehicles. Also, it is expected that meaningful information provided
by the proposed algorithm can be a promising tool to improve the
performance of vehicle control systems.

Fig. 16. Test results during BIT.

Fig. 17. Estimated sideslip angle during BIT test.

Table 3
Errors of the sideslip angle estimation.

Case Maximum error (°) RMS error (°)

1 0.218 0.063
2 0.623 0.177
3 0.386 0.144
4 0.834 0.340
5 6.714 2.455
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