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Abstract—In many industrial fields, the mass information of a
moving system is important and necessary to prevent undesired
motion or failure and to control the system in its desired
trajectory. One simple solution could be direct measurement of
the mass using a sensor such as force sensor and accelerometer.
However, it requires additional cost increase. In addition, it is
not easy to measure the mass of a moving part in many cases.
For those reasons, in this research, an online varying mass esti-
mation algorithm is designed using an Extended Kalman Filter
(EKF) without any additional sensors. Furthermore, the lumped
disturbance compensating algorithm, which was designed by the
authors in the previous research using EKF, is combined to obtain
further position tracking performance. The effectiveness of the
suggested method is validated through simulations. Additional
verification with experiments is planned for future work.

I. INTRODUCTION

With developments in industrial technology, automation and

robotics have become widely used in many industries [1].

This phenomenon has led to improvement in productivity and

uniform quality of products. However, when a process breaks

down and the entire workflow stops, the loss in terms of time

and cost is considerable because the working processes are or-

ganized with optimized schedules. Therefore, equipments are

checked on a regular basis, fault tolerant design is established,

and severe working conditions are avoided. As an example, the

maximum inertial force at the robot arm is limited to certain

amount to prevent fatigue fracture [2] due to repetitive bending

moment at the lower part of the column. In this case, accurate

mass information is absolutely necessary to calculate the exact

inertial force.

Moreover, accurate mass information is required for system

control such as position, velocity and acceleration control

for the following reasons. First, the desired poles of closed

loop control systems are usually chosen considering the mass

of moving parts [3]. Secondly, the mass is included as a

parameter in the inverse plant model which is usually used

for feedforward control to obtain faster response.

In some applications with an invariant mass system such

as welding and screwing, just initial mass information could

be sufficient for proper operation. However, the mass can

change periodically in some transport works (i.e., pick and

place work). Therefore, online estimation or measurement and

adaptation for that varying mass are necessary. Attaching a

sensor such as force sensor and acceleration sensor for direct

measurement of the mass can be a solution. However, it is not

easy to measure the mass of a moving part, and it also causes

an increase of the hardware cost [4].

In this research, a software approach to estimate the vary-

ing mass during automated operation without any additional

sensors is investigated. In a previous study [5], a lumped

disturbance compensator was designed with an EKF of the 6th

order. As explained in Section III, by expanding the EKF order

from the 6th to the 7th, both the varying mass estimation and

force ripple compensation for permanent magnet linear motor

systems are achieved.

The rest of this paper is organized as follows. The necessity

of mass information is presented with simulation results in

Section II. The suggested EKF is designed in Section III. Then,

the performance evaluation and analysis are shown in Section

IV. Finally, conclusions are given in Section V.

II. NECESSITY OF ACCURATE MASS INFORMATION

In this section, the necessity of accurate mass information is

described using simulation results. With wrong mass informa-

tion, the control performance of a mechanical system usually

deteriorates. The performance according to the wrong mass

information was analyzed for the case of the real mass of 6.7

kg, and the results are shown in Fig. 1, Fig. 2 and Table I.

It should be noted that the desired velocity condition is given

constant of 0.04 m/s to attenuate the influence by the different

inertial force due to the mass error. As described in Fig. 1

and Fig. 2, the nominal mass is set to 3.4 kg, 6.7 kg and 9.9

kg, respectively. Fig. 1 shows the comparison between the real
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(c) When the nominal mass is 6.7 kg
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(e) When the nominal mass is 9.9 kg
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(f) Close-up of above subfigure (e)

Fig. 1. Influence of mass information on lumped disturbance estimation. Real
mass is 6.7 kg.
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(a) When the nominal mass is 3.4 kg
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(b) When the nominal mass is 6.7 kg

Time (s)
0 1 2 3 4 5 6 7

P
os

iti
on

 e
rr

or
 (

m
)

-5

-2.5

0

2.5

5

(c) When the nominal mass is 9.9 kg

Fig. 2. Influence of mass information on position tracking error. Real mass
is 6.7 kg.

lumped disturbance and the estimated lumped disturbance by

the 6th order EKF which does not consider the mass variation.

Further detailed algorithmic description will be addressed in

Section III. To clarify the differences among them, close-up

figures are attached below each condition in Fig. 1. Moreover,

Fig. 2 shows the position tracking error due to the wrong mass

information. As clearly seen in Fig. 1 and Fig. 2, the control

performance becomes better when the mass information is

correct. In addition, the RMS position error is calculated for a

quantitative evaluation and summarized in Table I. The results

for the nominal mass of 17 kg are omitted in Fig. 1 and Fig. 2,

but included in Table I.

III. EXTENDED KALMAN FILTER DESIGN

As briefly mentioned in the previous sections, the 6th order

EKF proposed by the authors in the previous research [5] was

designed without the consideration of mass varying conditions.

Therefore, poor performance is expected in varying mass

condition as shown in Fig. 1, Fig. 2 and Table I. In this section,

the order of the EKF is expanded from 6 to 7 to estimate the

mass variation in real time and to utilize that information for

the force ripple compensation as in the following procedures.
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Fig. 3. Process of the EKF algorithm.

TABLE I
RMS POSITION ERROR DUE TO WRONG MASS INFORMATION

Nominal mass RMS position error

3.4 kg 1.63 μm

6.7 kg 0.55 μm

9.9 kg 3.42 μm

17 kg 4.32 μm

Reference trajectory: 0.04m/s*t

First, the mechanical dynamics of a motor system can be

written as

Mẍ(t) +Bẋ(t) = u(t) + d(t), (1)

where M is the mass of the mover, x(t) the position of

the mover, B the viscous friction coefficient, u(t) the thrust

force and d(t) the force ripple due to disturbances that are

composed with constant and some harmonic components. With

the assumption that the force ripple consists of up to the 4th

order harmonic components, the force ripple d(t) in Eq. (1)

can be decomposed as follows:

d(t) =

[
(CA0 + C0) + (CA1 + C1) · cos

( 2π

xpp
(x+ xs)

)

+(CA2 + C2) · sin
( 2π

xpp
(x+ xs)

)

+C3 · cos
( 2π

xpp
2(x+ xs)

)
+ C4 · sin

( 2π

xpp
2(x+ xs)

)

+C5 · cos
( 2π

xpp
3(x+ xs)

)
+ C6 · sin

( 2π

xpp
3(x+ xs)

)

+C7 · cos
( 2π

xpp
4(x+ xs)

)
+ C8 · sin

( 2π

xpp
4(x+ xs)

)]
,

(2)

where C0 ∼ C8 are the coefficients of the position dependent

disturbance model, CA0 ∼ CA2 are the coefficient offsets be-

tween the model and the real value, that are to be compensated

by the EKF, xpp is the pole pitch of the permanent magnets

and xs is the initial position that is to be estimated by the

EKF.

The state variable x for the EKF is designed as follows:

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ

x+ xs

CA0

CA1

CA2

1/M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

then, the state space representation is given as

ẋ1 = x2

ẋ2 = −Bx7x2 + x7u+

[
x7(x4 + C0)

+x7(x5 + C1) cos

(
2π

xpp
(x3)

)

+x7(x6 + C2) sin

(
2π

xpp
(x3)

)

+x7C3 cos

(
2π

xpp
(x3) ∗ 2

)
+ x7C4 sin

(
2π

xpp
(x3) ∗ 2

)

+x7C5 cos

(
2π

xpp
(x3) ∗ 3

)
+ x7C6 sin

(
2π

xpp
(x3) ∗ 3

)

+x7C7 cos

(
2π

xpp
(x3) ∗ 4

)
+ x7C8 sin

(
2π

xpp
(x3) ∗ 4

)]

ẋ3 = x2

ẋ4 = 0

ẋ5 = 0

ẋ6 = 0

ẋ7 = 0, (4)

where some assumptions as ẋs � 0, ĊA0 � 0, ĊA1 � 0,

ĊA2 � 0 and Ṁ � 0 are applied. The first four assumptions

are validated in [5]. The last assumption can be validated by



resetting this algorithm at every putting up and putting down

operation.

Equation (4) is rewritten as follows through discretization

using the forward rectangular approximation:

x1(k + 1) = x1(k) + Tsx2(k)

x2(k + 1) = [1− TsBx7(k)]x2(k) + Tsx7(k)u(k + 1)

+Tsx7(k)
[
x4(k) + C0

]
+Tsx7(k)

[
x5(k) + C1

]
cos

(
2π

xpp
x3(k)

)

+Tsx7(k)
[
x6(k) + C2

]
sin

(
2π

xpp
x3(k)

)

+Tsx7(k)C3 cos

(
2π

xpp
x3(k) ∗ 2

)

+Tsx7(k)C4 sin

(
2π

xpp
x3(k) ∗ 2

)

+Tsx7(k)C5 cos

(
2π

xpp
x3(k) ∗ 3

)

+Tsx7(k)C6 sin

(
2π

xpp
x3(k) ∗ 3

)

+Tsx7(k)C7 cos

(
2π

xpp
x3(k) ∗ 4

)

+Tsx7(k)C8 sin

(
2π

xpp
x3(k) ∗ 4

)

x3(k + 1) = x3(k) + Tsx2(k)

x4(k + 1) = x4(k)

x5(k + 1) = x5(k)

x6(k + 1) = x6(k)

x7(k + 1) = x7(k), (5)

where Ts is the sampling time. The tuning parameters for the

EKF are designed as follows:

x̂0 =

[
0 0 0 0 0 0

1

Mn

]T

diag(P0) =
[
10−4 10−4 10+3 10+8 10+6 10+3 10+6

]
diag(Q) =

[
10−4 10+3 10−1 10+6 10+8 10+7 10−2

]
R =

[
10−2

]
, (6)

where x̂0 is the estimate of the initial state, P0 the initial error

covariance matrix of the state, Q the system noise covariance

matrix and R the measurement noise covariance matrix.

The process for the general EKF algorithm is shown in

Fig. 3. As shown in Fig 3, the state variable x is recursively

calculated through two processes: the ’Time update (Predic-

tion)’ and the ’Measurement update (Correction)’.

IV. PERFORMANCE VALIDATION

In this section, the performance of the EKF designed in

Section III is validated through simulations. The simulation

condition is similar to that described in Section II. Using the

experimental data-set with 6.7 kg mass, the EKF algorithm is

applied with different initial mass information, (i.e., different
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(b) When the nominal mass is 9.9 kg
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(c) When the nominal mass is 20 kg

Fig. 4. Estimated mass with the proposed EKF algorithm using different
initial mass information.
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Fig. 5. Close-up figure of the starting region for the 20 kg nominal mass.

nominal mass information): 3.4 kg, 6.7 kg, 9.9 kg, 15 kg and

20 kg, respectively.

The estimated mass along the position (time) is shown in

Fig. 4. For the sake of simplicity, only three cases among

the five are shown. It is ascertained from Fig. 4 (c) that even

though the initial mass information (i.e., the nominal mass)

is given with about three times larger than the real value, the

mass estimation works with a fast response. A close-up figure

of the starting region for the 20 kg nominal mass case is shown

in Fig. 5 to investigate the mass estimation rate. Notice that

the unit of the x-axis is ’mm’ in Fig. 5. The estimating rate,

in other words, the convergence rate is considered fast enough

for practical application.

In addition, the estimated force ripple shape along the

position that is to be compensated by the proposed EKF is
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(a) When the nominal mass is 3.4 kg
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(b) When the nominal mass is 9.9 kg
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(c) When the nominal mass is 20 kg

Fig. 6. Estimated force ripple shape using the proposed EKF algorithm with
different initial mass information.

TABLE II
RMS POSITION ERROR BY THE PROPOSED EKF ALGORITHM

WITH CONSTANT REFERENCE SPEED

Nominal mass Estimated mass RMS position error

3.4 kg 6.70 kg 0.547 μm

6.7 kg 7.08 kg 0.557 μm

9.9 kg 7.21 kg 0.561 μm

15 kg 7.32 kg 0.568 μm

20 kg 7.35 kg 0.565 μm

Reference trajectory: 0.04m/s*t)

shown in Fig. 6. For the simplicity, the cases for the 6.7 kg and

15 kg nominal mass conditions are omitted in Fig. 6. Improved

performance compared to Fig. 1 in Section II can easily

be recognized. Regardless of the wrong mass information,

almost identical force ripple shapes are obtained, and they

also coincide well with the real disturbance shape. Moreover,

the position tracking error is shown in Fig. 7, and the RMS

position error is calculated and summarized in Table II as well.

Furthermore, additional simulations with sinusoidal refer-

ence trajectories are conducted. Equivalent results with the

above conditions of constant speed are achieved. The RMS

position tracking error is given in Table III.

From those results, the effectiveness and necessity of sug-
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(b) When the nominal mass is 9.9 kg

Position (m)
0 0.05 0.1 0.15 0.2 0.25

P
os

iti
on

 e
rr

or
 (

m
)

-5

-2.5

0

2.5

5

(c) When the nominal mass is 20 kg

Fig. 7. Position tracking error using the proposed EKF algorithm with
different initial mass information.

TABLE III
RMS POSITION ERROR BY THE PROPOSED EKF ALGORITHM

WITH SINUSOIDAL REFERENCE TRAJECTORY

Nominal mass Estimated mass RMS position error

3.4 kg 6.77 kg 0.639 μm

6.7 kg 6.92 kg 0.645 μm

9.9 kg 6.97 kg 0.647 μm

15 kg 7.01 kg 0.649 μm

20 kg 7.02 kg 0.649 μm

Reference trajectory: 0.30*sin(2π/28*t)

gested method for the online mass estimation is verified.

V. CONCLUSION

In this research, a 7th order EKF algorithm was designed

to detect the varying mass during operation in real time

and to compensate the force ripple for industrial automation

systems. Through simulation results, it was validated that the

proposed method can keep up with the mass variation with

a fast response. This also leads to an increase in the force

ripple estimation ability for the proposed EKF. Therefore,

the position tracking performance can be maintained within

a certain amount of position error regardless of the mass

variation even though the mass increases to three times larger.



A follow up study with experimental validation is planned for

future work.
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