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Integrated vehicle mass estimation for
vehicle safety control using the
recursive least-squares method and
adaptation laws

Daeil Kim, Seibum B. Choi and Mooryong Choi

Abstract
The purpose of this study is to estimate the vehicle mass for vehicle safety control. The vehicle mass is considered to be
a constant parameter for some vehicle safety control systems, but it changes according to the number of the passengers
or the load weight that the vehicle carries. This paper suggests an integrated vehicle mass estimation algorithm using the
recursive least-squares method and adaptation laws. First, the vehicle mass is estimated from the longitudinal dynamics
using the recursive least-squares method. Second, three kinds of estimation algorithm are suggested from the roll
dynamics. Two of the algorithms are designed using the adaptation law from a Lyapunov stability analysis and the roll
angle observer, and the last algorithm is designed using the recursive least-squares method. Finally, the multiple-observer
synthesis integrates the estimated mass values calculated using the longitudinal dynamics and the roll dynamics. The pro-
posed vehicle mass estimation algorithm is evaluated via simulation using CarSim and via experimentation using a test
vehicle.
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Introduction

Many people are killed by ground vehicle accidents
every year. For this reason, drivers and passengers
expect new safety enhancement systems such as elec-
tronic stability control, rollover stability control, active
front steering, continuous damping control and hill
hold control. Such systems have contributed signifi-
cantly to a reduction in the number of fatal accidents.

According to an analysis by the National Highway
Traffic Safety Administration,1 electronic stability con-
trol has helped to decrease the total number of acci-
dents, but it has not affected the number of rollover
accidents. Therefore, more research and development
on rollover prevention control are required and are cur-
rently under way.2,3

One significant problem of vehicle dynamics control-
lers is that they are usually model based and, therefore,
susceptible to vehicle parameters such as the mass of
the vehicle and the height of the centre of gravity (CG)
of the vehicle, but these critical values are often handled
as constants for vehicle safety control. However, these
parameters are variable factors which are affected by

the number of passengers or the weight of the load that
the vehicle carries, and the difference between the para-
meter values and the expected values causes the perfor-
mance of vehicle safety controllers to deteriorate
accordingly. Furthermore, the accuracy of the value of
the vehicle mass is crucial for estimation of the value of
the peak friction of a road surface. The peak friction
information plays a crucial role in vehicle safety
controllers.

For these reasons, numerous studies have been con-
ducted to estimate the CG height of the vehicle4,5 and
the vehicle mass precisely.6–11 For instance, Vahidi
et al.6 used the recursive least-squares method with
multiple forgetting factors in order to estimate the vehi-
cle mass and the time-varying road grade
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simultaneously. Huh et al.7 suggested an integrated
mass estimation algorithm based on the longitudinal
dynamics and the lateral dynamics of the vehicle and
the vertical dynamics of the suspension. However,
those mass estimation methods have some limitations.
For instance, the algorithm6 considers only the longitu-
dinal dynamics, and so the estimated value of the vehi-
cle mass is updated only when no steering condition is
satisfied. Moreover, the longitudinal acceleration sen-
sor usually measures the gravity component value;
therefore, it is impossible to classify the road grade
from the pure longitudinal acceleration. For the algo-
rithm,7 there are some difficulties in estimating the
vehicle mass because of unknown parameters such as
the cornering stiffness, which varies significantly when
the vehicle dynamics are in a non-linear region.

In order to overcome those limitations, this paper
suggests an integrated vehicle mass estimation algo-
rithm that is robust for diverse driving situations. The
integrated mass estimation algorithm includes two sub-
estimation algorithms based on the longitudinal
dynamics and the roll dynamics.12 First, in the case of
the pure longitudinal driving situation with no steering,
the longitudinal mass estimation algorithm is applied
using the recursive least-squares method with a single
forgetting factor. However, when the vehicle turns, the
roll dynamics of the vehicle are exploited to estimate
the vehicle mass instead of using the lateral dynamics
of the vehicle including unknown parameters, which
are difficult to estimate accurately.

The adaptation law and the recursive least-squares
method13 are applied to estimate the vehicle mass when
the roll dynamics are used. Finally, two algorithms are
integrated to estimate the vehicle mass quickly for all
sorts of driving situation through multiple-observer
synthesis14,15 with a dynamic weighting strategy.

The organization of this paper is as follows. In the
second section, the vehicle mass estimation method
from the longitudinal dynamics using the recursive
least-squares method with a single forgetting factor is
derived. The third section develops three different vehi-
cle mass estimation methods using the roll dynamics:
two adaptation algorithms and one recursive least-
squares method. Finally, in the fourth section, an inte-
grated vehicle mass estimation algorithm is introduced
that uses multiple-observer synthesis to integrate two

mass estimation algorithms for quick estimation of the
vehicle parameters for all sorts of real driving situation.

Mass estimation from the longitudinal
dynamics

Longitudinal dynamics model

This section presents a model-based method to estimate
the vehicle mass using the longitudinal dynamics. This
is valid only when a vehicle accelerates or decelerates
with no steering manoeuvres. The longitudinal
dynamics model is as shown in Figure 1.

From the longitudinal force balance

m _v=Fx � Fb � Faero � Fgrade ð1Þ

where m is the total mass of the vehicle, v is the long-
itudinal velocity of the vehicle and Fx is the total longi-
tudinal tyre force transmitted from the engine torque at
the flywheel to the tyre and is given by

Fx =
Te � Je _v

rg
ð2Þ

Te is the engine torque and it must be scaled down con-
sidering all the torque losses as in the torque converter.
Je is the powertrain inertia and rg is the effective wheel
radius divided by the gear ratio and the final drive ratio,
as given by the equation

rg =
rw
gdgf

ð3Þ

where rw is the effective wheel radius, gd is the gear ratio
and gf is the final drive ratio. Fb is the brake force gen-
erated by brake friction at the wheels. The aerodynamic
drag force is derived as

Faero=
1
2rCdAFv

2
x ð4Þ

where r is the air density, Cd is the aerodynamic drag
coefficient and AF is the vehicle’s frontal area. Fgrade

indicates the integrated force due to the rolling resis-
tance of the road and the road grade and is defined as

Fgrade =mg(m cos u+ sin u) ð5Þ

where g is the gravity constant and m is the rolling resis-
tance coefficient.

Figure 1. Longitudinal dynamics.
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Recursive least-squares method with a single
forgetting factor

The unknown parameters of a mathematical model
must be selected in such a way that the sum of the
squares of the differences between the actually observed
values and the computed values is minimal in the least-
squares problem. The unknown parameter must be
selected such that the least-squares loss function V(ẑ, t)
is minimized according to

V(ẑ, t)= 1
2

Xt
i=1

y(i)� cT(i)ẑ
� �2 ð6Þ

The parameter that minimizes the above loss func-
tion is defined as13

ẑ =
Xt
i=1

c(i)cT(i)

" #�1 Xt
i=1

c(i)y(i)

" #
ð7Þ

However, it is more appropriate to use a forgetting fac-
tor l for the loss function to give more weight to the
latest values. Using the forgetting factor l, the loss
function is redefined as13

V(ẑ, t)= 1
2

Xt
i=1

lt�i y(i)� cT(i)ẑ(t)
� �2 ð8Þ

This concept is based on the fact that the old data need
to be discarded gradually.

It is proper to make the computations recursive to
alleviate the computational burden. Therefore, a recur-
sive least-squares algorithm will be used in this paper to
update the estimation of the unknown parameter z(t) at
the time t using the results obtained at the time t� 1 and
the regression vector c(t). The procedure of the recursive
least-squares algorithm at each step t is as follows.

Step 1. Measure the output y(t) and calculate the
regression vector c(t).
Step 2. Calculate the update gain K(t), which is called a
weighting factor that shows how the correction and
previous estimation should be united, according to

K(t)=P(t)c(t)

=P(t� 1)c(t) lI+cT(t)P(t� 1)c(t)
� ��1 ð9Þ

Then, calculate the covariance matrix derived as

P(t)= I� K(t)cT(t)
� �

P(t� 1)
1

l
ð10Þ

Step 3. Update the unknown parameter vector û(t) as

ẑ(t)= ẑ(t� 1)+K(t) y(t)� cT(t)ẑ(t� 1)
� �

ð11Þ

The correction term y(t)� cT(t)ẑ(t� 1)
� �

is propor-
tional to the difference between the measurement and
the prediction of the former estimation. Now, the pre-
vious longitudinal dynamics equation (1) can be rear-
ranged in the regression form

y(t)=cT(t)z(t) ð12Þ

where

y(t)= ax + gm cos u

cT(t)=
Te � Je _v

rg
� Fb � Faero

z(t)=
1

m
ð13Þ

where y(t) is the measured output, c(t) is the known
variable and z(t) is the unknown parameter that must
be estimated. Here, the gm cos u term is assumed to be
a small constant compared with other terms, the sensor
measurement ax includes the g sin u term, and a forget-
ting factor is used since the vehicle mass can vary.

Variable-forgetting-factor design

The forgetting factor plays a decisive role in the conver-
gence of the parameters. For faster convergence, a smaller
forgetting factor is needed, which gives more weight to
recently measured values. However, one disadvantage of
using a small forgetting factor is that the results are prone
to be sensitive to the measurement noise.

To achieve fast estimation and robustness to the
measurement noise at the same time, a variable forget-
ting factor is defined such that the magnitude of the
factor is inversely proportional to the absolute value of
the correction term according to

l= ltlx
l y(t)�fT(i)û(t�1)j j½ � ð14Þ

where lt is a constant set in the interval [0.9,1], lx is the
variable factor limited in the interval [0.8,1] and l is a
tunable constant parameter.

Finally, the forgetting factor l should be bounded
so as not to make the covariance matrix P too large,
since too large a covariance matrix might make the gain
matrix very large, rendering the system unstable.

Mass estimation by the roll dynamics

This section proposes three different mass estimation
schemes from the roll dynamics.

Mass estimation using the adaptation law from the
roll dynamics

This section deals with the mass estimation method from
the roll dynamics using the measured lateral acceleration,
the roll rate and the vehicle roll dynamics model. Figure
2 represents the vehicle roll dynamics model.4,12

Considering the moment balance about the roll cen-
tre, the roll dynamics equation is written as

(Ixx +msh
2)€f=msayh cosf+msgh sinf� tw

2
Fzl � Fzrð Þ

ð15Þ

where Ixx is the roll moment of inertia about the CG,
ms is the sprung mass of the vehicle, msay is the lateral

Kim et al. 3
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force on the CG of the vehicle, and Fzl and Fzr are the
left and right suspension forces respectively.

Now, consider the suspension deflection of both
sides due to vehicle roll which is given by

xl = � tw
2
sinf ð16Þ

xr =
tw
2
sinf ð17Þ

Then, the suspension forces are derived as

Fzl =
msg

2
+

tw
2
k sinf+

tw
2
c _f cosf ð18Þ

Fzr =
msg

2
� tw

2
k sinf� tw

2
c _f cosf ð19Þ

Fzl � Fzr= twk sinf+ twc _f cosf ð20Þ

Combining equations (20) and (15), we obtain

(Ixx+msh
2)€f=msayh cosf

+msgh sinf� t2w
2
k sinf� t2w

2
c _f cosf

ð21Þ

Now, replace the above parameter using

Ix ¼D Ixx+msh
2 ð22Þ

kt ¼D
t2w
2
k ð23Þ

ct ¼
D t2w

2
c ð24Þ

It should also be noted that

msaymh=msayh cosf+msgh sinf ð25Þ

Considering the above roll dynamics model, the roll
dynamics can be simplified as a linear second-order
model according to

Ix€f=msaymh� ktf� ct _f ð26Þ

where the bouncing motion of the sprung mass is
neglected. Here, ms is the sprung mass, h is the CG
height of the sprung mass from the roll centre, kt is the
roll spring coefficient of the suspension and ct is the roll
damping coefficient of the suspension. It is also assumed
that the CG height is a known value. This simplified roll
dynamics model does not consider some non-linear
dynamics relating to roll motion, but this model is still
sufficient for this study since an accurate understanding
of the roll angle is not the purpose of this paper.

From the roll dynamics equation (26), a roll
dynamics observer is derived using the measured roll
rate _f and the estimated sprung mass m̂s as

Ix
€̂
f= m̂saymh� ktf̂� ct

_̂
f+ ko( _f� _̂

f) ð27Þ

where f̂ is the estimated roll angle, aym is the measured
lateral acceleration and ko is the observer gain.

Defining the estimation errors of the roll angle and
the vehicle’s sprung mass as

~f=f� f̂ ð28Þ
~ms =ms � m̂s ð29Þ

respectively and then subtracting equation (27) from
equation (26), the error dynamics of the observer are
derived as

Ix
€~f= ~msaymh� kt~f� ct

_~f� ko
_~f ð30Þ

The stability of the above roll dynamics observer is
proved through a Lyapunov stability analysis. Also, a
adaptation law algorithm for the vehicle’s sprung mass
is derived through the same analysis. Let a positive defi-
nite scalar function V be given as

V=
1

2
_~f+ ~f

� �2
+

1

2
l~f2 +

1

2

1

ka
~ms

2 . 0 ð31Þ

where it should be noted that the observer gain ka is
defined to make V positive definite.

Taking the derivatives of the Lyapunov function (31)
and combining it with equation (30), we obtain

_V=
_~f+ ~f

� �
€~f+

_~f
� �

+ l~f _~f� 1

ka
~ms

_̂ms

=
_~f+ ~f

� � ~msaymh� kt~f� ct
_~f� ko

_~f+ Ix
_~f

Ix

+ l~f _~f� 1

ka
~ms

_̂ms

= � ct + ko � Ix
Ix

_~f
2 � kt

Ix
~f2

+ l~f _~f+
~msaymh

Ix

_~f+ ~f
� �

+ l~f _~f� 1

ka
~ms

_̂ms

ð32Þ

Figure 2. Roll dynamics.
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Define l such that

l=
kt + ct + ko � Ix

Ix
ð33Þ

Then,

_V= � ct + ko � Ix
Ix

_~f
2 � kt

Ix
~f2 +

aymh

Ix

_~f+ ~f
� �

� 1

ka
_̂ms

� �
~ms

ð34Þ

To make equation (34) negative semidefinite, the third
term on the right-hand side of the equation should be
zero. Therefore, an adaptation law is derived as

_̂ms =
kaaymh

Ix

_~f+ ~f
� �

ð35Þ

Now, equation (34) can be written as

_V= � ct + ko � Ix
Ix

_~f
2 � kt

Ix
~f2 ð36Þ

Equation (36) is negative semidefinite for the arbitrary
and positive observer gain ko defined such that ct + ko

. Ix. From equation (36), it is confirmed that ~f, _~f and

~ms are bounded and so, from equation (30),
€~f is

bounded. Therefore, _̂m is bounded from equation (35)
and, applying the Barbalat lemma, the system turns out
to be asymptotically stable. Finally, it can be proved that
the error of the roll angle estimate will converge to zero
under the persistence of the excitation condition. In addi-
tion, the error dynamics equation (30) shows that the
sprung mass estimation error converges to zero, as well.

Mass estimation using adaptation law from the
simplified error dynamics

This section also deals with the mass estimation from the
roll dynamics using the measured lateral acceleration, the
roll rate and the vehicle roll dynamics model. However,
knowing that the roll dynamics are very fast poand that
the vehicle mass changes very slowly, the error dynamics

model is simplified by neglecting the €~f term.

By neglecting the Ix
€~f term, equation (30) can be sim-

plified as

~msaymh� kt~f� ct
_~f� ko

_~f=0 ð37Þ

or equivalently as

(ct + ko)
_~f+ kt~f= ~msaymh ð38Þ

The stability of the roll dynamics observer is derived
through a Lyapunov stability analysis, and an adapta-
tion law algorithm for the vehicle’s sprung mass is
derived through a similar analysis to that in the previ-
ous section. Let a positive definite scalar function V
candidate be given by

V=
1

2
~f2 +

1

2

1

ka
~ms

2 . 0 ð39Þ

Taking the derivatives of the Lyapunov function (39)
and combining them with equation (38), we obtain

_V= ~f _~f� 1

ka
~ms

_̂ms

= ~f
~msaymh� kt~f

ct + ko
� 1

ka
~ms

_̂ms

= � kt
ct + ko

~f
2
+

~faymh

ct + ko
�

_̂ms

ka

 !
~ms

ð40Þ

In order to make equation (40) negative semidefinite,
the second term of the right-hand side of the equation
should be zero. Therefore, we can derive the adaptation
law as

_̂ms =
kaaymh

ct + ko
~f ð41Þ

Now, equation (40) can be written as

_V= � kt
ct + ko

~f2 ð42Þ

Equation (42) is negative semidefinite for ct + ko . 0.
It is confirmed that ~f and ~ms are bounded in equation

(39), and so _~f is bounded from equation (38). Also, _̂ms

is bounded from equation (41). By applying the
Barbalat lemma, the system is guaranteed to be asymp-
totically stable. Therefore, it is proved that the error of
the roll angle estimation will converge to zero under
persistent excitation. Finally, the error dynamics equa-
tion (38) shows that the sprung mass estimation error
converges to zero, as well.

Mass estimation using the recursive least-squares
method from the roll dynamics

This section proposes a vehicle mass estimation scheme
using the recursive least-squares method from the roll
dynamics, as well as measurements of the roll rate and
the lateral acceleration.

The roll dynamics equation (26) can be rearranged in
a regression form as

y(t)= aymh ð43Þ

cT(t)= Ix€f+ ct _f+ ktf ð44Þ

z(t)=
1

ms
ð45Þ

where y(t) is the measured output and c(t) is the known
variable and where z(t) and the unknown parameter
need to be estimated. Here, the vehicle attitude obser-
ver algorithm developed by Oh and Choi14 is used to
estimate f. The algorithm includes the Euler angle
observer which needs no information about inertia
parameters to estimate the roll angle f.

Here, the same recursive least-squares algorithm as
used in the previous section is employed, and the forget-
ting factor is utilized again since the vehicle mass can

Kim et al. 5
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change with the number of the passengers or the load
weight that the vehicle carries.

Integrated mass estimation using
multiple-observer synthesis

The mass estimation using just the longitudinal
dynamics is valid only when the steering input is near
zero, and the mass estimation from the roll dynamics is
available only when a sufficiently high steering input is
applied to cause the vehicle to roll. Therefore, it is cru-
cial to integrate both estimation methods efficiently.
To integrate them, a proper weighting factor called a
multiple-observer synthesis index (MOSI) is defined as

MOSI=max sat
1

2era
( roll anglej j � Gra + era)

� �
,

�

sat
1

2err
( roll ratej j � Grr+ err)

� �	
ð46Þ

where G and e are constant tuning parameters.
Figure 3 illustrates how the index is formulated as a

function of the roll angle and the roll rate values.
When the maximum values of the roll angle and the

roll rate are small, mass estimation using the longitudi-
nal dynamics is more accurate. Therefore, the weight-
ing is mostly on the longitudinal-dynamics-based mass
estimation. However, as the maximum values of the
roll angle and the roll rate are sufficiently large, the
mass estimation using the longitudinal dynamics starts
to become inaccurate. Hence, in this case, it is more
suitable to use instead the roll-dynamics-based mass
estimation. Such shifting, thus, normally makes the
estimated value less sensitive to the measurement noise
for all sorts of driving scenario.

Incorporating the MOSI, the final mass estimation
value is defined as

m̂final=MOSIm̂roll +(1�MOSI)m̂longitudinal ð47Þ

Here, for the mass estimation from the roll dynamics,
the recursive least-squares method is used since the
recursive least-squares method shows the fastest con-
vergence performance and is still sufficiently simple for
online implementation.

Simulation results

In this section, simulations are conducted to evaluate
the developed algorithms through the commercial vehi-
cle simulation software CarSim and Simulink.

For the simulation model, the vehicle’s total mass is
1530 kg and the sprung mass is 1370 kg. In the first sce-
nario, the vehicle moves in a straight line with a sinu-
soidal velocity profile between 65 km/h and 75km/h
without any steering input to evaluate the longitudinal
mass estimation algorithm. The tuning parameters used
are as follows: ko =63104 and ka =33106 for the full
roll dynamics model; ko =23104 and ka =3:53108

for the simplified roll dynamics model;
era =0:004,Gra=0:02, err =0:005 and Grr=0:05.

Figure 4 shows that the estimated mass value con-
verges to an actual value, but slowly; the estimation
accuracy deteriorates when the vehicle acceleration or
deceleration is not sufficiently large.

In the second scenario, after sinusoidal steering by
660�, the steering angle decreases gradually and the
vehicle velocity is maintained at 80 km/h. Figure 5
shows the steering profile. The two adaptation algo-
rithms and one recursive least-squares method from the
roll dynamics model are compared.

Figure 6 shows that the simulation results of each
roll dynamics observer are tracking the true roll angle.
Initially, the observer shows some tracking error due to
the difference between the estimated mass values and
the true mass value. However, eventually, the adapta-
tion mass values converge to the true value and each
roll angle observer tracks the true roll angle well.

Figure 7 compares two adaptive mass estimation
laws: one from the full roll dynamics and the other from
the simplified roll dynamics. In both cases, the vehicle
mass is estimated very accurately.

Figure 3. Multiple-observer synthesis.

Figure 4. Mass estimation from the longitudinal dynamics using
a recursive least-squares method.

6 Proc IMechE Part D: J Automobile Engineering

 at Korea Advanced Institute of Science and Technology (KAIST) on November 9, 2014pid.sagepub.comDownloaded from 

http://pid.sagepub.com/


Figure 8 shows that the estimated mass value from
the roll dynamics using the recursive least-squares
method tracks the true mass value well. Using the vari-
able forgetting factor appropriately, the convergence
speed of the estimation can be maximized.

In the final driving scenario, the vehicle moves in a
straight line with a sinusoidal velocity profile from
65km/h to 75km/h for 50 s and then 660� sinusoidal
steering input is applied to the vehicle. This scenario
demonstrates how this integrated mass estimation algo-
rithm is beneficial.

Figure 9 shows that the estimated mass value con-
sidering only the longitudinal dynamics has some drift-
ing issue after the steering input is applied and the roll-
dynamics-based estimation method works only if the
steering input is induced.

However, Figure 10 shows that the mass estimation
by the proposed integrated mass estimation algorithm
is efficient for all sorts of driving situation. This inte-
grated method can estimate the vehicle mass very
quickly with no drifting problem.

Experimental results

Test environments

Some experiments are conducted to demonstrate the
performance of the proposed mass estimation

Figure 5. Steering profile.

Figure 6. Roll dynamics observer.

Figure 7. Vehicle mass estimations using two adaptation laws
with the full roll dynamics model and the simplified roll dynamics
model.

Figure 8. Vehicle mass estimation from the roll dynamics using
the recursive least-squares method.

Figure 9. Comparison of vehicle mass estimation from only
the longitudinal dynamics and from only the roll dynamics using
the recursive least-squares method.

Figure 10. Vehicle mass estimation using multiple-observer
synthesis.

Kim et al. 7
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algorithm using a compact-size production sport utility
vehicle. Table 1 shows the specifications of the test vehi-
cle used for the experiments.

Here, an Analog Devices ADW22307 gyro sensor is
used for the roll rate measurement and an Analog
Devices ADXL103 sensor for the lateral acceleration.
Also, a sensor zeroing algorithm is applied to compen-
sate for the offset error of the six-dimensional (6D)
inertia measurement unit (IMU). The 6D IMU is posi-
tioned at the CG of the vehicle. For verification pur-
poses such as the accurate roll angle of the vehicle, the

RT3100 model from the RT3000 family of Oxford
Technical Solutions Ltd is also mounted on the vehicle.

Test results and analysis

In this section, the experimental results are analysed to
evaluate the performance of the proposed mass estima-
tion algorithms. In the experiment scenarios, first the
vehicle moves in a straight line and then a severe sinu-
soidal steering input is added for a variable longitudi-
nal velocity of the vehicle on a dry asphalt surface that
has no severe road grade or bank angle. The tuning
parameters used are as follows: ko =23104 and
ka =43105 for the full roll dynamics model;
ko =23104 and ka =63107 for the simplified roll
dynamics model; era =0:005,Gra=0:03, err =0:006
and Grr=0:07.

In the first test run, the longitudinal velocity, the
yaw rate and the steering angle of the vehicle are as
shown in Figure 11, Figure 12 and Figure 13
respectively.

Figure 14 shows the performance of the roll angle
observers using a simplified roll dynamics model and a
full model. Figure 15 shows the performance of the
mass estimation adaptation laws. The estimation results
of both adaptation laws are quite accurate, but the ini-
tial convergence rate is not very fast when the steering
input is added at 15 s. This initial rate can be

Table 1. Test vehicle specifications (Tucsan ix 2WD gasoline
Theta II 2.0 specifications).

Feature Value for the following

Front Rear

Left Right Left Right

Dimensions (mm)
Wheelbase 2640
Track 1585 1586
Overall length 4410
Overall width 1820
Height (unloaded) 1655

Kerb mass (kgf) 450 417 326 330
867 656

1523

Figure 11. Longitudinal velocity profile of the vehicle.

Figure 12. Yaw rate profile of the vehicle.

Figure 13. Steering-angle profile of the vehicle.

Figure 14. Performance of the roll dynamics observers.
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accelerated by using a large adaptation gain, but this
large gain may make the system unstable.

Figure 16 demonstrates how beneficial the recursive
least-squares method is. The mass estimation using the
recursive least-squares method has a much faster con-
vergence rate than the adaptation laws do, and so it is
more suitable for multiple-observer synthesis. Figure 17
shows the integrated mass estimation results using
multiple-observer synthesis. The initial convergence rate
is very fast, and the steady state drifting is minimized.

In the second test run, the longitudinal velocity and
the steering angle of the vehicle are as shown in Figure
18 and Figure 19 respectively.

Figure 20 shows the result of the integrated mass
estimation algorithm using multiple-observer synthesis.
The mass estimation result between 20 s and 25 s is
slightly inaccurate. The vehicle attitude observer algo-
rithm14 used in this study requires no information
about the inertia parameter values to calculate the roll
angle f, and an inaccurate roll angle observation can

Figure 15. Vehicle mass estimation using the adaptation laws
and different roll dynamics models.

Figure 16. Vehicle mass estimation from the roll dynamics
using the recursive least-squares method.

Figure 17. Vehicle mass estimation using multiple-observer
synthesis.

Figure 18. Longitudinal velocity profile of the vehicle.

Figure 19. Steering-angle profile of the vehicle.

Figure 20. Vehicle mass estimation using multiple-observer
synthesis.
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induce an inaccurate mass estimation result. Practically,
such inaccuracy is not an issue since the vehicle mass
changes very slowly, and it can be smoothed out easily
by a low-pass filter.

Figure 21 and Figure 22 show the longitudinal velo-
city and the steering angle respectively of the vehicle in
the final test run.

Figure 23 shows the result of the integrated mass
estimation algorithm using the same synthesis. Also,
during the time period when the vehicle attitude obser-
ver algorithm is not very accurate, the mass estimation
result is not accurate. Eventually, however, the vehicle
mass estimation result converges to the actual value.

Considering the slowly varying characteristics of the
vehicle mass, this might not be an issue.

Conclusion

Vehicle safety problems are crucial since many serious
accidents have claimed the lives of many people.
Information on the vehicle mass, which is an important
parameter, plays a critical role in vehicle safety control.
The vehicle mass is a variable parameter, but it is
treated as a constant parameter for some vehicle safety
control systems. This paper is focused on the develop-
ment of a robust mass estimation algorithm for all
kinds of real driving situation. In order to estimate the
vehicle mass, the recursive least-squares method was
applied for both the longitudinal dynamics and the roll
dynamics, and adaptive observers were developed to
observe the roll angle and to update the vehicle mass
using the roll dynamics model. For the recursive least-
squares method, a variable forgetting factor was used,
which is based on the correction term for faster conver-
gence. The stability and the performance of the adap-
tive observers were proven by a Lyapunov analysis.
Finally, several mass estimation methods were synthe-
sized to achieve the best transient and steady state
performances.

The performance of the developed algorithm was
investigated by simulations using CarSim and
MATLAB/Simulink and experimentally using a test
vehicle. The simulation and experimental results con-
firmed that the developed algorithm performs well for
all kinds of real driving situation.
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