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Abstract—This paper presents a novel disturbance compensa-
tion scheme to attenuate periodic disturbances on repetitive motion
using permanent magnet linear synchronous motors (PMLSMs),
and this scheme is called the periodical adaptive disturbance ob-
server. The scheme is based on assumptions that all measured states
and disturbances are periodic and repetitive when the tasks exe-
cuted by PMLSM motion systems have periodic and repetitive
characteristics. In the proposed control scheme, a lumped distur-
bance is estimated by the classical linear disturbance observer
(DOB) for the initial time period and stored in memory storages.
It consists of parametric errors multiplied by states, friction force,
and force ripple, and then, it is updated for each time period by
the periodic adaptation law. This scheme requires no mathematical
models of disturbances and adaptation laws of model parameters
such as the mass of the mover and viscous friction coefficient. Also,
it is possible to compensate for disturbances above as well as below
the bandwidth of the Q-filter (LPF) of DOB. The effectiveness of
the proposed control scheme is verified by various experiments that
take into account varying frequency components of disturbances
along the operating speed of a mover of PMLSM such as force
ripple and friction force.

Index Terms—Adaptation, disturbance observer, (DOB), force
ripple compensation, periodic disturbance.

I. INTRODUCTION

A S demand increases for high-speed/high-accuracy motion,
various types of linear motor-driven motion systems have

received significant attention for precision motion control. The
motion system based on permanent magnet linear synchronous
motors (PMLSMs) is extending steadily to a variety of industrial
applications since it has advantages such as high speed/force
density and low thermal losses. However, there are still serious
problems to achieve high positioning precision control. First, as
with other types of the linear motor-driven motion systems, it is
sensitive to variations of model parameters such as the mass of
the mover and friction coefficients. Second, the friction force on
linear motion guides affects the motion system as a dominant
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disturbance because it varies depending on the operating speed
of the mover of a PMLSM and has heavy nonlinearities on low-
speed motion. Also, the motion systems based on linear motors
using the iron-core like PMLSMs are directly affected by the
force ripple that is induced by the attraction between the mag-
nets and the iron-core of the mover. It is a position-dependent
periodic disturbance that has the same fundamental period as the
pole pitch of permanent magnets. Since the fundamental and har-
monic frequencies of the force ripple are increased proportional
to the speed of the operating system, it is hard to attenuate them
perfectly when the high-speed motions are required. Therefore,
these parameter variation and dominant disturbances should be
compensated to achieve high-speed/high-positioning precision
control in PMLSM motion systems.

Recently, numerous methods have been developed for the
compensation of these disturbances in various actuators includ-
ing linear motors. In [1] and [2], dual-relay feedback approaches
based on describing functions were presented to obtain the fric-
tion force models and compensate for them. In [3] and [4],
nonlinear observer compensation methods using LuGre model
were presented to cope with the friction force. In [5], a fric-
tion compensation technique based on a projection parameter
adaptation for a dynamic friction model was presented. Asym-
metric friction model was identified by using the least-square
identification method in [6]. In [7], a nonlinear static friction
was modeled by the Hsieh–Pan model. In [8], the friction force
considered as the unstructured uncertainties was compensated
by RISE without the friction force model. In [9] and [10], sev-
eral schemes were introduced to compensate for the force ripple
that is modeled by the Fourier expansion. Here, unknown pa-
rameters such as the amplitude and phase of the model were
estimated by a certain parameter adaptation mechanism. These
methods estimate or compensate for friction force and force rip-
ple separately due to motor types or experimental assumptions.
However, it is hard to separate each disturbance in practice due
to the effects coupled with states such as position and velocity.
In [11]–[15], adaptation laws for the parameters of each model
of disturbances were presented to compensate for friction force
and force ripple simultaneously, but it is not easy to guaran-
tee asymptotic convergence of estimated parameters in models
over various operating conditions. Unlike stated methods, some
schemes that require no disturbance models exist. A disturbance
observer (DOB) estimates and attenuates a lumped disturbance
by using the difference between the output of the inverse nomi-
nal model and the control input [16]–[18]. However, the use of
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Q-filter occurs magnitude distortion as well as phase lag of the
estimated disturbance since its bandwidth is limited due to high-
frequency noise or unmodeled dynamics [19], [20]. Although
Luenberger-type DOB without Q-filter is proposed in [21], it is
not enough to compensate for time-varying disturbances since
it requires accurate model parameters assuming the disturbance
is slowly varying.

However, assuming that these disturbances have periodic and
repetitive characteristics, the compensation problem can be-
come much easier to handle. In general, all measured states
and disturbances in PMLSM motion systems can have the same
repetitive time period as that of reference trajectories since the
required tasks are periodic and repetitive, and then the stated
assumption becomes reasonable. The learning control schemes
such as periodic adaptive learning control (PALC), repetitive
control (RC), and iterative learning control (ILC) are very ef-
fective to attenuate these periodic disturbances without mathe-
matical models. In [22], PALC was proposed to compensate for
these periodic disturbances in a PMLM motion system. In [23]
and [24], RC was presented to eliminate the periodic tracking
error and unmodeled disturbances. In [25] and [26], ILC was
presented to enhance the performance of conventional PID feed-
back control in a PMLM motion system. However, PALC re-
quires complicated nonlinear-function-based design procedures
for initial conditions of disturbances to be estimated. In ILC and
RC, an inverse model of the closed-loop transfer function should
be utilized to design the learning filter guaranteeing the error
convergence to zero, and the initial conditions in ILC should be
reset [27].

To improve these problems, the authors have proposed a
novel disturbance compensation scheme to attenuate periodic
disturbances on repetitive motion of PMLSM motion systems
in [28] and [29]. This is called the periodic adaptive disturbance
observer (PADOB). In the proposed scheme, a lumped distur-
bance, which includes parametric errors multiplied by states,
friction force, and force ripple, is estimated by the DOB for
the initial repetitive time period and stored in memory storages.
The disturbance is then updated for each time period by the peri-
odic adaptation (PA) law. This scheme requires no mathematical
models of friction force and force ripple and adaptation laws of
model parameters such as the mass of the mover and viscous
friction coefficient. It is also making it possible to compensate
for disturbances above as well as within the bandwidth of the
Q-filter of the DOB. The proposed design process shows that
not only learning control schemes such as ILC and RC can be
designed not from the point of view of a control input but distur-
bances, and also it facilitates the design of the learning filter to
guarantee the asymptotical stability. In this paper, more system-
atic demonstrations of the proposed scheme in [28] and [29] are
presented. The experimental verification of the proposed scheme
is performed under the reference trajectories considering force
ripple and switching friction force. To verify the effectiveness
of the proposed scheme, the comparative studies with DOB and
RC are also implemented.

This paper is organized as follows. In Section II, the prob-
lem formulation of this paper is presented. In Section III, the
proposed PADOB is illustrated. The effectiveness of PADOB is

verified by various experiments in Section IV. Finally, Section
V provides some concluding remarks.

II. PROBLEM FORMULATION

In this section, a mathematical model of the PMLSM is repre-
sented and control problems are defined. Also, the assumptions
and properties of states and lumped disturbance are illustrated.

A. PMLSM Model

The comprehensive model of a PMLSM motion system is
represented as follows:

M
d2x(t)

dt2
= −B

dx(t)
dt

+ Fe(t) − Ffric(x, ẋ) − Frip(x) (1)

where x(t) is the position of the mover, M is the mass of the
mover, B is the viscous friction coefficient, Fe(t) is the thrust
force, Ffric(x, ẋ) is the friction force, and Frip(x) is the force
ripple. For simplicity, the external disturbances and electrical
dynamics are ignored because the external disturbance is very
small and the electrical dynamics is fast enough comparing with
the frequency bandwidth of the interest [30].

Using a nominal model, which has known mass Mn and
viscous friction coefficient Bn , (1) is rearranged as follows:

Mnẍ(t) = −Bnẋ(t) + u(t) + d(t) (2)

where u(t) is the control input(u(t) = Fe(t) = Kf iq (t)), Kf is
the force constant, and iq (t) is the q-axis current.

In (2), d(t) is the lumped disturbance, which includes the fric-
tion force, the force ripple, and the parametric errors multiplied
by states. It is represented as follows:

d(t) = −ΔMẍ(t) − ΔBẋ(t) − Ffric(x, ẋ) − Frip(x) (3)

where ΔM = M − Mn and ΔB = B − Bn are the parametric
errors of the mass and viscous friction coefficient, respectively.

B. Assumptions and Properties

The control objective is to track the desired position xd(t) and
the corresponding desired velocity ẋd(t) given for a PMLSM
motion system with minimized tracking errors. The required
task has the following assumptions.

1) Assumption 1: The given task for the PMLSM motion
system is to track periodic position trajectories under the
same operating conditions repetitively.

2) Assumption 2: The effects of disturbances in the PMLSM
motion system are identical for each repetitive time period
due to no external disturbances.

3) Assumption 3: The measurement noise exists mostly in
the high-frequency range.

From these assumptions, all the measured states and distur-
bances have the following properties.

Property 1: (Periodicity of desired and measured states)
From Assumption 1, when the desired trajectories that have

the repetitive time period Pt are given as follows:

xd(t) = xd(t − Pt), ẋd(t) = ẋd(t − Pt), ẍd(t) = ẍd(t − Pt)
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it can be considered that the measured states are also periodic
and they have the same time period Pt if a tracking performance
is guaranteed

x(t) ≈ x(t − Pt), ẋ(t) ≈ ẋ(t − Pt), ẍ(t) ≈ ẍ(t − Pt).

Property 2: (Periodicity of disturbance)
From Assumption 2 and Property 1, the lumped disturbance

d(t) has the following property due to the state-dependent char-
acteristics:

d(t) ≈ d(t − Pt).

III. PERIODIC ADAPTIVE DISTURBANCE OBSERVER

In this section, the proposed control scheme PADOB is illus-
trated in detail that is based on the assumptions and properties
addressed in Section II.

A. Design Procedure

The structure of the proposed control scheme is described in
Fig. 1, and it is designed by the following two phases:

1) Searching Phase (0 ≤ t < Pt):
The system is controlled by a PID feedback controller
with a feedforward controller. The lumped disturbance in
the low-frequency range is estimated and attenuated by
DOB and stored in memory storages.

2) Learning Phase (t ≥ Pt):
The disturbance estimated in the searching phase is uti-
lized as the initial condition for the PA law in PADOB.
It is updated by the tracking errors at current time period
and minimizes position tracking errors with feedback and
feedforward controllers.

B. Searching Phase

First, consider the case when 0 ≤ t < Pt . The first block
diagram in Fig. 1 presents the structure of the searching phase.
The output of the plant with DOB, position x(t), is represented
by

x(s) = Pn (s)ur (s) + Pn (s)(1 − Q(s))d(s) − Q(s)n(s) (4)

where s is the variable in s-domain, n(s) is the sensor noise,
ur (s) = uf f (s) + uf b0(s), and Pn (s) = 1/(Mns2 + Bns). In
(4), all the transfer functions are stable and the cutoff frequency
of the Q-filter is set to ωQ

c . Within the frequency bandwidth of
the Q-filter (i.e., |Q(jω)| = 1, ω < ωQ

c ), the output x(jω) be-
comes similar to Pn (jω)ur (jω) − n(jω). From Assumption 3
(i.e., n(jω) = 0 at ω < ωQ

c ), we have the nominal input–output
relation as follows:

x(jω) = Pn (jω)ur (jω). (5)

It guarantees that the actual plant behaves as the nominal model
since the low-frequency components of the lumped disturbance
are attenuated by DOB. Therefore, the feedback and feedfor-
ward controllers based on the nominal model can be designed.
More detailed DOB design methodologies are presented in nu-
merous studies [19], [20].

Fig. 1. Block diagram of PADOB.

Based on the nominal model, the control law in the time
domain is designed as follows:

u0(t) = uf f (t) + uf b0(t) − d̂(t) (6)

uf f (t) = Mnẍd(t) + Bnẋd(t) (7)
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uf b0(t) = Kσ0σ0(t) (8)

d̂(t) = q(t) ∗ [Mnẍ(t) + Bnẋ(t) − u(t)] (9)

where

σ0(t) = ėxF (t) + a0ex(t) + b0

∫ t

0
ex(r)dr (10)

and

ex(t) = xd(t) − x(t). (11)

Here, uf f (t) and uf b0(t) are feedforward and feedback control
inputs, d̂(t) is the lumped disturbance that is estimated by DOB,
q(t) is the representation of Q(s) in the time domain, and “∗” is
the convolution operation. Kσ0 , a0 , and b0 are positive tuning
parameters.

ėxF (t) in (10) means the filtered signal of ėx(t) by the low-
pass filter that has the time constant of τL . The mathematical
representations between the original and the filtered signals by
the low-pass filter qL (s) in the time domain and the frequency
domain are presented as follows:

τL ëxF (t) = ėx(t) − ėxF (t) (12)

[sexF (s)] = qL (s)[sex(s)] =
1

τLs + 1
[sex(s)]. (13)

This low-pass filter is utilized to attenuate the amplification of
the noise induced by the derivative action.

To prove the stability of the closed-loop system, (2) is rewrit-
ten as follows:

Mnẍ(t) = −Bnẋ(t) + u0(t) + dl(t) + dh(t) (14)

where dl(t) and dh(t) are the low- and high-frequency compo-
nents of the lumped disturbance in (3), respectively. Substituting
(6) into (14), the closed-loop error dynamics is obtained as fol-
lows:

Mnëx(t) + Bn ėx(t) + Kσ0σ0(t) = −dh(t) − d̃l(t) (15)

where d̃l(t) = dl(t) − d̂(t) is the estimation error of the low-
frequency components of lumped disturbance and it may not
be eliminated perfectly due to the phase lag of the Q-filter in
DOB. However, since the measured states and high-frequency
disturbances such as friction force on speed reversal motion
and high-order harmonics of force ripple at high speeds are
physically bounded, it can be presented as follows:∥∥∥dh(t) + d̃l(t)

∥∥∥
∞

< ε, for ∃ε > 0. (16)

In the frequency range below the cutoff frequency of LPFs
(i.e., qL (jω) = 1 at ω < ωL

c = 1/τL ), the overall closed-loop
transfer function from the remained disturbances to the tracking
error is obtained as follows:

ex (s)
−dh (s) − d̃l (s)

=
s

Mn s3 + (Bn + Kσ 0 )s2 + Kσ 0a0s + Kσ 0 b0
.

(17)
In (17), since all desired poles are designed to be located on
the left-half plane, the overall system can be stable, while the
steady state tracking errors exist.

C. Learning Phase

DOB is known as a powerful method to deal with modeling
uncertainties since it compensates perfectly for the parametric
errors of the nominal model and disturbances existed within
the bandwidth of the Q-filter. However, if dominant uncertain-
ties exist beyond the bandwidth of Q-filter and the phase lag
is heavy, then the tracking performance may deteriorate. Thus,
parameters of the nominal model should be updated by cer-
tain adaptation schemes to minimize parametric errors or the
bandwidth of the Q-filter should be widened to include all the
frequency components of dominant disturbances within the fre-
quency bandwidth of the interest. However, the method of di-
rectly updating parameters of the nominal model may induce
instability problems because poles and zeros of the transfer
function of the nominal model can be changed irregularly. Also,
the bandwidth of Q-filter must be limited due to sensor noise or
other unmodeled dynamics, which should not be triggered.

The objective of the learning phase is to compensate for phase
lag and magnitude distortion of the disturbance estimated in the
searching phase and minimize position tracking errors. From
the second block diagram in Fig. 1, the cases when t ≥ Pt are
shown. The control law in the learning phase is designed as
follows:

u1(t) = uf f (t) + uf b1(t) − d̂(t) (18)

uf b1(t) = Kσ1 · σ1(t) + (Mna1 − Bn )ėxF (t)

+Mnb1ex(t) (19)

where

σ1(t) = ėxF (t) + a1ex(t) + b1
∫ t

0 ex(r)dr. (20)

Here, uf f (t) is the same feedforward control input in (7) and
uf b1(t) is the feedback control input. Kσ1 , a1 , and b1 are pos-
itive tuning parameters. In (19) and (20), ėxF (t) is the filtered
signal of ėx(t) by the low-pass filter that has the mathematical
representations in (12) and (13).

The PA law of the lumped disturbance is designed as follows:

d̂(t) = d̂F (t − Pt) − Kaσ1(t) (21)

where

d̂F (t − Pt) = H
[
d̂(t − Pt)

]
=

n∑
k=−n

c|k |z
−k d̂(t − Pt). (22)

Here, Ka is an adaptation gain (Ka > 0). To prevent the diver-
gence of the estimated lumped disturbance, if |d̂(t)| > ζ, then
Ka = 0. ζ is the maximum value of the actual lumped distur-
bance and it is a known value.

H [·] is a zero-phase low-pass filter (ZPF) that has the cutoff
frequency of ωH

c , n is the order of the filter, and z−k is a k-step
time delay. c|k | is the normalized coefficient of the filter, and
it has a property as 2

∑n
k=1 ck + c0 = 1. The ZPF is utilized

to prevent the adaptation law from learning nonperiodic high-
frequency disturbances and to keep the overall system stable
from unmodeled dynamics.

In (21) and (22), the disturbance stored in the searching phase
is utilized as d̂(t − Pt) when Pt ≤ t < 2Pt . After the second



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHO et al.: HIGH-PRECISION MOTION CONTROL BASED ON A PERIODIC ADAPTIVE DISTURBANCE OBSERVER IN A PMLSM 5

time period, the disturbance estimated in the previous time pe-
riod is utilized as the initial condition of the PA law in the current
time period.

To prove the stability of the closed-loop system with the
designed controllers and adaptation law, (21) is rewritten as
follows:

d̂(t) = d̂F (t − Pt) − Kaσ1(t)

= d̂(t − Pt) − d̂h(t − Pt) − Kaσ1(t). (23)

Here, d̂h(t − Pt) is the high-frequency component of the esti-
mated disturbance at the previous time period that is eliminated
by ZPF.

Consider the following positive Lyapunov candidate function:

V (t) =
1
2
σ2

1 (t) +
1

2KaMn

∫ t

t−Pt

d̃2(r)dr (24)

where d̃(t) = d(t) − d̂(t). Since it can be considered that the
periodic disturbance approximated in Property 2 consists of
the dominant periodic and partial nonperiodic components due
to Assumptions and Properties, the actual disturbance d(t)
can be represented as follows:

d(t) = d(t − Pt) + dn (t) (25)

where dn (t) is the nonperiodic disturbance. The disturbances
such as unmodeld dynamics, the high-frequency noise and the
switching friction force induced by the difference between speed
reversal moments at each time period can be considered as dn (t).

Then, the difference between the positive Lyapunov candidate
functions at two discrete time points (t and t − Pt) is calculated
as follows:

ΔV (t) = V (t) − V (t − Pt)

=
1
2
σ2

1 (t) − 1
2
σ2

1 (t − Pt)

+
1

2KaMn

∫ t

t−Pt

[
d̃2(r) − d̃2(r − Pt)

]
dr. (26)

For simplicity, let the first two terms at the right-hand side of
(26) be denoted by I1(t) and the integral term by I2(t). Then,
I1(t) is calculated as follows:

I1(t) =
1
2
σ2

1 (t) − 1
2
σ2

1 (t − Pt) =
∫ t

t−Pt

σ1(r)σ̇1(r)dr

= − 1
Mn

∫ t

t−Pt

[
Kσ1σ

2
1 (r) + d̃(r)σ1(r)

]
dr

+
1

Mn

∫ t

t−Pt

σ1(r)τL

[
(Mna1 − Bn )ëxF (r)

−MnëxF (r)
]
dr

= − 1
2KaMn

∫ t

t−Pt

[2KaKσ1σ
2
1 (r) + 2Kad̃(r)σ1(r)]dr

+
1

2KaMn

∫ t

t−Pt

2Kaσ1(r)εL (r)dr

(27)

where

εL (r) = τL [(Mna1 − Bn )ëxF (r) − MnëxF (r)] . (28)

I2(t) is also calculated as follows:

I2(t) =
1

2KaMn

∫ t

t−Pt

[
d̃2(r) − d̃2(r − Pt)

]
dr

=
1

2KaMn

∫ t

t−Pt

[
−{Kaσ1(r) + dn (r)}2

+ 2Kad̃(r)σ1(r)

+ 2dn (r)d̃(r) − d̂h(r − Pt){d̂h(r − Pt)

− 2d̃(r) + 2Kaσ1(r) + 2dn (r)}
]
dr.

(29)

From (27) and (29), (26) is rewritten by using Cauchy–Schwarz
inequality as follows:

ΔV (t) = I1(t) + I2(t)

= − 1
2KaMn

∫ t

t−Pt

2KaKσ1σ
2
1 (r)dr

+
1

2KaMn

∫ t

t−Pt

2Kaσ1(r)εL (r)dr

− 1
2KaMn

∫ t

t−Pt

(dn (r) + Kaσ1(r))2dr

+
1

2KaMn

∫ t

t−Pt

2dn (r)d̃(r)dr

− 1
2KaMn

∫ t

t−Pt

d̂h(r − Pt){d̂h(r − Pt)

− 2d̃(r) + 2Kaσ1(r) + 2dn (r)}dr

≤ − 1
2KaMn

∫ t

t−Pt

[
2KaKσ1σ

2
1 (r) − 2(Kaσ1(r))2

− ε2
L (r) − 2d̂2

h(r − Pt) − 2d2
n (r) − 2d̃2(r)

]
dr.

(30)

Since the time constant of the low-pass filters, τL is small enough
(i.e., τL ≈ 0) and the magnitude of the high-frequency compo-
nents of the estimated disturbances is also very small due to ZPF
(i.e., d̂h(r − Pt) ≈ 0), following conditions can be guaranteed:

|εL (t)| <
√

η1 , η1 ≥ 0 (31)

|d̂h(t − Pt)| <
√

η2 , η2 ≥ 0. (32)

When the nonperiodic disturbance and the estimation error of
the lumped disturbance are bounded as follows:

|dn (t)| <
√

η3 , η3 ≥ 0 (33)

and

|d̃(t)| <
√

η4 , η4 ≥ 0 (34)
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the difference ΔV becomes as follows:

ΔV (t) < − 1
2KaMn

∫ t

t−Pt

[
2Ka(Kσ1 − Ka)σ2

1 (r)

− η1 − 2η2 − 2η3 − 2η4 ] dr. (35)

When the following condition is guaranteed:

2Ka(Kσ1 − Ka)σ2
1 (r) ≥ η (36)

where

η = η1 + 2η2 + 2η3 + 2η4 (37)

the difference ΔV becomes negative semidefinite as follows:

ΔV (t) ≤ − 1
2KaMn

∫ t

t−Pt

[
2Ka(Kσ1

−Ka)σ2
1 (r) − η

]
dr ≤ 0. (38)

Here, (36) can be guaranteed by the tracking errors with cer-
tain bounded level for any Kσ1 and Ka . Therefore, it can be
proved that the system is stable in the case that there exist the
nonperiodic disturbance.

On the other hand, in the case that the effects of the filters
such as LPF and ZPF are negligible (i.e., τL = 0 and d̂h(t −
Pt) = 0) and the actual disturbance is considered as a periodic
disturbance (i.e., dn (t) = 0)), the difference ΔV (t) becomes
negative semidefinite as follows:

ΔV (t) = − 1
2KaMn

∫ t

t−Pt

[(
2KaKσ1

+K2
a

)
σ2

1 (r)
]
dr ≤ 0. (39)

From LaSalle’s invariant set theorem, the asymptotical stability
of the overall system is proved [31].

D. Gain Design of Feedback Controllers

The gains of the proposed PADOB controller are determined
by the following process. In the searching phase, since the ac-
tual plant behaves as the nominal model within the frequency
bandwidth of the Q-filter due to DOB (i.e., ω < ωQ

c < ωL
c ), the

closed-loop dynamics based on the nominal model without dis-
turbance is considered, and it is derived from (10) and (15) as
follows:

s3 +
(Bn + Kσ0)

Mn
s2 +

Kσ0a0

Mn
s +

Kσ0b0

Mn
= 0. (40)

For simplicity of the gain tuning process, all the poles are de-
signed to have the same value. When a desired pole is located
at −p0 , the control gains are obtained as follows:

Kσ0 = 3Mnp0 − Bn, a0 =
3Mnp2

0

Kσ0
, b0 =

Mnp3
0

Kσ0
. (41)

In the learning phase, substituting (18) into (2) and assuming
that the lumped disturbances can be compensated for by the PA
mechanism perfectly, the closed-loop error dynamics within the
frequency bandwidth of the interest (ω < ωH

c < ωL
c ) is derived

as follows:

s3 +
Mna1 + Kσ1

Mn
s2 +

Mnb1 + Kσ1a1

Mn
s +

Kσ1b1

Mn
= 0.

(42)
If all poles are located to have the same value at −p1 , then the
feedback control gains are calculated as follows:

Kσ1 = Mnp1 , a1 = 2p1 , b1 = p2
1 . (43)

E. Selection of the Adaptation Gain

Here, consider the adaptation gain Ka when the control gains
(43) are substituted into (40). Since the desired pole location
is determined as −p1 , the closed-loop characteristic dynamics
with the adaptation law is obtained as follows:

Mn (s + p1)2
(

s + p1 +
Ka

Mn

)
= 0. (44)

If Ka increases, then the system bandwidth can be widened
and the transient response is also improved since fast conver-
gence of tracking error to zero is achieved as the learning speed
of the disturbance is increased. However, it is impossible to
increase the adaptation gain very largely due to the actuator sat-
uration in practice. The large adaptation gain makes not only the
overall system more sensitive to unmodeled dynamics that has
high-frequency components but also occurs the heavy chatter-
ing problem. Therefore, the adaptation gain Ka should be set at
a reasonable value to avoid actuator saturation after the desired
pole is determined in (44).

To facilitate the selection of the adaptation gain Ka , the re-
lationship between the adaptation gain Ka and convergence
speed along the frequency components of the tracking errors to
be minimized is considered. To do this work, the transfer func-
tion for the error propagation between the current and previous
time periods is obtained as follows:

Te =
ex(t)

ex(t − Pt)
=

s + p1

s + p1 + Ka/Mn
. (45)

When the desired pole p1 is defined as ω1 = p1 , the conver-
gence speed to minimize the tracking errors at ω < ω1 can be
approximated as follows:

Cspd =
ω1

ω1 + Ka/Mn
. (46)

Therefore, the adaptation gain Ka can be determined as follows:

Ka = Mnω1

(
1

Cspd
− 1

)
. (47)

In the case of the frequency components of the tracking er-
rors at ω1 < ω < ω1 + Ka/Mn , the convergence speed to min-
imize the tracking errors is slower than that at ω < ω1 be-
cause the transfer function Te has a slope of 20 dB/dec. At
ω1 + Ka/Mn < ω, the PA law does not work.

Therefore, the adaptation gain can be determined automati-
cally after the desired pole of the feedback controller p1 = ω1
and the convergence speed Cspd depending on the frequency
components of the tracking errors to be minimized are deter-
mined. In the case that the dominant tracking errors have low-
frequency components, the large adaptation gain is not required.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHO et al.: HIGH-PRECISION MOTION CONTROL BASED ON A PERIODIC ADAPTIVE DISTURBANCE OBSERVER IN A PMLSM 7

On the other hand, the adaptation gain should be increased if the
tracking errors that have high-frequency components are domi-
nant, and it will improve the convergence speed to minimize the
tracking errors.

However, high-adaptation gain makes the overall system un-
stable due to high-frequency noise or unmodeled dynamics and
occurs the heavy chattering problem. The adaptation gain affects
directly the control input and output since it changes the location
of the pole in the characteristic equation as shown in (44). To
investigate the effect of the adaptation gain Ka on the system
stability, the control input and output of the overall system for
the tracking errors in Fig. 1 are calculated as follows:

u1(t) = u1(t − Pt) + Ta(xd − x − n) (48)

and

x(t) = x(t − Pt) + Ta(xd − x − n) (49)

where

Ta =
KaCσ

1 + Cf b1Pn
= Ka

s(s + Bn/Mn )
s + p1

, Bn/Mn < p1 .

(50)
The magnitude of the transfer function Ta is increased as

the adaptation gain Ka becomes large and the frequency is
increased. Therefore, the control input and output become sen-
sitive to the high-frequency noise (or unmodeled output dis-
turbances) due to the derivative action in Ta . To guarantee the
stability of the overall system, the adaptation gain Ka must be
adjusted as follows.

1) When the reference trajectory requires low speed and
acceleration, the magnitude of the control input signal
comparing with that of noise (or unmodeled output dis-
turbance) is relative small. The induced disturbances also
have low-frequency components because the required mo-
tion is slow. Therefore, the overall system can be sensitive
to the noise if the large adaptation gain is utilized for this
case.
Since the fast convergence speed is not required, the small
adaptation gain is preferred.

2) When the reference trajectory requires high speed and
acceleration, the magnitude of the control input signal
comparing with that of noise (or unmodeled output distur-
bance) is relatively large. The induced disturbances have
high-frequency components because the required motion
is fast. The overall system can be also less sensitive to the
noise.
Since the convergence speed should be increased, the
adaptation gain can be increased.

From this analysis, the guideline for the adaptation gain Ka

can be illustrated.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed control scheme,
various real-time experiments considering the force ripple and
switching friction force were carried out on the prototype
PMLSM motion system shown in Fig. 2. The experimental
results of the proposed control scheme were compared with

Fig. 2. Experimental PMLSM motion system.

those of other schemes such as RC and PA (which is PADOB
without DOB) as well as DOB to evaluate the position tracking
performance.

A. Experimental Setup and System Identification

All experiments were carried out based on the prototype
PMLSM motion system depicted in Fig. 2. PWM inverter that
has 10 kHz switching frequency was utilized and it was con-
trolled by a dSPACE DS1103 board. The current and position
controllers were executed at 50 μs and 0.5 ms loop time, respec-
tively. An optical linear encoder, which has a resolution of 0.5
μm, was utilized to measure the position of PMLSM. To guaran-
tee the stability of the overall system, the fourth-order ZPF that
has the cutoff frequency of 100 Hz was utilized (i.e., H(z) =
0.0938z4 + 0.1064z3 + 0.1159z2 + 0.1219z + 0.1240 +
0.1219z−1 + 0.1159z−2 + 0.1064z−3 + 0.0938z−4).

Since the used PMLSM was a prototype motor, a system iden-
tification method based on sine-sweep input signals with various
magnitudes was performed to obtain the nominal parameters of
this PMLSM. As shown in Fig. 3, various magnitude and phase
responses from input q-axis reference current to output speed
were obtained. The output speed obtained by the derivative ac-
tion of the measured position signal was filtered by a low-pass
filter. The nominal parameters were determined from the average
of these obtained responses, which were presented in Table I.

B. Comparative Studies

To verify the effectiveness of the proposed scheme, follow-
ing comparative studies are also implemented on the PMLSM
motion system.

1) Disturbance observer: This controller is same as one in
searching phase of PADOB depicted in Fig. 1, which con-
sists of the feedforward controller, PID feedback con-
troller, and DOB. The cutoff frequency of the Q-filter in
DOB is well tuned to minimize the tracking errors.

2) Periodic adaptation: This controller has the same struc-
ture in learning phase of PADOB, but the estimated dis-
turbance is not utilized for the initial condition of the PA
law since DOB is not used. So, we define this controller
as PA, and it can be considered as a kind of RC (or ILC)
with current cycling feedback terms.
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Fig. 3. Frequency response of the PMLSM motion system.

TABLE I
NOMINAL PARAMETERS OF THE PMLSM MOTION SYSTEM

Parameter Symbol Value Unit

Mover mass Mn 8.70 kg
Viscous friction coefficient Bn 80.70 N/m/s
Back-emf constant Ke 25.66 V/m/s
Force constant Kf 32.98 N/A
Pole pitch xp 22.50 mm

Fig. 4. General repetitive controller for a comparative study (RC).

3) Repetitive control: It is a general repetitive controller de-
picted in Fig. 4, which uses the previous cycling feedback
terms. Unlike PADOB and PA, the initial condition of the
learning law cannot be utilized since the learning law is
designed from the point of view of a control input.

The feedback and feedforward controllers of all the compar-
ative studies are designed identically with those of PADOB.
These comparative studies are reasonable to evaluate the track-
ing performance of the proposed scheme. The comparison of the
experimental results of PADOB and DOB shows how the dis-
advantages of the Q-filter in DOB such as magnitude distortion

Fig. 5. Simplified structures of learning laws in RC, PA, and PADOB: (a) RC.
(b) PA. (c) PADOB.

TABLE II
OUTPUTS OF LEARNING LAWS FOR EACH TIME PERIOD

Time period no. Outputs RC PA PADOB

0 d̂0 0 b0 d̂d o b

1 d̂1 a0 b0 +b1 d̂d o b +b1

2 d̂2 a0 +a1 b0 +b1 +b2 d̂d o b +b1 +b2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
k d̂k

∑ k −1
i = 0 ai

∑ k
i = 0 bi d̂d o b +

∑ k
i = 1 bi

and phase lag are compensated by the PA law. The performance
comparison between the PADOB and PA shows the effective-
ness of the initial condition in the learning law designed from
the point of view of the disturbance. RC shows the performance
comparison along the difference between points of view to de-
sign the learning law.

To show the difference between comparative studies clearly,
the structures of the learning laws in RC, PA, and PADOB are
depicted in Fig. 5. For simplicity, the filters such as LPF and
ZPF are omitted and the outputs of all the learning laws are
noted as “d̂k .” From this figure, the outputs of the learning
laws for each controller along the repetitive time period are
calculated in Table II. RC has no learning output at the initial
time period since it uses only previous cycling feedback terms.
PA utilizes the current feedback terms as the learning output at
the zeroth time period and it becomes the initial condition at
the first time period. In PADOB, the disturbance estimated by
DOB is utilized as the learning law at the initial time period,
and it is updated periodically by the current feedback terms
after the next time period. The differences between PADOB
and general ILC/RCs can also be illustrated evidently by these
characteristics of learning laws in comparative studies.

C. Evaluation of Tracking Performance for Force Ripple

To evaluate the tracking performance when the force ripple
is the dominant disturbance, experiments on repetitive motion
under trapezoidal reference position trajectory were carried out.
Since the trapezoidal reference position trajectory has repetitive
constant speed and stop motions, the fundamental frequency
of the force ripple is constant and there is no heavy friction
force such as the switching friction force induced at the speed
reversal moment. Therefore, the force ripple can be considered
as the dominant disturbance on motions. The maximum values
of the states of the used reference trajectories are presented in
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TABLE III
TRAPEZOIDAL REFERENCE TRAJECTORIES

Maximum

Position[m] Speed[m/s] Acceleration[m/s2 ]

CASE1 0.06 0.10 2.0
CASE2 0.30 0.50 5.0

TABLE IV
HARMONICS FREQUENCY OF FORCE RIPPLE IN CASE1 AND CASE2

First freq Second freq Third freq Fourth freq ...
[Hz] [Hz] [Hz] [Hz]

CASE1 4.4444 8.8889 13.3333 17.7778 ...
CASE2 22.2222 44.4444 66.6667 88.8889 ...

Table III. To determine the bandwidth of the Q-filter in DOB
and PADOB, the fundamental frequency and its harmonics of
the force ripple are calculated in Table IV. The LPF that has
the cutoff frequency of 30 Hz was determined as Q-filter for
DOB and PADOB. In CASE1, all the dominant components of
the force ripple are included in the bandwidth of the Q-filter,
while only the fundamental frequency component is within the
bandwidth of the Q-filter in CASE2.

Fig. 6(a) shows reference trajectories used for CASE1. The
comparison results between PADOB and DOB are shown in
Fig. 6(b)–(f). As shown in Fig. 6(b), the tracking performance
of DOB was not improved as time goes on (noted as “DOB30”),
while the tracking errors of PADOB were decreased due to
the PA law (noted as “PADOB700”; Ka = 700). Through the
results when the adaptation process is completed as depicted
in Fig. 6(c) and (d), it was verified that the force ripple was
attenuated perfectly in PADOB since the tracking errors were
minimized over whole frequency ranges. The improvement of
the tracking performance in PADOB was achieved by the PA
law that provides the phase lead for the estimated disturbance as
shown in Fig. 6(e). However, DOB could not attenuate the force
ripple due to phase lag, although the magnitude response of the
disturbance estimated by DOB is same as that of the disturbance
estimated by PADOB as depicted in Fig. 6(f). Therefore, it is
verified that the disadvantage of DOB such as phase lag can
be overcome by PADOB. Figs. 6(g)–7 show the experimental
results when PADOB is compared with PA and RC. Due to
the use of initial condition for the learning law in PADOB,
PADOB showed the smallest RMS (root mean square) and MAX
(maximum) errors at the zeroth-time period and the fastest error
convergence speed among comparative studies. Although the
high learning gains are used in PA (noted as “PA900”) and RC
(noted as “RC04”), the error convergence speeds of PA and RC
were not faster than that of PADOB and overall system become
even unstable since it is sensitive to unmodeled dynamics and
noise due to high learning gains. In Fig. 7, it was verified that
the control input of PADOB is nearly the same as other control
inputs of the comparative studies when the adaptation process is

Fig. 6. Tracking performance results in CASE1: (a) Reference trajectories.
(b) Position tracking errors for 202 s. (c) Position tracking errors at the 20th
time period. (d) FFT results of position tracking errors at the 20th time period.
(e) Estimated disturbance at the 20th time period. (f) FFT results of estimated
disturbance at the 20th time period. (g) RMS of position tracking errors for 20
time periods. (h) MAX of position tracking errors for 20 time periods. (i) RMS
of position tracking errors for 100 time periods. (j) MAX of position tracking
errors for 100 time periods.

completed though PADOB guarantees the fastest convergence
speed.

The experimental results for CASE2 are shown in Fig. 8.
Fig. 8(a) shows reference trajectories used for CASE2 and
the maximum values of all the states are higher than those of
CASE1. In CASE2, since the bandwidth of Q-filter includes
only the fundamental frequency of the force ripple, the tracking
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Fig. 7. Control inputs at the 20th time period in CASE1.

performance of DOB was poor as shown in Fig. 8(b)–(d). Un-
like CASE1, the magnitude response as well as phase response
of the disturbance estimated by DOB were different with those
of disturbance estimated by PADOB as depicted in Fig. 8(e)
and (f). As the performance of the disturbance estimation in
PADOB was improved by the PA law, PADOB showed the su-
perior tracking performance over the whole frequency range.
The difference of the RMS and MAX errors at the initial time
period between PADOB, PA, and RC was larger than that of
CASE1 since the disturbances exist in higher frequency ranges
and high-speed/acceleration motion is required. Nevertheless,
PADOB showed not only the smallest RMS and MAX errors
at the zeroth-time period but also the fastest error convergence
speed. Although higher adaptation and learning gains were uti-
lized in PA (noted as “PA1100”) and RC (noted as “RC04”),
the tracking performances of PA and RC were worse than that
of PADOB shown in Fig. 8(i) and (j). As shown in Table V,
through the tracking performance results when the adaptation
or learning process was completed, it was verified that PADOB
shows the best tracking performance with guaranteeing the sta-
bility. Furthermore, the control input of PADOB was also a
little smaller than those of other controller as shown in Fig. 9.
It means that PADOB generates efficient control input since the
tracking errors was minimized and the lumped disturbance was
estimated very well due to the use of the initial condition of the
adaptation law. Therefore, it is verified that PADOB consumes
a little less energy while achieving better performance.

D. Evaluation of Tracking Performance for Force Ripple and
Friction Force

To evaluate the tracking performance of the proposed scheme
when the switching friction force as well as the force ripple are
existing, experiments under sinusoidal reference trajectory were
carried out. Since the sinusoidal trajectories include speed rever-
sal points as well as various operating speed conditions, severe
disturbances such as force ripple that has varying fundamental
frequencies and the switching friction force are occurred. The

Fig. 8. Tracking performance results in CASE2: (a) Reference trajectories.
(b) Position tracking errors for 202 s. (c) Position tracking errors at the 20th
time period. (d) FFT results of position tracking errors at the 20th time period.
(e) Estimated disturbance at the 20th time period. (f) FFT results of estimated
disturbance at the 20th time period. (g) RMS of position tracking errors for 20
time periods. (h) MAX of position tracking errors for 20 time periods. (i) RMS
of position tracking errors for 100 time periods. (j) MAX of position tracking
errors for 100 time periods.

used sinusoidal reference trajectories are shown in Table VI.
Since maximum speed and acceleration of the reference trajec-
tory in CASE4 are higher than those in CASE3, the case of
CASE4 has higher fundamental frequency of force ripple and
induces the faster speed reversal motion than those of CASE3.
To determine the cutoff frequency of the Q-filter in CASE3 and
CASE4, the maximum fundamental frequency and its harmonics
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TABLE V
TRACKING PERFORMANCE RESULTS FOR 21∼100 TIME PERIOD IN CASE2

RMS ||e||2 (um) MAX ||e||∞(um)

average maximum average maximum

PADOB1000 0.5198 0.5401 2.1225 2.8805
PA1000 0.6373 0.6517 3.2915 3.6361
RC03 0.6113 0.6707 3.1424 4.8560

Fig. 9. Control inputs at the 20th time period in CASE2.

TABLE VI
SINUSOIDAL REFERENCE TRAJECTORIES

Desired Trajectory xd (t) Max Speed
[m/s]

Max Accel
[m/s2 ]

CASE3 xd (t) = 0.015(1 − cos(πt)) 0.0471 0.1480
CASE4 xd (t) = 0.150(1 − cos(πt)) 0.4712 1.4804

TABLE VII
HARMONICS FREQUENCY OF FORCE RIPPLE IN CASE3 AND CASE4

First freq Second freq Third freq Fourth freq ...
[Hz] [Hz] [Hz] [Hz]

CASE3 2.0944 4.1888 6.2832 8.3776 ...
CASE4 20.9440 41.8879 62.8319 83.7758 ...

of force ripple are calculated as in Table VII when the PMLSM
is moving at the maximum speed on the given trajectories. From
the calculated results and experimental fine-tuning, the cutoff
frequencies of the Q-filter for DOB and PADOB have been
selected as 15 and 30 Hz in CASE3 and CASE4, respectively.

The experimental results of the proposed scheme and other
comparative studies for CASE3 are shown in Fig. 10. The com-
parison results between PADOB400 (which uses Ka = 400) and
DOB15 when the adaptation process is completed are shown in
Fig. 10(a) and (b). The tracking performance of DOB15 was
worse than that of PADOB400 although all the dominant fre-

Fig. 10. Tracking performance results in CASE3: (a) Position tracking errors
at the 20th time period. (b) FFT results of position tracking errors at the 20th
time period. (c) RMS of position tracking errors for 20 time periods. (d) MAX
of position tracking errors for 20 time periods. (e) RMS of position tracking
errors for 100 time periods. (f) MAX of position tracking errors for 100 time
periods. (g) Control inputs at the 20th time period.

quency components of the force ripple were within the band-
width of the Q-filter. Especially, it was verified that the tracking
errors at the speed reversal moment were very large and the force
ripple was also not attenuated perfectly. On the other hand, the
tracking errors of PADOB400 were minimized over whole fre-
quency range due to the PA law. Fig. 10(c)–(f) shows RMS and
MAX tracking errors for each repetitive time period of com-
parative studies. As shown in these figures, PADOB400 shows
the fastest error convergence speed of comparative studies due
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Fig. 11. Tracking performance results in CASE4: (a) Position tracking errors
at the 20th time period. (b) FFT results of position tracking errors at the 20th
time period. (c) RMS of position tracking errors for 20 time periods. (d) MAX
of position tracking errors for 20 time periods. (e) RMS of position tracking
errors for 100 time periods. (f) MAX of position tracking errors for 100 time
periods. (g) Control inputs at the 20th time period.

to the use of DOB at the initial repetitive time period. In PA
and RC, the instability problem was occurred although the error
convergence speeds were increased when the high learning gain
values were utilized (noted as “RC03” and “PA600”). As shown
in Fig. 10(e) and (f), the high gain makes the overall system
more sensitive to unmodeled dynamics and noise. Fig. 10(g)
shows that the control input of PADOB is nearly the same as
other control inputs of the comparative studies when the adapta-
tion process is completed though PADOB guarantees the fastest
convergence speed to minimize the tracking errors.

TABLE VIII
TRACKING PERFORMANCE RESULTS FOR 21∼100 TIME PERIOD IN CASE4

RMS ||e||2 (um) MAX ||e||∞(um)

average maximum average maximum

PADOB1000 0.4923 0.5095 2.3987 2.7693
PA1000 0.5598 0.5974 2.9126 3.8716
RC03 0.5632 0.5792 2.4375 2.8889

The experimental results of CASE4 are shown in Fig. 11. In
CASE4, since only the fundamental frequency component of the
force ripple is included in the bandwidth of the Q-filter and the
speed reversal motion occurs more fastly than CASE3, DOB was
insufficient to attenuate disturbances as shown in Fig. 11(a)–(b).
However, PADOB1000 showed that the switching force as well
as the force ripple were attenuated effectively through the mini-
mized tracking errors over whole frequency ranges since the PA
law in PADOB1000 compensated for the phase lag, magnitude,
and high-frequency components of the disturbance estimated
by DOB. As in CASE3, PADOB1000 had the smallest RMS
and MAX error at the initial repetitive time period when it was
compared with PA and RC and showed fast error convergence
speed, as depicted in Fig. 11(c) and (d). Through 11(e), (f), and
Table VIII, it was also verified that PADOB showed the best
tracking performance when the adaptation or learning process
is completed. In Fig. 11(g), PADOB showed that the best track-
ing performance can be guaranteed by a little smaller control
input when it is compared with those of comparative studies due
to several advantages of PADOB.

From these results, it was verified that the perfect tracking
performance can be achieved by PADOB with efficient control
input although there exist high-frequency components of dis-
turbances such as switching friction force as well as the force
ripple that has varying fundamental frequency.

V. CONCLUSION

In this paper, a novel disturbance compensation scheme to
attenuate periodic disturbances on repetitive motion trajecto-
ries using a PMLSM motion system has been developed. In
the proposed control scheme, it has been proved theoretically
that position tracking errors converge to zero asymptotically
assuming that all measured states and disturbances have the
same repetitive time period as that of reference trajectories.
This scheme requires no mathematical models of disturbances
or adaptation laws of model parameters such as the mass of the
mover and viscous friction coefficient. All the disturbances are
attenuated effectively by a periodical adaptation law without
separating each disturbance from the lumped disturbance. It is
possible to compensate for the disturbances whose frequency
components are below and above the bandwidth of the Q-filter
of the DOB. Also, it shows that learning control schemes such
as ILC and RC can be designed not from the point of view of
a control input but disturbances. Through various experiments
under reference trajectories considering force ripple and friction
force, the proposed control scheme has shown superior position
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tracking performance than comparative studies such as DOB,
RC, and PA.

However, the systemic design procedure to choose optimal
adaptation gain values has not been discussed. As future works,
how to determine the optimal gain guaranteeing the stability of
the overall system with the best tracking performance will be
explored. Also, the proposed scheme has a disadvantage that
huge amount of memory is required when the time period of
the reference trajectories Pt is very large. This problem be-
comes less troublesome as the price of the memory continues
to decrease these days, but, it is still an important issue in the
industrial applications that the cost of production is very impor-
tant. In the proposed scheme, this problem may be improved
by increasing the loop time of the position controller since the
total number of samples to be utilized for the periodic feedback
is determined as N = Pt/Ts (where Ts is the loop time of the
position controller). However, the large loop time makes the
tracking performance worse since the time to measure the posi-
tion signal becomes slow and the samples to estimate the lumped
disturbance are not enough. Therefore, the research to minimize
the amount of memory will be also performed to improve the
practical implementation issue of the proposed scheme as future
works.
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