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1 Introduction

Electronic Wedge Brake (EWB) is a kind of brake-by-wire system that uses the
self-reinforcement effect (Hartmann et al., 2002). As the self-reinforcement effect
enables energy-effective operation, EWB can be compatible with existing 12 V system
(Ho et al., 2006). Siemens VDO, the inventor of EWB says that EWB uses only 10%
of energy compared with existing hydraulic devices. Also, it features fast response
characteristic, reducing braking distance by 15% compared with hydraulic ones.
Such advantages of EWB make it one of the most promising and practical
brake-by-wire technologies. The various wedge mechanisms for better performance are
under research (Kim et al., 2009).

However, self-reinforcement effect can cut both ways. It enables energy-effective
operation, but it also can make the system highly sensitive to the variation of system
parameters like pad friction-coefficient. The problem is that not only the brake force but
also small parametric error can be highly amplified through self-reinforcement effect,
possibly degrading system stability.

Because EWB is still not available in the automotive market, there are not many
publications regarding EWB control yet. Ho et al. (2006) used a cascade control
scheme based on a PID control, and Fox et al. (2007) are recently trying a PI
state-feedback control scheme with an optimisation to make control system robust to the
variation of system parameter including pad friction-coefficient. But, there is still no
attempt to try an adaptation scheme for a robust control of EWB. So, this paper suggests
an adaptive control scheme that is based on the sliding-mode control method.
The sliding-mode controller is composed of PD and feed-forward components. The
feed-forward component can reduce the phase lag during the tracking control
significantly. Also, an adaptation scheme based on the developed sliding-mode controller
would further reduce the control error caused by model uncertainties and disturbances.

The goal of this research is to make EWB system robust to the model uncertainty
and disturbance, especially for the friction-coefficient between brake pad and wheel disc.
The pad friction-coefficient is a significant factor that makes brake-control difficult,
as it is unknown and it directly affects the brake force (Balogh et al., 2006). Moreover,
in EWB system, the pad friction-coefficient is coupled with large stiffness around so that
the only small variation of it can be amplified by large stiffness, making system highly
sensitive to its variation. The adaptive approach proposed here will make system robust
to the variation of pad friction-coefficient and even provide a method to estimate pad
friction-coefficient in real time. In addition, this paper suggests a control scheme without
a force sensor for the clamp force sensing. It would contribute to the reduction of cost
and system complexity.

2 Model of EWB

2.1 Dynamics analysis

EWRB is a kind of brake-by-wire system, which is driven by electrical motors. So, system
model includes both of electrical and mechanical part. A simple dynamics analysis
is done on the basis of a single motor model (Fox et al., 2007) (Figure 1). The parameters
are as follows:
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Motor resistance (in )

Motor inductance (in H)

Motor angle (in rad)

Motor rate (in rad/s)

Motor current (in A)

Motor input voltage (in V)

Motor inertia (in Nm/rad/s?)

Motor torque constant (in Nm/A)
Motor damping coefficient (in Nms/rad)
Axial stiffness (in N/m)

Axial damping coefficient (in Ns/m)
Caliper stiffness (in N/m)

Wedge angle (in deg)

Wedge weight (in kg)

Wedge position (in m)

Wedge velocity (in m/s)

Pad friction-coefficient

Pad friction-coefficient in plant model
Pad friction-coefficient in controller
Screw efficiency

Screw lead length (in m)

Actuation force (in N)

Clamp force (in N)

Reaction force (in N)

Brake force (in N)

Newton

Meter

Second

Ampere

Voltage

Henry.

In the direction of horizontal axis, the force balance reads

F,+F,—sinaF,=m,v,

F,=uF,..
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(1)
2

Fp is the brake force that results from the contact between the brake pad and disc. It acts
in the same direction as the actuation force F), resulting self-reinforcement (Hartmann
etal., 2002).



168 Y. Hwang and S.B. Choi

In the direction of normal axis, the force balance reads
F, —cosaF, =0. 3)

The motion of wedges in the normal direction is neglected.
Combining equations (1)—(3) yields

5, = IF, +(u—-tana)F,} @)
m

Fy=x tana K. &)

At a steady-state, the clamp force Fy = F)/(tan a-u) from the equation (4), and it explains
that the force is self-reinforced by the factor of 1/(tan a-u). The actuation force F), can be
described as

F, :KA(QM i_ij"'l)/t[@u i_ij (6)

2z 1,

Screw

n=LF,. (7

Here, Tseew is the torque delivered to the screw by motor and equation (7) explains
that this torque transforms into an actuation force with a constant efficiency of #.
The efficiency of screw has non-linearity, but it is approximated to have the constant
value of 0.65 referring to (Roberts et al., 2003). It is assumed that a ball screw is used to
minimise the uncertainty due to the friction.

The electrical motor is modelled as a single-phase DC motor.

=——Mi—k—Ma)M +LuM. 3)

And, torque balance reads

JMd)M = TM _TScrew _TDamp (9)
T, =k,i, (10)
TDamp :dMa)M' (11)

Friction is modelled as a viscous damping, dj,. (Roberts et al., 2003).

Figure 1 Single motor model of Electronic Wedge Brake

R Lur
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2.2 State-space representation

The equations described in the previous section represent a fifth-order linear system, and
state-space expression is

X=Ax+Bu (12)
y=Cx
where
x=[x,,,,0, 0y iy 1 (13-1)
y=F,
0 | 0 0 0 ]
4 D &K, @b, 0
w m, m, m,
0 0 0 1 0
aK, aD, -a,K, —-a D, ——2L AL
3By 34 4724 474 JM JM
R
0 0 0 SLTAN 3
L LM LM_
C 0 13-2
K tano ! ( )
0
0
0
B: . C: 0
0
0
1
_ 0
_LM_
a, =(u—tana)tanaK. - K,
L L 15
az =, a3 = 5 a4 :2—
27 cos 2rJyn 41

Note that pad friction-coefficient is included in 4,; element, which means that A,
element can be erroneous. Also note that the pad friction-coefficient in A4,; element
is coupled with large stiffness, which is known to be the order of 10’. So, the system can
be sensitive to the variation of pad friction-coefficient.

2.3 Discussion on system order

The following equation can be derived on the basis of state-space representations
in equations (12)—(13),

5
xfj) :Zgixi+g6u’ u=Bsu,, (14)

i=1
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where

& = A221 + A21A222 + Ay Ay Ay + Ay Ay, A,
+ A23A41 + A24A41A44
8, =24y 4y + Ay 4, + A232 +24,4,,4,
+ A23A42 + A24 A42 A44
g3 = A21A23 + A222 A23 + A23A24A42 + A22A24 A43
+ A23A43 + A24A43 A44 (l 5)
g4 = A21A24 + A222 A24 + A224A42 + A22A23
+ A24 A43 + Azz A24 A44 + A23A44 + A24 Af4
+ A24 A45 A54
8s = Ap Ay Ays + Ay Ays + Ay Ay Ay + Ay Ay Ass
8 = Ay Ays > 0.
Here, 4; and B;; represent the element of matrix 4 and B, respectively, where i is the row
index and j is the column index. And, x; refers to each state in equation (13).
The relative order of this system is 4 as shown in equation (14). The problem
is that such a high order of system generates complex combinations in equation (15).
Thus, an error contained in A4,; element can be amplified by such complex combinations.
Anyway, a sliding-mode controller for the system model represented in equation (13),
which will be referred to as full-model, is designed as follows.

According to the study by Slotine and Coetsee (1986), a sliding variable s(x, f)
is defined as

d 3)
s(t) = (E + z) £,(0). (16)

The control target is clamp force Fy. But, the wedge position x,, is selected as the control
target because it is proportional to the clamp force as shown in equation (5). Then,
a sliding surface is defined by equating (16) to zero as

¥, +3A%, +30%%, + A (x, —x,,) =0. (17)

The derivatives of reference input x,, were vanished because a step input is assumed.
Next, define a control law to meet the sliding-condition as

$(t) = —k sgn(s(?)). (18)

From equations (16)—(18), a sliding-mode controller can be obtained such that

5
g =—3A%, —3°%, — A%, —ksgn(s(t) - Y_ g,x,. (19)

i=1

Because this system is linear, each differentiation of output variable can be expressed as
the linear sum of states.

4 5
xw = VW = x2’ jc.-w = ZAZixi’ xw = Zhjxj‘ (2’0)
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Here, the coefficient 4; is defined as follows:
hy = Ay Ay, + Ay Ay,
hy = Ay + Ay + Ay 4,

hy = Ay Ayy + Ay Ay (21
hy = 4y Ay + Ay + Ay, A4y
hs = Ay, Ays.

Substituting equation (20) in equation (19) yields the final form of designed controller
such that

5 4 5
gl = —3/12 hx; - 347 Z A,x, — Ay, —ksgn(s(t)) — Z g% (22)
=1 I=1

i=1

Simulation tests using MATLAB/Simulink are performed on a sliding-mode controller
in equation (22), varying the pad friction-coefficient of plant model to check the
robustness. The controller is designed for a certain ordinary pad friction-coefficient y.,
whereas the pad friction-coefficient of plant model u, is varied widely to check the
robustness of the control system.

The designed sliding-mode controller operates well when there is no modelling
uncertainty, that is, for consistent case, y. = u,. The sliding variable and the derivative
of it converge to zero in an instant, so the tracking error is vanished.

However, the system response diverged for the inconsistent case, that is, u.# u,,
as shown in Figure 2(b). The u. is set to 0.35 and x, to 0.4. A guess can be made that the
parametric error caused by inconsistent pad friction-coefficients is amplified through high
system order. To investigate the reason in detail, check if the sliding-condition is satisfied
as follows,

%%(S(t))z <-nls@)|,  n>0. (23)

As mentioned previously, 4,; element can be erroneous because it contains pad
friction-coefficient. And, every coefficient that includes 4,; element in its expression also
can be erroneous, that is, g1, g5, €3, €4, 11, /1, in equations (15) and (21) can be erroneous.
Thus, the controller defined in equation (22) can be rewritten reflecting the modelling
inaccuracies as follows:

2 . 5 n 4
gt = —3/1£Zhjxj + thxkj—M,Z (Azlxw +ZA2,~X;]
j=1 k=3 i=2

4
_/13‘}“/ —ksgn(s(r))— Zg’,X, — 8sly-

=1

24

Substituting equations (14) and (24) in equation (18) yields

4 2 -
$()=.8x% +3AD hx; +32° Ay x,, — ksgn(s(1)). (25)
i=1 j=1
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where

&=g-8&, h=h—-h, A21:A21_‘aal' (26)

Comparing equation (25) to equation (18), the modelling uncertainty Af can be defined
as follows:

Af = Afso + AfAzl
4 2

Mo =D 8% +3A) hyx, (27)
i=1 =1

A o1 = 3121&21)‘“/'

Note that the modelling uncertainty consists of the error from A4,, element only (Af;,1)
and from the coefficients generated by the order of system (Afso).

Figure 2  Plot of sliding variable s(x, ) (a) u. = u, and (b) u. # w,
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The plots for each component of modelling uncertainty in the simulation are depicted
in Figure 3. It is obvious that the high order of system contributes to the modelling
uncertainty dominantly.

Let us check the sliding-condition defined in equation (23) as follows:

s(@)s(2) = s(O)(Af —ksgn(s(2)))
=s(OA —k|s)| <-n|s@)|,  n>0.

That is, the gain & should be larger than the absolute value of modelling uncertainty
at least. But, it seems to be practically impossible to cover the modelling uncertainty only
with gain tuning, as the error contained in A, itself is in the order of 10°. As shown
in Figure 4, the product of sliding variable and the derivative of it diverge to ‘oo, violating
the sliding-condition in equation (23). The gain k is set to 5000 for this case.

(28)
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Figure 3 Components of modelling uncertainty Af'(a) Afy; and (b) Afso
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Figure 4 Check for the sliding-condition, £ = 5000
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The conclusion can be made that system model needs to be further simplified
to prevent the modelling uncertainty from being amplified, for a successful sliding-mode
operation.

3 Model simplification

In the previous section, a sliding-mode controller for full-model was designed and tested
by simulation. Simulation tests showed unstable results for the case of inconsistent pad
friction-coefficients. That is, if the pad friction-coefficient of plant model (u,) is different
from that used in the controller design (u.), the system diverged in an instant. And, the
check for a sliding-mode condition verified that the high system order deteriorated the
performance of designed controller remarkably. So, the further simplification of EWB
model is conducted for a reliable sliding-mode operation in this chapter. The modelling
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uncertainty decreases by the reduced system order. For the simplification of system
model, some features are neglected as follows:

e Neglect the wedge dynamics
e Neglect the axial damping
e Neglect the inductance in the motor model

These reduce the system order from five to two as a result.

3.1 Neglect the wedge dynamics

The EMB system consists of two subsystems: electrical system including motor
and screw, and mechanical system including wedges. In the mechanical system, the
light-weight wedge is coupled with large stiffness around it. Thus, the mechanical part is
stiff and the bandwidth is very high. So, the performance of the system response largely
depends on the electrical system. Actually, the stiffness nearby is known to be in the
order of 10”.

Accordingly, the dynamics of wedges is ignored by setting the weight of wedges
to zero. Hence, the order of system can be reduced by two. Equation (1) can be rewritten
ignoring the weight of wedges as follows:

F, +F, —sinaF, =0. (29)
And, equation (29) and equation (3) are combined to
F, =F,(tana—u). (30)

Comparing equation (30) to equation (4), one can notice that the relationship between
actuation force and clamp force has been further simplified. And, substituting equation
(5) in equation (30) yields

F,, =x K tano(tana— u). 31

Here, define a new stiffness as follows:

Koo =Ko tanoa(tan o — u). (32)

Drive
Then, the equation (32) can be rewritten as
FM = KDrivexw' (33)

Koprive is in the order of 107 x K, when 1=0.35 and a=20° That is, the effective
stiffness to drive wedges is reduced by three orders of magnitude, by virtue of the
self-reinforcement effect. However, Kp,y. includes a friction-coefficient in its expression,
as shown in equation (32). It means that Kp;,. can be erroneous.

Kbpiive 18 expressed as K in short for the convenience.

3.2 Neglect the axial damping

Because the mechanical part is so stiff, the axial damping D, in Figure 1 is also
neglected. Actually, it was verified that the value of axial damping had little effect on
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the system response in the simulation tests. Neglecting the axial damping can reduce the
complexity of system model. The equation for actuation force F), in equation (6) can be
rewritten as follows:

L
F, =K, (QM E—ij. (34)

Equating equation (34) to equation (33) yields

K
x, =Ly (35)
K,+K, 2r

It should be noted that equation (35) defines a proportional relationship between wedge
position and motor angle. The wedge position x,, was selected as the control target in
the previous controller design because it is proportional to the clamp force Fy. So,
equation (35) means that the clamp force can be controlled by controlling the motor angle
without sensing clamp force. Because the sensing of clamp force is very noisy,
complicated and expensive work, controlling the system only with motor angle can
contribute to the reduction of cost and system complexity. Also note that the relationship
in equation (35) becomes more robust as the relative magnitude of axial stiffness
becomes larger. This can be an important consideration in the system design.

3.3 Neglect the inductance of electrical motor

Because the inductance of electrical motor is usually very little, it hardly makes dominant
poles (Ohishi et al., 2007). So, the inductance of electrical motor is neglected for the
simplification of model. Equation (8) can be rewritten, neglecting the inductance,
as follows:

. 1
Ly :R_(”M —ky @) (36)
M

And, substituting equations (7), (33), (35) and (36) in equation (9) yields
Ju®y =Ty =Ty, =T

crew Damp
_ [ &y 4 I KK, 9 k,, (37)
== —tdy Oy ———— 5 b, +t—u,.
R, 4r’n K,+K, R,

Note that system can be represented only with motor angle and motor rate (6,5, ®,,) in the
simplified model. That is, the system order is reduced by three, from five to two.
The motor angle can be measured easily and precisely using an encoder.

The simplified model in this chapter will be called the reduced-order-model
throughout this paper.

3.4 State representation of reduced-order-model

Up to the previous section, the full-model has been further simplified to the
reduced-order model, reducing the system order from five to two. The state-space
representation of the model is
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x=[6,,0, ]T (38)
y=F,.
i 0 1
A=| I [ K K, ] _[ K2 +dM]
| Ar’,m (K, +K, JyRy, Jy
[0
B=| k, | C=H K, -thanotKC 0}.
TR, K,+K, 2r

There are only two states, motor angle and motor rate in the simple-model, as shown
in equation (38).

4 Controller design

In this section, a controller for the reduced-order model is designed using the
sliding-mode control method. The design scheme for a sliding-mode controller is the
same as that in the previous chapter. The state equations of the reduced-order-model can
be simplified to

6, =0
o (39)
@, =—-pw,, —q06,, +ru,,.
Here, the coefficients p, g and r are defined as equation (40).
po i dy
JM RM JM
r K K
q=——| 2 (40)
A, \ K, +K,
7= ky > 0.
‘]M RM

As mentioned earlier, the motor angle is proportional to the wedge position in the model.
So, the control target for the model is the motor angle 6y, The reference input can take
the form of the motor angle 8,, directly, or the clamp force Fy indirectly using the
following relationship

K,+K 2
Oy = Fyy | —2—2 |- . 41
e N"( K, NLKCtanaJ D

This relationship can be derived from equations (5) and (35). Note that this relationship
includes Kp, which can be erroneous because of the inconsistent pad friction-coefficients.
So, if the clamp force input is used, the calculation should be updated by an adaptation
law, which is developed in the next chapter.

The relative order of the model is two, as shown in equation (37). Thus, the sliding
variable can be defined according to equation (16) as
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d o
s(y=|—+A1| 6,0). 42
0 ( = ) i () (42)
Equating (42) to zero yields the sliding-surface such that

6, + A6, —6,,)=0. (43)
The derivatives of desired motor angle are vanished since the step input is assumed.
Applying the control law defined in equation (18) yields
y) k
u, =E-20, +28, - =sgn(s(1). (44)
ror r r
Here, »>0. This is a sliding-mode controller for the reduced-order model. The sign
function in equation (44) can be replaced by a saturation function to reduce the chattering
effect.

5 Adaptation

In this chapter, an adaptation law will be developed on the basis of Lyapunov stability
theorem (Khalil, 2002).

5.1 Controller adaptation

As described in equation (40), the coefficient ¢ can be erroneous as it contains Kp. Thus,
the controller in equation (44) can be rewritten reflecting the parametric error as follows:
y) q k
u, =2-Dw, +L6, - Zsgn(s(t)). (45)
ror r r
Then, the modelling uncertainty Af becomes

$(t) = Af —ksgn(s(?))

A =—(g=9)6,, =—Gb,,.
Comparing equation (46) to equation (25), the error contained in ¢ is just in the order
of 10 when u, = 0.35 and , = 0.4. That is, the uncertainty is much less than it is for the
full-model. This is exactly as expected for the reduced-order-model.

Let’s define a Lyapunov function candidate V" as follows:
V:lsz+iq2 >0. (47)
2 2¢e

Here, ¢ is an adaptation gain. The function V defined in equation (52) is positive definite.
The differentiation of equation (47) yields

(46)

V = ss —155. (48)
£
Substituting equation (46) in equation (48) yields
/= 5(=38y ~ksen(s) 4
(49)
= —k|s| —q[SQM +%c})
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Here, define the derivative of g estimate as

g=-£56,. (50)
The following condition can be satisfied by substituting equation (50) in equation (49),
such that

V =—k|s|<0. (51)

This explains that the dV/dt is negative semi-definite. Thus, system is stable according
to LaSalle-Yoshizawa theorem since s(0)—0 (Krstic et al., 1995). The erroneous
coefficient ¢ is updated by equation (50) to keep control system stable.

5.2 Estimation of pad friction-coefficient

In this section, the scheme for the pad friction-coefficient estimation is developed on the
basis of an adaptation law developed in the previous section.
The coefficient ¢ in equation (40) can be rewritten reflecting an error as follows:

K, K ’
g=10-| —"2——|, E:ZL—. (52)
K,+K, 4z J,n

Recall that K, can be erroneous as it contains pad friction-coefficient, so it can be
rewritten as

K, (@) = K. tan a(tan o — f2). (53)
Let’s define a function f'as

IQD KA

(K,)=—2—4_ (54)
f s K,+K,
Then, equation (52) can be rewritten as
g="L-f(Kp). (55)

As one can see in equation (54), the function f'is non-linear. So, it will be linearised by
the first-order Taylor expansion as

: : df (K, (4,))
f(KD) = f(KD(/Uo))'F#
D
Here, p, is the origin friction-coefficient of the expansion. The first-order approximation
makes sense since the numerator of f'is usually 10° times bigger than the denominator.
The derivative term of f'can be represented, by a simple differentiation law, as follows,

A (K, () _ K
K,  (Ky(u)+K,)

(K, =K, (1)) (56)

(57)

Let’s verify the accuracy of the first-order Taylor expansion by comparing equation (56)
with the original function in equation (54). The expansion origin u, is set to 0.35,
an ordinary value of pad friction-coefficient.

Figure 5 shows the value of each function in the region, 0.2 <u <0.8. As shown
in Figure 5, the Taylor expansion in equation (56) is well approximated to the original
function, especially when the pad friction-coefficient is close to the expansion origin,
i.e., o= 0.35.
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Substituting equation (56) in equation (55) yields

df (K, (4,))
N a

D

= f-{f(ku (1)) + (K, -K, (ﬂo))} (58)

Differentiating equation (58) and substituting equation (57) in it, yields

. dg KK
qg= 49 _ L (59)
dt (K,(4,)+K,)
Because the derivative of g estimation is already given by the preceding controller
adaptation in equation (50), the adaptation law for Kp estimation can be achieved by

rearranging equation (59) as

[é' — (KD(IUO)+KA) A

60
Differentiation of equation (53) yields
dK A
Ry = F2% (K ) o (61)

Finally, the estimation law for the pad friction-coefficient can be achieved by substituting
equation (61) in equation (60) as follows:

N 1 K tana(tana— 1)+ K,

e 1 ) KLY (62)
K tana (K

The estimated pad friction-coefficient can be used for brake torque estimation because

the brake torque is proportional to the pad friction-coefficient.

Figure S Comparison between original function f'and Taylor expansion of it

x10°
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1st order Taylor expansion
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2 03 0.4 05 0.6 0.7 08 0.9 1
pad friction-coefficient

6 Simulation results

Simulation tests are performed for suggested controllers in the previous sections. The pad
friction-coefficient for the controller design (i) is set to an ordinary value, 0.35.

The angle of wedge shape is set to 20°, and the screw efficiency # is set to 0.65
according to the study by Roberts et al. (2003). The target settling time of the system
response is 0.2—0.25 seconds. Comparison between controllers is done provided that they
consume the same input energy when there is no modelling uncertainty, by configuring
the control systems.
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6.1 Robustness of clamp-force response

The robustness of control system is checked by setting the friction-coefficient of plant
model x4, and the screw efficiency to various values. The pad friction-coefficient and
the screw efficiency are the typical model uncertainties and disturbances of this system.
The series of simulation results represent the robustness of the proposed control system.

Figure 6 shows the simulation results for the case of severe braking with conventional
PI state-feedback controller. System is stable and there is no steady-state error for every
case. However, the overshoot is observed for higher pad friction-coefficients, and system
response is too damped to settle fast enough for lower pad friction-coefficients.
These results explain that EWB system is highly sensitive to the variation of pad
friction-coefficient.

Figure 6 PI state-feedback controller with a step reference
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Figure 7 shows the simulation results for the proposed adaptive sliding-mode controller.
Note that the responses are even more robust to the variation of x,, which is comparable
to the results of PI state-feedback controller shown in Figure 6. The overshoot observed
for higher pad friction-coefficient of plant model decreases remarkably compared with
the PI state-feedback control system. Also, the system response is fast enough to meet the
settling time requirement for lower pad friction-coefficients of plant model.

Figure 7 Adaptive sliding-mode controller with a step reference
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Figure 8 shows the simulation results for other reference inputs of 5 kN and 20 kN, which
represent the soft braking cases. In the case of normal soft braking, the clamp force is

usually around 5 kN (Eriksson et al., 2002).

Figure 8 The clamp force response for the soft braking cases (a) 5 kN and (b) 20 kN
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The proposed controller represents robust tracking performance for the lower reference
inputs as shown in Figure 8.

The pad friction-coefficient can vary with the humidity in the air, the number of brake
applications and even during a single braking with the temperature change (Eriksson
et al., 2002). Figure 9 shows the simulation results for the varying pad friction-coefficient
in the form of 0.5 Hz sine wave.

Figure 9 The clamp force response for the varying pad friction-coefficient u, (a) profile of pad
friction-coefficient u, and (b) tracking response
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The simulation result in Figure 9 shows that the proposed controller is robust even if the
pad friction-coefficient varies during a single braking.
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The friction loss of screw is the one of typical non-linearities of the wedge brake.
In this study, it is assumed that a ball screw is used to minimise the uncertainty due to
the friction. The typical friction of a ball screw is less than 10% of the thrust force itself.
To verify the robustness of the adaptation algorithm, maximum + 10% friction loss is
considered for the simulation.

Figure 10(a) shows the simulation results for —10% friction losses. The efficiency of
screw descriped in equation (7) is increased by 10% and the simulation test is performed.
The controller is designed with the constant efficiency of 0.65 and the plant has the
increased efficiency of 0.715. As depicted in Figure 10(a), the clamping force response is
robust to the increased screw efficiency for the varing friction-coefficient.

Figure 10(b) shows the simulation results for +10% friction loss. The efficiency of
screw descriped in equation (7) is decreased by 10% and the simulation test is performed.
The controller is designed with the constant efficiency of 0.65 and the plant has the
increased efficiency of 0.585. As depicted in Figure 10(b), the clamping force response is
robust to the decreased screw efficiency for the varing friction-coefficients.

Figure 10 The clamp force response with screw efficiency change (a) +10% and (b) —10%
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A conclusion would be made that the £10% change in the screw efficiency is covered by
the adaptation algorithm developed in this study.

6.2 Pad friction-coefficient estimation results

The pad friction-coefficient of plant y, is estimated by virtue of the logic in equation (62).
The expansion origin 4, in equation (62) is set to 0.35, which is an ordinary value of pad
friction-coefficient. So, the estimation starts from 0.35.

Figure 11 shows the estimation results for various pad friction-coefficients of plant
model. The dotted lines represent the real pad friction-coefficients of plant model, and
the solid lines represent the estimation results. As shown in the figures, the pad
friction-coefficients of plant model are estimated accurately in the steady-state with the
suggested estimation logic.
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Figure 11 Estimation of pad friction-coefficient with a step reference, (a) 1, = 0.2; (b) 4, = 0.35
and (c) u, = 0.6
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Figure 12 shows the estimation results for the +10% friction loss of the screw.
As depicted in Figure 12, the relatively large estimation error is developed according to
the screw efficiency modelling error.

Figure 12 Estimation of pad friction-coefficient with screw friction-loss, (a) , = 0.2; (b) u, = 0.35
and (c) u, = 0.6
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Table 1 shows the estimation error for the varying pad friction-coefficient. As shown in
table, the more target y, is close to the expansion origin u,, the more accurate the
estimation is. This is because the first-order Taylor expansion in equation (56) becomes
more accurate.

Table 1 The friction-coefficient estimation error
Uy Step reference Modified reference
0.2 0.0016 0.0017
0.35 7x107° 8.5x10°°
0.6 0.0046 0.0045

Table 2 represents the estimation error for the varying screw efficiency in the
steady-state. The estimation is stable and the steady-state error is bounded in +10%.
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Table 2 The estimation error with screw friction-loss
Hp +10% Friction loss —10% Friction loss
0.2 0.0164 0.0164
0.35 0.0013 0.0016
0.6 0.0173 0.0314

However, the negative spikes are observed for every case at the initial stage of
estimation. The negative spikes even occur when there is no modelling uncertainty,
that is, for u.=u,, as shown in Figure 11. It happens because of a large tracking
error produced at the initial stage of estimation. The estimation logic drops the pad
friction-coefficient to enlarge the control input, which is the effort of controller to reduce
an initial tracking error.

A large tracking error at the initial stage is inevitable because the reference is in the
form of step input. Since EWB system bandwidth is limited, the tracking error is always
generated. Therefore, the reference input profile needs to be modified with a finite slew
rate such that it can be tracked.

6.3 Modified reference scheme

So, define a new reference input profile instead of step input as shown in Figure 13.
The modified reference has the settling time of 0.2 seconds and a finite slew rate. Since
the modified reference input has a finite rate, the feed-forward components can be
applied to the controller design.

Figure 13  Modified reference input
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For the step input profile, the derivatives of desired motor angle are zeros. However, they
should be considered under the modified reference so that the sliding-variable and

derivative of it can be rewritten as
s(t)= éM _éMd +/1(9M - eMd)
S e (68)

$(1)=6, _%J"Z(HM _%)

Note that the derivatives of desired motor angle, that is, the feed-forward terms, are
alive. Also, the controller under the modified reference takes the form, including the
feed-forward terms, as follows:
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u, =(£—i)a)M +1¢9M —ksgn(s(t)) + Hﬂ+w—m .
ror r r r (69)

Figure 14 shows the results of tracking response for severe braking case. The tracking
performance of the proposed controller is still guaranteed with modified reference input

as with step reference shown in Figure 7.

Figure 14 The clamp force response with modified reference input
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Figure 15 shows the results of estimation using modified reference scheme. Note that the
negative spikes are reduced dramatically for every case, compared with the results with a
step input shown in Figure 11. The estimation accuracy at the steady state is almost same

as the step input case, as shown in Table 1.

Figure 15 Estimation of pad friction-coefficient with a modified reference, (a) , = 0.2,
(b) 1, =0.35 and (c) u, = 0.6
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Figure 16 shows the simulation results of estimation with modified reference input, for
the varying pad friction-coefficient in the form of 0.5Hz sine wave shown in Figure 9(a).
As shown in Figure 16(a), the proposed controller with modified reference scheme is
still robust to the varying pad friction-coefficient, which is the representative disturbance
in the brake system. The estimation error shown in Figure 16(b) is about 0.025 in RMS

value.
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Figure 16 Simulation for varying pad friction-coefficient with modified reference (a) tracking
response and (b) pad friction-coefficient estimation
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7 Conclusion

Sliding-mode controller and adaptation logic are designed on the basis of the
reduced-order model. The series of simulation results verify that the proposed
sliding-mode controller is robust to the model uncertainty caused by inconsistent pad
friction-coefficients, and the pad friction-coefficient of plant model is estimated
accurately by the proposed adaptation scheme.

Also, this paper proposes the control scheme with which system can be controlled
with motor angle only, without sensing clamp force. Because the sensing of clamp force
is expensive and prone to noise, this control scheme contributes to the reduction of cost
and complexity of the control system.
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