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Abstract—This paper proposes a periodic adaptive disturbance
observer (PADOB) for a precision position control of a PMLSM
(Permanent Magnet Linear Synchronous Motor), which is based
on a periodic adaptive learning control(PALC). It updates the
output of a classical linear DOB to compensate modeling errors
between a nominal plant and actual plant and external distur-
bance forces such as the friction and detent force. Therefore, it
can improve problems occured by inaccurate parameters of the
nominal plant and the instability problem occurred by updating
parameters of nominal model in the DOB directly. Also, the
complicated procedures to design the initial conditions in PALC
are not needed. Through simulation test and experiments of the
PMLSM, the validity of PADOB is illustrated.

I. INTRODUCTION

Recently, the precision control has been widely required
for indutrial products such as semiconductor manufacturing
equipment, LCD pannel transportation equipment, and X-Y
gantry devices. A Permanent Magnet Linear Synchronous
Motor (PMLSM) has been used for such works required
accurate position or speed control. Unlike screw-type rotary
motors, indirect mechanical transmissions such as chains, gear
boxes and screw coupling are eliminated, and the effects
of contact-types of nonlinearities and disturbances such as
backlash and coupling frictional forces are reduced. These
advantages make possible to achieve high-speed/high-accuracy
positioning control. However, other nonlinear effects such as
the detent and friction force must be compensated to establish
high precision motion control. The detent force is occurred by
the interaction between the permanent magnets and the steel
teeth of the primary section. It is a position-dependent periodic
disturbance and the pitch of permanent magnets becomes a
period of the detent force.[1] The friction force is a velocity-
dependent nonlinear disturbance.

Much efforts have been devoted to compensate these
disturbances.[2] The numerical models of detent and friction
force have been used to eliminate the effect of these dis-
turbances. In [3], a simple sinusoidal model and high-order
harmonic models were used to describe the detent force. The
amplitude and phase of the model were updated by a certain
adaptation scheme. In [4] and [5], the static and dynamic
friction models such as Coulomb and Lugre friction model
were used to compensate the actual friction force. Here, the
friction coefficients are estimated to obtain the actual friction

model. However, these models are not enough to describe
the actual detent and friction force. Also, it is difficult to
guarantee asymptotically convergence of estimated parame-
ters because there exist several parameters to be estimated
and all operationg conditions are always not satisfied with
the persistance of excitation conditions.[6] The disturbance
observer (DOB) is another compensation scheme that the
numerical models of these disturbance are not required. It
uses only the nominal model of the used actuator.[7] The
difference between the output of nominal plant and measured
output is considered as lumped disturbance. However, it is
very dependent on parameters of the nominal model because
there exist parametric errors between the used nominal model
and actual plant. Therefore, above mentioned schemes are
extremely constrictive to the used model. To improve these
problems, the periodic adaptive learning control (PALC) has
been proposed as the learning control strategies without the
model.[8][9][10] Adaptive learning compensators of these
disturbances in PMLM were designed in [8]. The key idea is
to use the state-periodic characteristics of these disturbances,
which are a position-dependent detent force and a velocity-
dependent friction force. The past information of more than
one period along the state axis is used to update the current
adaptation learning law. In order words, the initial conditions
of disturbances for one period must be designed. Therefore,
it needs the complicated design procedure of initial condition
using certain adaptation schemes or nonlinear functions.

In this paper, a periodic adaptive disturbance observer
(PADOB) is proposed. The output of the classical linear DOB
is used as initial conditions in adaptation laws. It eliminates
complicated procedure to design initial conditions in PALC.
Also, it compensates not only the parametric error of used
nominal plant but also external disturbances such as detent
and friction force. And it improves the instability problem
occurred by updating parameters of nominal model directly in
the DOB.

This paper is organized as follows: In Section II, the
used PMLSM model and control problem are introduced. In
Section III, the proposed PADOB are presented. In Section
IV, the performance of PADOB is verified by the simulation
and experiment illustration. Concluding remarks are given in
Section V.



Fig. 1. Permanent Magnet Linear Synchronous Motor

II. PROBLEM FORMULATION

In this section, the PMLSM model and control problem are
formulated. Also, the properties of used PALC are presented.

A. PMLSM Model

The used PMLSM is depicted in Fig. 1 and it is represented
by the dynamic equation as follows, [8]

mẍ(t) =−
k f ke

R
ẋ(t)+

k f

R
uv(t)−Fext (1)

where, x is the position of the primary section, m the mass
of the primary section, k f the force constant, ke the back-
emf constant, R the resistance, uv(t) the input voltage, Fext the
detent and friction force. For simplicity, the load and small
external disturbance are ignored.

The control objective is to track the given desired position,
xd and the corresponding desired velocity, ẋd with tracking
error as small as possible. The performed task is assumed as
follows:

Assumption 1: The task is performed on the periodic tra-
jectory under same conditions repetitively.

Assumption 2: The disturbance effects for each period are
nearly identical because of good tracking performance.

Assumption 3: The measurement noise and high frequency
disturbance are attenuated by low pass filters.

Suppose that the external disturbance force such as the
detent and friction force are described as follows,

Fdet(x) = a(x), Ff ric(ẋ) = b(t)sgn(ẋ)

The equation of the PMLSM, (1) is rewritten as follows:

Mẍ(t) =−Bẋ(t)+u(t)− τ(t) (2)

where M is the mass of the primary section (M := m), u(t)
the control input

(
u(t) := k f /R · v(t)

)
, and B defines as the

viscous friction coefficient (B := k f ke/R), and τ(t) the lumped
disturbance (τ = a(x)−b(t)sgn(ẋ)).

B. Properties of PALC

In this section, the defined properties of PALC are
introduced, which are applied to the proposed PADOB.

Property 1: (Total pass trajectory)
The total passed trajectory is given as follows,

s(t) =
∫ t

0

|dx|
dr

dr =
∫ t

0
|v(r)|dr

where x is the position, and v the velocity. Since s is the
summation of absolute position increase along the time axis,

Fig. 2. Classical linear DOB structure

s is a monotonously growing signal. Physically it is the total
passed trajectory; hence, it has the following property:

s(t1)≥ s(t2), i f f t1 ≥ t2

Property 2: (Trajectory periodicity)
From Assumption 1, the passed position has a periodicity

on the total passed trajectory:

x(t) = s(t)−m′sp

where x is the position, sp the moving distance for a period
and m′ the integer part of s(t)/sp. When it assumes that the
tracking performance is good, the position and velocity can
be presented in time-domain as follows,

x(s) = x(s− sp) → x(t) = x(t−Pt), ẋ(t) = ẋ(t−Pt)

where, Pt is a time period of performed task.

Property 3: (Disturbance periodicity)
From Assumption 2 and Property 2, the lumped disturbance

has the following properties:

τ(t) = τ(t−Pt)

III. PERIODIC ADAPTIVE DISTURBANCE
OBSERVER

A. Disturbance Observer

The DOB has been proposed to eliminate the disturbance
which is difference between the actual system and nominal
model. The nominal model represents the desired model
based on the desired control specifications. It makes the
actual system become a given nominal model. Fig. 2 depicts
the classical linear DOB structure. The output of DOB, τ̂(t)
is an estimated disturbance which consists of the parametric
errors between the actual plant and the nominal model of
DOB and disturbance forces such as friction and detent force.
The symbols in Fig. 2 are defined as follows,

x(t) and ẋ(t): the position and velocity of mover
P(s): the transfer function of actual plant
Pn(s): the transfer function of nominal model
u(t): the control input
d(t): the disturbance including detent and friction force
Q(s): a low-pass filter



τ(t): the estimated disturbance without filtering
τ̂(t): the estimated disturbance with a low-pass filter
ζ (t): the sensor noise

The transfer functions and disturbance are presented as
follows,

P(s) = 1/(Ms+B) (3)

Pn(s) = 1/(Mns+Bn) (4)

d(t) = a(x)+b(t)sgn(ẋ) (5)

where Mn and Bn are nominal values of the nominal model.
The output of the plant, x(t) is represented by

x(t) =
PPn

D
u(t)+

PPn(1−Q)

D
d(t)− PQ

D
ζ (t) (6)

where D = Pn +(P−Pn)Q
Assume that the transfer functions in (6) are stable. In

the low frequency range(i.e., Q( jω) ≈ 1), the output x( jω)
becomes similar to Pn( jω)u( jω)−ζ ( jω), but from Assump-
tion 3(ζ ≈ 0), we have the nominal input-output relation, i.e.,
x( jω)≈ Pn( jω)u( jω), which is desired. More detailed DOBs
are presented in numerous literatures.[11][12]

B. PADOB

The DOB has been known as a powerful scheme as referred
to numerous literatures. However, in case that parameters
of nominal model are inaccurate, the performance can be
worse. Therefore, the information of nominal model must be
updated. To update parameters of the nominal model directly
can occur instability problems because poles and zeros of the
transfer function of nominal model are changed. This paper
has focused on updating not parameters of nominal model,
M and B but output of DOB, τ(t).

1) Lumped Disturbance: The lumped disturbance is calcu-
lated by output of DOB, which is used for initial conditions
of the periodic adaptation mechanism. In Fig. 2, the estimated
disturbance without filtering can be presented as follows,

τ(t) = u(t)− 1
Pn(s)

(x(t)+ζ (t)) (7)

For simplicity, variables in time-domain and s-domains are
used simultaneously. Substituting (4) into (7),

τ(t) = u(t)−Mnẍ(t)−Bnẋ(t) (8)

where ζ =0 by Assumption 3.
And, the output of the transfer function of the actual plant

is presented as follows,

x(t) =
1

Ms2 +Bs

(
u(t)−d(t)

)
(9)

Rearranging (9), the control input, u(t) is rewritten as follows,

u(t) = d(t)+Mẍ(t)+Bẋ(t) (10)

Fig. 3. Periodic Adaptive DOB structure

Substituting (5) and (10) into (8), the estimated disturbance
can be presented as follows,

τ(t) = ∆Mẍ(t)+∆Bẋ(t)+a(x)+b(t)sgn(ẋ) (11)

where, the inertia error is ∆M = M −Mn and the viscous
friction coefficient error is ∆B = B − Bn. The modeled
disturbance is satisfied with property 2 and 3 in Section II-B.

2) Periodic Adaptation Mechanism and Controller: The
structure of PADOB is described in Fig. 3. The system is
controlled by following two step:

• When s < 2sp, the system is controlled by using the
classical linear DOB to be bounded input bounded out-
put(BIBO).

• When s ≥ 2sp, the system is controlled by the proposed
PADOB. By the periodic adaptation mechanism, the
unknown disturbances are estimated.

First, consider the case when s < 2sp. The control law is
designed as follows:

u1(t) = u f b1(t)+u f f1(t) (12)
u f b1(t) =−Ks1S(t)−Mnλ1ėx(t)−Bnλ2ex + τ0(t)

u f f1(t) = Mnẍd(t)+Bnẋd(t)

where

S(t) = ėx(t)+λ1ex(t)+λ2

∫
ex(t)dt, ex(t) = x(t)− xd(t)

xd is the desired position, Ks1 , λ1 and λ2 are tuning parameter
(Ks1 > 0, λ1 > 0 and λ2 > 0). And τ0 is the output of DOB.

Substituting (12) into (2) and differentiating it, the closed-
loop error dynamics are obtained as follows,

Mëx(t)+Bėx(t)+Mnλ1ėx(t)+Bnλ2ex(t)+Ks1 Ṡ(t)

=−[∆Mẍd(t)+∆Bẋd(t)+∆τ(t)] (13)

In (13), ∆τ(t) = τ0(t)− a(x)− b(t)sgn(ẋ). And the desired
trajectories, xd(t), ẋd(t), and ẍd(t) are bounded in practice.
Also, assuming that |∆M|, |∆B|, and |∆τ| are all bounded, the
system satisfies the BIBO stable.



Next, consider the case when s≥ 2sp. The designed control
law is as follows,

u2(t) = u f b2(t)+u f f2(t)+uPADOB(t) (14)
u f b2(t) =−Ks2S(t)−Mn(λ1ėx(t)+λ2ex(t))+Bnẋ(t)

u f f2(t) = Mnẍd(t)

uPADOB(t) = τ̂(t)

where Ks2 is a tuning parameter (Ks2 > 0).
And, the adaptation laws of uPADOB(t) are designed as

follows,

τ̂(t) =
{

τ̂(t−Pt)−KaS(t) i f s≥ 2 · sp
τ0(t) i f 0 < s < 2 · sp

(15)

Here, Ka is adaptation gains (Ka > 0).
The initial conditions of the disturbances to be estimated,

τ0(t) is obtained by the output of DOB, The control input
(14) and adaptation laws (15) guarantee that the system
is asymptotically stable. The Lyapunov stability analysis is
performed to prove it.

Consider the following positive Lyapunov candidate func-
tion at s(t), whose corresponding time is t:

V (s(t)) =V (t) =
1
2

S(t)2 +
1

2KaMn

∫ t

t−Pt

eτ
2(r)dr (16)

where
eτ(t) = τ(t)− τ̂(t)

Then, the difference of the positive Lyapunov candidate
functions at two discrete time point (t and t − Pt ) can be
calculated as:

∆V =V (t)−V (t−Pt) =
1
2

S2(t)− 1
2

S2(t−Pt)

+
1

2KaMn

∫ t

t−Pt

[
eτ

2(r)− eτ
2(r−Pt)

]
dr (17)

For simplicity, let the first term on the right hand side be
denoted by A and the second integral term by B. Then, A is
calculated as follows,

A =
1
2

S2(t)− 1
2

S2(t−Pt) =
∫ t

Pt

S(r)Ṡ(r)dr (18)

=
∫ t

t−Pt

1
Mn

[
−eτ(r)S(r)−Ks2S2(r)

]
dr

For a proof, see the appendix.
Using Property 1 and 3, B can be calculated as follows,

B =
1

2KaMn

∫ t

t−Pt

[
eτ

2(r)− eτ
2(r−Pt)

]
dr

=
1

2KaMn

∫ t

t−Pt

[τ(r)− τ̂(r)]2

− [τ(r−Pt)− τ̂(r−Pt)]
2 dr

=
1

2KaMn

∫ t

t−Pt

[τ̂(r−Pr− τ̂(r)]

· {2 [τ(r)− τ̂(r)]+ [τ̂(r)− τ̂(r−Pτ)]}dr

=
1

2KaMn

∫ t

t−Pt

α(r) · {2eτ(r)−α(r)}dr (19)

where,
α(r) = τ̂(r−Pr)− τ̂(r)

Substituting (14) and (15) into (18) and (19), (17) is
rewritten as follows,

∆V =A+B

=
∫ t

t−Pt

− 1
Mn

Ks2S2(r)− Ka

2Mn
S2(r)dr

=
∫ t

t−Pt

− 1
Mn

(
Ks2 +

Ka

2

)
S2(r)dr (20)

The difference of the Lyapunov candidate function becomes
∆V (t) ≤ 0. From LaSalle’s invariant set theorem, the
asymptotical stability is proved. From (20), only S = 0 makes
∆V = 0. Using the S(t) = ėx +λex, if ex(0) = 0, only ex = 0
makes S = 0. Also, since ex = 0, we have ėx = 0. Therefore,
ex and ėx are asymptotically stable at equilibrium points.

C. Gain Design

The gains of the proposed PADOB controller are obtained
by follow relation,

Ṡ(t) =−Ks1S(t) (21)

Therefore, the error dynamics is as follows,
...e x +(λ1 +Ks1)ëx +(λ2 +Ks1λ1)ėx +Ks1λ2ex = 0 (22)

For simplicity of gain tuning process, all poles are designed
to be same value. When the desired pole sets p, the gains are
as follows,

Ks1 = p, λ1 = 2p, λ2 = p2 (23)

The gain values must be selected by the bandwidth of used
PMLSM.

IV. SIMULATION AND EXPERIMENT
ILLUSTRATIONS

A. Simulation

The simulation test has been performed to verify the per-
formance of PADOB. The result is compared with one of PI
controller with a classical linear DOB.

For the simulation test, the following reference trajectory is
used:

xd(t) = 0.1−0.1 · cos(πt)

The friction force is modelled as follows:

Ff ric(ẋ) =
{

10+10e(−ẋ/0.1)2)+ |ẋ|
}

sgn(ẋ)

And, the detent force is modelled as follows:

Fdet(x) = 4sin(
2πx
Tc

)+2sin(
4πx
Tc

)+ sin(
6πx
Tc

)

+0.5sin(
8πx
Tc

)+0.25sin(
10πx

Tc
)+0.125sin(

12πx
Tc

)

where Tc is the pitch of the permanent magnet. The parameters
of actual plant are M = 12kg, and B = 72.38N/m/s. The
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simulation has been performed when there exist parametric
errors of used nominal model as follows:

• Mn = 10 and Bn = 60.00 (Fig. 4)

In Fig 4, the tracking performance of PADOB is superior
than one of PI controller with DOB. The tracking error
has become smaller and smaller as time goes on because
disturbances have been updated. It shows that the PADOB has
a better performance than the PI controller with DOB although
parametric errors exist in the nominal model. The performance
of PI controller with DOB becomes worse if the control gain
make be higher to reduce the tracking error because it occurs
serious chattering of the control input. Therefore, simulation
results show that the performance of PADOB is superior.
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B. Experiment

To determine an nominal model that should be used for
a linear DOB, an input signal which consists of sinusoidal
signals from 0.1Hz to 100Hz is applied to the PMLSM.
The identified frequency response is described in Fig 5. The
nominal model(red line in Fig.5) is obtained as follows,

Pn(s) =
40

4s2 +0.001s
(24)

The first experiment is performed on the same desired
trajectory as one in simulation. The position and current
control execution time are 0.1ms and 80us. The resolution of
used linear encoder is 1um. The results are shown in Fig.
6. The switching of control input by PADOB is executed at
12sec to show the learning effect of the proposed PADOB.
After 12sec, the traking error becomes smaller and smaller as
updating the external disturbance.

The second experiment is performed on short desired tra-
jectory as follows,

xd(t) = 0.05−0.05 · cos(πt)

The control input is switched at 12sec. The result shows that
the tracking performance is higher that one of the controller
using only a linear DOB.

V. CONCLUSION

In this paper, a periodical adaptive disturbance observer
(PADOB) was developed, which uses the periodic adaptive
learning control (PALC) based on the output of classical
linear DOB as initial conditions of adaptation mechanicsm.
The PADOB compensates not only the modeling error but



also detent and friction force through updating the output of
DOB. Therefore, the complicated design procedure of initial
condition of PALC were improved. From simulation and
experiment results, it is shown that the PADOB provides a
superior tracking performance. However, the performance of
PADOB can be restricted by bandwidth of Q-filter. As future
works, the effect of Q-filter (LPF) must be studied.

APPENDIX

In this appendix, we prove (18),

A =
1
2

S2(t)− 1
2

S2(t−Pt) =
∫ t

Pt

S(r)Ṡ(r)dr

=
∫ t

t−Pt

1
Mn

[
−eτ(r)S(r)−Ks1S2(r)

]
dr

Here, Ṡ is calculated as follows, (for simplicity, (t) is omitted)

Ṡ =ëx +λ1ėx +λ2

∫
exdt = (ẍ− ẍd)+λ1ėx +λ2ex

=
1
M
{−Bẋ+u−a(x)−bsgn(ẋ)}− ẍd +λ1ėx

=
1
M
{−Bẋ−Ks2S−Mnλ1ėx−Mnλ2ex +Bnẋ+Mnẍd

+ â(x)+(∆Mẍ−∆Mẍ)+∆M̂ẍ+ b̂sgn(ẋ)+∆B̂ẋ

−a(x)−bsgn(ẋ)}− ẍd +λ1ėx +λ2ex

=
1
M
{−∆Bẋ−∆Mẍ−a(x)−bsgn(ẋ)+∆M̂ẍ−Ks2S(t)

+∆B̂ẋ+∆Mẍ+ â(x)+ b̂sgn(ẋ)−∆Mẍd +∆M(λ1ėx +λ2ex)}

=
1
M
{−e∆Bẋ− e∆M ẍ− ea− ebsgn(ẋ)−Ks2S(t)+∆MṠ}

=
1
M
{−eτ −Ks2S+∆MṠ} (25)

where

τ̂ = â(x)+∆M̂ẍ+ b̂sgn(ẋ)+∆B̂ẋ

eτ = e∆Bẋ+ e∆M ẍ+ ea + ebsgn(ẋ)

Rearranging (25),

(1−∆M/M) Ṡ = (1/M){−eτ −Ks2S(t)} (26)

From (26), Ṡ(t) can be presented as follows,

Ṡ = (1/Mn){eτ −Ks2S(t)} (27)

Therefore, A is obtained by substituting (27) into (18).
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