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Vehicle Velocity Observer Design Using 6-D IMU
and Multiple-Observer Approach

Jiwon J. Oh and Seibum B. Choi, Member, IEEE

Abstract—This paper mainly focuses on the accurate estimation
of the vehicle velocities of all axes, using the data received from
a low-cost 6-D inertial measurement unit. The data include the
vehicle linear acceleration and angular rates of all axes. In addi-
tion, the observer uses the wheel speed sensors and steering wheel
angle information, which are already available on most recent
production cars. Utilizing the aforementioned information, based
on the combination of a bicycle model and a kinematic model, a
multiple-observer system that computes the weighted sum estima-
tion that is dependent on cornering stiffness adaptation is adopted
to observe the lateral vehicle velocity, as well as longitudinal and
vertical velocities. The stability of each component of the proposed
observer is investigated, and a set of assessments to confirm the
performance of the entire system is arranged through experiments
using a real production sport utility vehicle.

Index Terms—Adaptive algorithm, observers, state estimation,
vehicle dynamics.

NOMENCLATURE

m Vehicle mass.
g Gravitational constant.
h Height of the center of gravity (CG).
lf Distance between the CG and the front axle.
lr Distance between the CG and the rear axle.
L Distance between the front and rear axles.
Iy Moment of inertia about the y-axis.
Iz Moment of inertia about the z-axis.
αf Front-tire slip angle.
αr Rear-tire slip angle.
Cf Front-tire cornering stiffness.
Cr Rear-tire cornering stiffness.
δf Front-tire steering angle.
β Side-slip angle at the CG.
vx Longitudinal velocity at the CG.
vy Lateral velocity at the CG.
vz Vertical velocity at the CG.
ax Longitudinal acceleration measured at the CG.
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ay Lateral acceleration measured at the CG.
az Vertical acceleration measured at the CG.
φ Roll angle.
θ Pitch angle.
ψ Yaw angle.
p Roll rate measured at the CG.
q Pitch rate measured at the CG.
r Yaw rate measured at the CG.
Fyf Front axle lateral tire force.
Fyr Rear axle lateral tire force.
Fzf Front axle vertical tire force.
Fzr Rear axle vertical tire force.

I. INTRODUCTION

The technological advancement of the automobile and its
proliferation not only brought a noteworthy convenience to
its users through a significant reduction of transportation time
but has given rise to serious safety issues as well. Efforts
have continued to prevent the effect of the latter issue from
outgrowing that of the former merit, and one of their forms
has emerged as the development of the electronic vehicle
safety assist technologies [1]–[3], such as the electronic sta-
bility program, crash-avoidance systems aided by active front
steering, and continuous damping control (CDC). Such tech-
nologies undoubtedly magnify the importance of accurate real-
time identification of the ground vehicle states, because the
aforementioned vehicle safety and comfort systems require
reliable vehicle state information, whose estimation is the ul-
timate objective of this paper. Knowledge of the vehicle states
may also facilitate the practical applications of the existing
positioning algorithms [4]–[7] through the addition of improved
dead reckoning accuracy when the Global Positioning System
(GPS) information is less reliable.

For this paper, a 6-D inertial measurement unit (IMU) of
the most cost-effective price range is used. With regard to the
development of a production vehicle, cost is a crucial factor
that determines the consumer price of the final product. Hence,
the cost for realizing various vehicle safety technologies must
be minimized to make them affordable for the users. At the
same time, the scope of this paper is to secure the estimation
performance, which is as reliable as that with using high-cost
sensors, regardless of the types and severity of vehicle motion.
Another contribution of this paper is to prevent any loss of state
estimation accuracy, which may have occurred by discarding
the GPS feedback availability. Independence from GPS use is
advantageous, because vehicle state estimation performance is
maintained under the GPS outage condition, such as in urban

1524-9050/$31.00 © 2012 IEEE



1866 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 13, NO. 4, DECEMBER 2012

areas surrounded by high-rise buildings, underground levels,
or tunnels. The need to satisfy every aspect of these criteria
has served as the major difficulty in previous studies to de-
sign wholly satisfactory vehicle velocity estimation algorithms
[8]–[20]. Taking some representative previous publications,
Farrelly and Wellstead [10] suggested a linear time-varying ob-
server based on the kinematic model. Although it showed robust
estimation performance even under the conditions of nonlinear
tire characteristics and vehicle model parameter uncertainties,
its estimation is sensitive to sensor error. Kaminaga and Naito
[12] suggested a Lyapunov-based adaptive observer, but the
consideration of road angle disturbance was overlooked.

In general, a vehicle-model-based observer is known to
provide accurate estimation performance that is insensitive to
sensor error. However, its performance may fluctuate with the
vehicle model parameter errors. On the other hand, a vehicle
kinematic observer is known to show robust estimation perfor-
mance under the effect of vehicle model parameter error but is,
in fact, sensitive to the sensor error. Previous works attempted
to use both models to compensate for the weakness of one
another. Some of the works that fall into such a category are
listed as follows.

Fukada [13] proposed the combination of the observer based
on the linear tire model and the direct integration of the sensor
kinematics, but the estimation performance was limited when
the tire showed strongly nonlinear characteristic such as in
the case of a J-turn. Lee [16] suggested a method of using
a simple bicycle-model-based observer estimation result as a
pseudomeasurement of a kinematic observer, but an unclear
assumption was involved in obtaining the observer gain, and
consideration of the effect of sensor error was overlooked.

This paper contributes to combine the strengths of the model-
based observer as well as the kinematic observer. One novel
distinction to be noted, however, is that the proposed model sys-
tematically divides the domain of observer feedback function
into four different sections to adjust the weightings assigned
for each type of observer model. Such a technique is hence-
forth referred to as the observer synthesis [21]. It enables the
juxtaposition of multiple estimations, which raises the observer
performance of the vehicle lateral velocity and, hence, of other
vehicle states, under a wider range of driving conditions.

This paper is organized as follows. To facilitate the flow of
logic, Section II-A first displays the general layout of the ob-
server with the block diagram. Section II-B deals with the core
contribution of this paper, i.e., observer synthesis procedure,
which juxtaposes the reference lateral velocities obtained by
multiple observers. Section II-C briefly deals with the principle
behind the primary longitudinal velocity approximation based
on the wheel angular velocities. Section II-D deals with the
method of cornering stiffness adaptation. Section II-E focuses
on the bicycle-model-based observer. Section II-F describes the
pseudointegration process, which uses the 6-D IMU measure-
ments. Section II-G deals with the principal kinematic observer,
which finalizes the three-axis velocity estimation using the
result of the observer synthesis. Section III displays the results
of the real car-based experiments performed under various
different scenarios, after giving a thorough description of the
test environments.

Fig. 1. General flow structure of the subcomponents of the suggested
observer.

II. OBSERVER DESIGN

A. General Observer Flow Chart

The general structure of the entire observer is described in
Fig. 1.

Making use of the available input signals from the sensors
that are compensated by the externally observed vehicle roll
and pitch angles [22], the vehicle lateral velocity at its center of
gravity (CG) is estimated using four independent sources. The
bicycle-model-based observer provides v̂y,bic, front and rear
cornering stiffness estimation, each providing v̂y,f and v̂y,r,
and the vehicle-kinematics-based pseudointegration provides
v̂y,int. The synthesis of these interim estimations give v̂y,ref ,
the reference lateral velocity estimation used as the feedback
term for the principal kinematic observer that simultaneously
estimates the final longitudinal, lateral, and vertical vehicle
velocities.

B. Synthesis of Multiple Observers

The major contribution of this paper is the introduction
of the observer synthesis and the methods of obtaining the
four sources of lateral velocity, which generates an effective
feedback reference for the principal kinematic observer, which
will to be dealt with later. Here, the lateral velocity sources
interact as a function of the front and rear cornering stiffness,
which is obtained in Section II-E. The purpose of incorporating
different sources is to make use of the bicycle model as much
as possible so that the reference value that is finally obtained
prevents the principal kinematic observer estimation from
drifting away.
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Fig. 2. Weighted sum estimation performed by the observer synthesis.

The calculation of this feedback v̂y,ref for the principal
kinematic observer is based on selecting the appropriate lateral
velocity among the following four sources:

1) v̂y,bic;
2) v̂y,f ;
3) v̂y,r;
4) v̂y,int.
The background principles on obtaining v̂y,bic and v̂y,int

are dealt in Sections II-D and F, respectively, whereas the
background principles on obtaining v̂y,f and v̂y,r are dealt with
in Section II-E.

It is worthwhile here to state the rationale behind the ef-
fectiveness of implementing multiple observers on top of the
cornering stiffness adaptation. Surely, if cornering stiffness
adaptation alone sufficiently guarantees the accuracy of bicycle
model, multiple observers are no longer necessary. However,
although the use of the cornering stiffness adaptation technique
improves the validity of the linear tire model, it is nearly
impossible to take all disturbances that are not modeled either
in the bicycle model or adaptation into consideration.

For example, unmodeled nonlinearity, which may be in-
volved in the discrepancies among tire pressure or road friction
coefficients, would cause the accuracy to significantly deterio-
rate. Thus, with regard to the nature of the linear bicycle model,
it is certainly wise to make use of it in the linear region as much
as possible, i.e., when the tire property majorly involves the
linear characteristics. To realize this case, using the four pieces
of lateral velocity information is the most appropriate if it is
scheduled, as shown in Fig. 2.

Here, ε is a positive constant that denotes the tolerance range,
and τf and τr are the positive constants that tune the threshold
among the four sources as a function of the front and rear
vertical loads.

As intended, the domain of the valid bicycle model use is
maximized by emphasizing v̂y,f when Cf is high and empha-
sizing v̂y,r when Cr is high. As far as the typical tire charac-
teristic with regard to the lateral force versus tire slip angle
relationship, as shown in Fig. 3, is concerned, the cornering
stiffness rapidly decreases beyond the linear region.

This case states that making use of the reference that cor-
responds to high cornering stiffness effectively avoids the
nonlinearity.

Fig. 3. Typical plot of tire lateral force versus slip angle.

For a smooth concoction of the lateral velocities, a sine
function is taken to mix the sources in the tolerance region.
According to the following equation, v̂y,ref is finally obtained
by the observer synthesis:

v̂y,ref = f(Cf , Cr, v̂y,bic, v̂y,f , v̂y,r, v̂y,int)

=
[
sin

( π

2ε
(Cf − τfFzf )

)
× sin

( π

2ε
(Cr − τrFzr)

)]
v̂y,bic

+
[
sin

( π

2ε
(Cf − τfFzf )

)
×

{
1 − sin

( π

2ε
(Cr − τrFzr)

)}]
v̂y,f

+
[{

1 − sin
( π

2ε
(Cf − τfFzf )

)}
× sin

( π

2ε
(Cr − τrFzr)

)]
v̂y,r

+
[{

1 − sin
( π

2ε
(Cf − τfFzf )

)}
×

{
1 − sin

( π

2ε
(Cr − τrFzr)

)}]
v̂y,int. (1)

If not in the tolerance region, the terms sin(π/2ε(Cf −
τfFzf )) and sin(π/2ε(Cr − τrFzr)) are saturated near 0 or 1,
depending on the magnitudes of Cf and Cr.

C. Longitudinal Velocity Estimation

The design of the vehicle velocity estimation algorithm
introduced in this paper involves the open-loop use of the
wheel speed information obtained from the vehicle control area
network. Here, the signals from the wheel speed sensors that
are attached on each wheel are processed to give the value that
is as close as possible to the actual vehicle longitudinal velocity.

First, the left- and right-side wheel speeds are converted to
the velocity at the vehicle center line by using the yaw rate
term. During acceleration, only the undriven wheel speeds are
taken as reliable information, whereas the maximum wheel
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Fig. 4. Bicycle model.

speed value is taken as the vehicle velocity during braking.
The result is filtered through the rate limiter, and the limiting
value is obtained based on the highest physically allowable limit
and the x-axis accelerometer measurement. The latest value is
defined as vcar, and it must be clarified that it is not yet the
final estimation of the vehicle longitudinal velocity but is a mere
reference value that is used in later parts of this paper.

D. Bicycle-Model-Based Observer

The design of the bicycle model observer is based on the
following state-space expression of the bicycle model (see
Fig. 4):

ẋ = Ax+Bu (2)

where

x =

[
β
r

]
, u = δf

A =

[
a11 a12
a21 a22

]
=

[
− 2(Cf+Cr)

mvx

−2(Cf lf−Crlr)
mv2

x
− 1

−2(Cf lf−Crlr)
Iz

− 2(Cf l
2
f
+Crl

2
r)

Izvx

]

B =

[
b1
b2

]
=

[
2Cf

mvx
2Cf lf
Iz

]
.

Here, the cornering stiffness parameters Cf and Cr denote
the values obtained by the cornering stiffness adaptation, as
explained in Section II-E, and the vertical component of the
vehicle motion is assumed to be negligible.

The lateral acceleration of the vehicle is expressed in terms
of the longitudinal and lateral velocity and yaw rate as follows:

ay = v̇y + rvx. (3)

Now, we have

vy = vx tanβ ≈ vxβ. (4)

Therefore, (3) can be altered by using the bicycle model expres-
sion of (2) [17] as

ay = a11vxβ + (a12 + 1)vxr + b1vxδf . (5)

Note that the lateral acceleration dealt in (3) is not necessar-
ily equivalent to the lateral acceleration sensor measurement,
because the measurement can be influenced by the vehicle ori-
entation with respect to the earth axes. Either the measurement
of the suspension angle from the suspension travel distances
(if available) or the open-loop estimation by modeling the
vehicle as a spring damper system enables the elimination of the
influence of gravity due to the suspension angle on the sensor.
At the same time, the effect of the road angle is maintained,
because it, in fact, influences the vehicle lateral dynamics.
These procedures are shown in the following equation:

ay = ay,sensor + (−g sinφ cos θ + g sinφ′ cos θ′) (6)

where {
φ = φ′ + φsus

θ = θ′ + θsus.

The variables φ, φ′, φsus, θ, θ′, and θsus indicate the total
roll, static road bank, pure suspension roll, total pitch, static
road inclination, and pure suspension pitch angle, respectively.
Here, the total roll and pitch angle estimation are obtained
based on [22].

The output equation of the bicycle model is given as follows:

ŷ = Cx̂+Du (7)

where

ŷ
Δ
=

[
r̂
ây

]
, x

Δ
=

[
β̂bic

r̂

]

C =

[
0 1

a11vx (a12 + 1)vx

]
, D =

[
0

b1vx

]
.

With the aforementioned expression, the following bicycle-
model-based observer is designed:

˙̂x = Ax̂+Bu+K(y − ŷ) (8)

where

K
Δ
=

[
K1 K2

K3 K4

]

which leads to the following equation:[ ˙̂
βbic
˙̂r

]
=

[
a11−K2a11vcar a12−K1−K2(a12+1)vcar
a21−K4a11vcar a22−K3 −K4(a12 + 1)vcar

]

×
[
β̂bic

r̂

]
+

[
b1 −K2b1vcar
b2 −K4b1vcar

]
δf +

[
K1 K2

K3 K4

] [
r
ay

]
. (9)
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Here, β̂bic, r̂, r, and ay are the estimated side-slip angle,
estimated yaw rate, sensor yaw rate measurement, and compen-
sated lateral acceleration measurement, respectively.

The observer gain matrix K is defined as follows:

K =

⎡
⎣ Iz(Cf lf−Crlr)

2CfCr(lf+lr)
2 p2o − 1 1

vcar

−2po
m(Cf l

2
f
+Crl

2
r)

Iz(Cf lf−Crlr)

⎤
⎦ (10)

where po is a negative constant. The elements in K are switched
to zero to prevent K from becoming ill defined with zero
denominators.

Choosing the observer gain K, as shown in (10), guarantees
the system stability, and the proof is given in [22].

Finally, using (4), the estimation of the side-slip angle β̂bic

leads to the estimated lateral velocity, i.e.,

v̂y,bic = vcar tan β̂bic (11)

where v̂y,bic is the lateral velocity estimation obtained from the
bicycle-model-based observer.

E. Cornering Stiffness Adaptation

In this paper, vehicle velocity estimation involves the use of
a bicycle-model-based observer, and it cannot be denied that
the reliability of the bicycle model quickly drops as the tire
characteristics turn nonlinear. For this reason, to expand the
range of reliable bicycle model use as much as possible, a
cornering stiffness adaptation technique is adopted, and it is
based on [18].

The adaptive scheme that was designed in [18], however,
is modified, and therefore, the burden added by the rapidly
changing vertical load is excluded from the adaptation. In other
words, if [18] performed the adaptation of the parameters that
change as a function of the vertical loads, the modified scheme
performs the adaptation of the parameters that are normalized
by the vertical loads in advance. Such tactics is applied, because
the effect on the cornering stiffness due to the changing vertical
load is considered more substantial than other factors.

Setting Cf and Cr as the cornering stiffness, they are nor-
malized by the front and rear vertical loads as

C̄f =
Cf

Fzf
(12a)

C̄r =
Cr

Fzr
. (12b)

Here, the vertical loads are obtained by the open-loop
calculation using the vehicle parameters and 6-D IMU
information [22].

Now, the normalized variables are divided into the nominal
and unknown parts as

1
C̄f

=

(
1
C̄f

)
n

+ ζf (13a)

1
C̄r

=

(
1
C̄r

)
n

+ ζr (13b)

where (1/C̄f )n = Fzf (1/Cf )n and (1/C̄r)n = Fzr(1/Cr)n
are the nominal values, and ζf and ζr are the unknown parts.

Based on the bicycle model, the following relationship is
reached:

Fyf

Fzf

((
1
C̄f

)
n

+ζf

)
−Fyr

Fzr

((
1
C̄r

)
n

+ζr

)
=δf − lf + lr

vx
r.

(14)
The lateral tire forces are calculated using the lateral acceler-
ation and yaw rate sensors [22]. Based on (14), ζ and ζ̂ are
defined according to the following equations:

ζ ≡ Fyf

Fzf
ζf − Fyr

Fzr
ζr

= δf − lf + lr
vx

r − Fyf

Fzf

(
1
C̄f

)
n

+
Fyr

Fzr

(
1
C̄r

)
n

(15)

ζ̂ ≡ Fyf

Fzf
ζ̂f − Fyr

Fzr
ζ̂r. (16)

As shown in (15), the state ζ conveniently turns out that it
can be obtained using the known values of δf , vx, r, Fy , and
Fz , on which the adaptation is based.

Applying a low-pass filter to ensure that the system is causal
leads to

ζ̇ = − η

(
ζ − Fyf

Fzf
ζf +

Fyr

Fzr
ζr

)
(17)

˙̂
ζ = − η

(
ζ̂ − Fyf

Fzf
ζ̂f +

Fyr

Fzr
ζ̂r

)
(18)

where η is a filter gain.
Now, based on the following adaptation update law, the

estimation of the unknown parts of the normalized front and
rear cornering stiffness are obtained:

˙̂
ζf = ηηf

Fyf

Fzf
εn (19)

˙̂
ζr = − ηηr

Fyr

Fzr
εn (20)

where ηf and ηr are adaptation gains, and εn
Δ
= ζ − ζ̂.

Once the cornering stiffness information is obtained, two
pieces of lateral velocity source can be calculated for the
observer synthesis. Based on the bicycle model, the following
two expressions of the vehicle side-slip angle can be obtained
(one expression based on the front tire slip angle, and another
expression based on the rear tire slip angle):

βf
Δ
=αf − lf

vx
r + δf (21)

βr
Δ
=αr +

lr
vx

r. (22)

Replacing the variables with those available, with the use of (4),
we obtain

v̂y,f = vcar tan β̂f (23)

v̂y,r = vcar tan β̂r (24)
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with

β̂f = α̂f − lf
vcar

rm + δf = −Fyf

Cf
− lf

vcar
rm + δf (25)

β̂r = α̂r +
lr
vcar

rm = −Fyr

Cr
+

lr
vcar

rm. (26)

Details on the background principles are shown in [18]. Fur-
thermore, the stability analysis of the aforementioned system
is omitted, because it is not much different from what is noted
in [18].

F. Pseudointegral Kinematic Estimation

Kinematic estimation has its base on the following model of
the vehicle dynamics:

v̇x = ax + r · vy − q · vz + g · sin θ (27a)

v̇y = ay − r · vx + p · vz − g · sinφ · cos θ (27b)

v̇z = az + q · vx − p · vy − g · cosφ · cos θ (27c)

where ax, ay , az , p, q, and r are the longitudinal, lateral, vertical
accelerations, roll rate, pitch rate, and yaw rate, respectively, all
obtained by the 6-D IMU.

The time derivative of the velocities of each vehicle axis is
expressed in terms of the 6-D sensor signals and the total roll
and pitch angles. Here, all the terms that appear in the kinematic
model refer to the values taken at the CG. The kinematic model
surely involves the issue of high sensitivity to sensor error,
because all of the values measured by the 6-D IMU are fully and
directly used to calculate the vehicle states. However, as long
as this issue can be overcome, the kinematic model is effective
in estimating the vehicle states, because it does not require any
secondary identification of the unknown vehicle parameters and
properties.

To eliminate any possible drift phenomena that may arise
from the integration of the kinematics equations as much as
possible, the concept of the pseudointegration is introduced.
Because it is apparent that errors accumulate during integration,
unless the sensor measurements are completely free from the
offset error, integration must be repressed whenever it is not
necessary. Here, the transient factor (TF) is defined to indicate
that the vehicle is exhibiting a transient state in its dynamics
[22] as where x1 = ax, x2 = ay , x3 = az , x4 = p, x5 = q,
x6 = r, x7 = vcar, and bi are the positive weighting factors for
each term to be tuned. Here, values of the variables x1 to x6 are
the sensor measurements. b8 and σvx

are also positive tuning
coefficients, and the related terms will ensure that TF = 0

when vcar = 0 for a time period Δt8. This condition applies
under the assumption that the vehicle states do not need to be
estimated if the vehicle is at a complete stop. TF basically takes
the form of the weighted sum of the sensor signal amplitudes;
therefore, its value is increased with much transient motion, and
vice versa.

The nonlinear condition mentioned in (28), shown at the
bottom of the page, refers to the nonlinear tire characteristics.
It is the condition in which the tire cornering stiffness has
significantly decreased relative to those in the condition where
the linear tire model fits quite well. This nonlinear condition is
characterized by the states in which any one of the following
conditions applies [22]:

(a)

∫ t+Δt9
t

(
Cf −

∫ t+Δt9

t
Cfdτ

Δt

)2

dτ

Δt
> σCf

(29)

(b)

∫ t+Δt10
t

(
Cr −

∫ t+Δt10

t
Crdτ

Δt

)2

dτ

Δt
> σCr

(30)

(c) Cf < ηf

((
1
Cf

)
n

)−1

or Cr < ηr

((
1
Cr

)
n

)−1

when

∫ t+Δt11
t

(
δf −

∫ t+Δt11

t
δfdτ

Δt

)2

dτ

Δt
> σδf (31)

where ηf , ηr, σCf
, σCr

, and σδf are the positive tuning param-
eters, and ηf , ηr are set to satisfy 0 < ηf < 1 and 0 < ηr < 1,
respectively. Equations (29) and (30) each indicate that the
variance of front and rear cornering stiffness values are higher
than the established threshold σCf

and σCr
. It is implied that the

cornering stiffness values are vigorously changing; hence, the
tire characteristics are unlikely to be linear. Now, (31) indicates
that either the front or the rear cornering stiffness value is
lower than a certain portion of the nominal (thus, the linear tire
model) cornering stiffness value. This case clearly states that
the vehicle tires are exhibiting a nonlinear characteristic. Note
that an additional condition as a function of steering angle input
is attached to (31). The reasoning behind this attachment is to
ensure that the updated cornering stiffness values are obtained
under the persistent excitation condition [23].

The stability factor (SF) is a complementary concept of TF.
In other words, SF and TF always sum up to 1, as shown in the
following expression:

SF = 1 − TF. (32)

TF =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sat

(
b8
∫ t+Δt8

t
x7dτ

Δt − σvx

)
, nonlinear condition

sat

⎧⎪⎪⎨
⎪⎪⎩sat

(
b8
∫ t+Δt8

t
x7dτ

Δt − σvx

)
7∑

i=1

⎧⎪⎪⎨
⎪⎪⎩

bi
∫ t+Δti

t

(
xi−

∫ t+Δti

t
xidτ

Δt

)2

dτ

Δt

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎬
⎪⎪⎭ , otherwise

(28)
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Here, the nature of the vehicle dynamic stability referred
by the stability factor is stricter than what the steady state
implies. Although a steady-state condition only implies that
the vehicle motion is not going under a changing phase, the
stable condition in this paper additionally implies that the ve-
hicle tires exhibit linear characteristics. For example, a vehicle
that smoothly and constantly slips sideway on the icy surface
without changing its orientation or velocity is likely to be in a
steady state but unlikely to have a high SF.

Putting (27) into the matrix form gives the following state-
space equations of the vehicle kinematics:⎡
⎣ v̇x
v̇y
v̇z

⎤
⎦ =

⎡
⎣ 0 r −q
−r 0 p
q −p 0

⎤
⎦ ·

⎡
⎣ vx
vy
vz

⎤
⎦

+

⎡
⎣ ax
ay
az

⎤
⎦+ g

⎡
⎣ sin θ
− sinφ · cos θ
− cosφ · cos θ

⎤
⎦ . (33)

Because vcar is used as the longitudinal velocity in the pseu-
dointegral kinematic estimation part, the first row kinematics
that deals with the time derivative of the longitudinal velocity
is unnecessary. Hence, by taking only (27b) and (27c) and
substituting the variables with those available, the following
expression is reached, and in doing so, the pseudointegration
system is designed to incorporate TF and SF; therefore, high
TF encourages pure integration, whereas high SF stagnates the
integration to hold the estimated lateral velocity at v̂y,bic and
the estimated vertical velocity at 0

˙̂v
∗
y,int= ay,m−rm · vcar+pm · v̂z,int−g ·sin φ̂·cos θ̂ (34)

˙̂v
∗
z,int= az,m+qm ·vcar−pm ·v̂y,int−g ·cos φ̂·cos θ̂ (35)

v̂y,int=TF ·v̂∗y,int+SF ·v̂y,bic (36)

v̂z,int=TF ·v̂∗z,int (37)

where v̂y,int and v̂z,int are the lateral and vertical velocities
estimated by pseudointegration; vcar is the longitudinal veloc-
ity estimation based on the wheel dynamics; φ̂ and θ̂ are the
estimated roll and pitch angles; and ay,m, az,m, pm, qm, and
rm are the sensor measurements.

The aforementioned system performs the integration of ˙̂v
∗
y,int

and ˙̂v
∗
z,int, with the sensor measurements that may involve

error. Although this case may lead to the estimated velocities
to gradually drift away as time elapses, the stabilization of
the vehicle motion quickly returns and holds the estimated
velocities at v̂y,bic and 0 to correct the drift error. Intuitive
analysis of the aforementioned system thus tells that the system
is stable, as long as the bicycle model observer is stable, which
has been proven [17].

G. Principal Kinematic Observer

An observer that uses the kinematics equations of motion
is implemented as the last part of the entire observer struc-
ture to process the signals obtained from other preliminary
components in an integrated manner. Here, analogous to the

pseudointegral kinematic estimation structure, this observer
fully and directly takes advantage of the measurements from
the 6-D IMU but, this time, along with the reference lateral
velocity information v̂y,ref obtained from the final result of
the observer synthesis. In other words, the kinematic observer
that is relatively free from the signal drift problem, is achieved
through v̂y,ref , which has maximized the advantage of using
the bicycle model by the observer synthesis.

The principal kinematic observer operates based on the
aforementioned kinematic equations of motion, as shown in
(27). Adding the observer feedback term to (27), the following
observer design can be reached to give the final vehicle velocity
estimations:

ẋpko =Apkoxpko + L+Kki(yref − ypko) (38)

ypko =Cpkoxpko (39)

where

xpko =

⎡
⎣ v̂x
v̂y
v̂z

⎤
⎦ , Apko =

⎡
⎣ 0 rm −qm
−rm 0 pm
qm −pm 0

⎤
⎦

L =

⎡
⎣ ax,m + g sin θ̂

ay,m − g sin φ̂ · cos θ̂
az,m − g cos φ̂ · cos θ̂

⎤
⎦

Cpko = I, yref =

⎡
⎣ vcar
v̂y,ref
0

⎤
⎦

Kki =

⎡
⎣ k1 k2 k3
k4 k5 k6
k7 k8 k9

⎤
⎦ =

⎡
⎣ ξx rm −qm
−rm ξy pm
qm −pm ξz

⎤
⎦ .

Here, ξx, ξy , and ξz are positive constants.
For the x-axis kinematics, the longitudinal velocity vcar that

has been computed through wheel dynamics is taken for the
observer reference. By doing so, the objectives of improving the
principal kinematic observer estimation accuracy by resolving
its possible issue of signal drift and improving the longitudinal
velocity estimation of vcar by not only depending on the wheel
dynamics but by using the 6-D sensor information as well can
simultaneously be fulfilled.

In a similar context, the use of v̂y,ref for the y-axis observer
feedback not only blocks the drift of the estimated results of the
principal kinematic observer but also increases the accuracy of
the lateral velocity estimation relative to that of v̂y,ref itself
by enabling fine estimation and eliminating the noise without
causing any phase lag issue. This case is further discussed with
respect to the experimental results in the analysis section.

With regard to the z-axis kinematics, the reference vertical
velocity is simply taken to be zero. Aside from the purpose
of preventing the integration drift issue, this is accounted by
the small magnitude of the vertical velocity and the fact that
the long-term z-axis behavior of the vehicle evens out to zero
vertical velocity.
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TABLE I
TEST VEHICLE SPECIFICATION

Stability can easily be proved by investigating (38) and
(39). Some algebraic manipulation and substitution of these
relationships lead to the following expression:

ẋpko =Apkoxpko + L+Kki(yref − ypko)

=Apkoxpko + L+Kki(yref − Cpkoxpko)

= (Apko −KkiC)xpko + L+Kkiyref . (40)

Here, it can simply be found that

Apko −KkiC

=

⎡
⎣ 0 rm −qm
−rm 0 pm
qm −pm 0

⎤
⎦−

⎡
⎣ ξx rm −qm
−rm ξy pm
qm −pm ξz

⎤
⎦ · I

=

⎡
⎣−ξx 0 0

0 −ξy 0
0 0 −ξz

⎤
⎦ (41)

is strictly Hurwitz. Hence, the error dynamics of the prin-
cipal kinematic observer is asymptotically stable, assuming
that y ≈ yref .

III. EXPERIMENTAL RESULTS

A. Test Environments

The experiments are conducted using a real production sport
utility vehicle, i.e., the Hyundai Tucson ix, to verify the velocity

TABLE II
INSTRUMENT-MOUNTING POSITIONS

TABLE III
TEST SCENARIOS

estimation performance. Table I gives the specification of the
vehicle used for the experiments. The proposed observer ran on
the basis of 5 ms as its sampling time, and no issue with regard
to the computation burden was found.

The most affordable class of 6-D IMU from Analog Devices
Inc. is used for the observer algorithm. A set of ADW22307 is
chosen as the gyroscope, and a set of ADXL103 is chosen as
the accelerometer.

For verification, the RT3100 model, which is a high-accuracy
differential Global Positioning System (DGPS)-based vehicle
dynamics testing tool from the RT3000 family of Oxford
Technical Solutions Ltd., is used to measure the actual vehicle
states. The detailed specification data of the aforementioned
models are available at the corresponding companies. The
coordination of these sensors is given in Table II.

Table III shows the list of scenarios by which the experiments
are performed. Through variation of conditions and vehicle
maneuvers, verification of the estimation performance under a
wide range of situations is made possible.

B. Experiment Case 1

The first case of the experiment is a severe sine steer ma-
neuver on the dry asphalt. A continued series of sine steers can
invoke a fairly high amount of vehicle roll and side slip. Under
this condition, the side-slip angle is accurately estimated, as
shown in Fig. 5.
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Fig. 5. Sine steer test result for longitudinal velocity and side-slip angle estimation.

Fig. 6. DLC test result for longitudinal velocity and side-slip angle estimation.

C. Experiment Case 2

Similar to the previous case, the vehicle is driven on the flat
dry asphalt. In this test, the driver mimicked the steering as
in the situation of dodging a hindrance; therefore, the vehicle
abruptly changes its lane and quickly comes back.

Three sets of the aforementioned maneuvers are done to
prove the estimation performance both during the transient
and steady states before and after the double lane change
(DLC). The proposed observer shows an accurate tracking
performance, as shown in Figs. 6–11.

Fig. 12 shows the cornering stiffness adaptation result of one
of the sets of DLC described in Fig. 6. It is shown here that the
cornering stiffness indeed drops as the front and rear tires show
deviations from the linear tire model.

As aforementioned, the observer synthesis resides on the
principle of adjusting the weighting factors among the four
types of references. These factors are obtained based on the
cornering stiffness adaptation values, which are already shown
in Fig. 12. Fig. 13 again takes the DLC maneuver as an exam-
ple. When the vehicle is in a cruising condition without much
road disturbance, the bicycle model observer is highly reliable,
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Fig. 7. Circle-turn test result for longitudinal velocity and side-slip angle estimation.

Fig. 8. Bumpy-road test result for longitudinal velocity, side-slip angle, and vertical velocity estimation.

and the weighting factor for the bicycle model observer is close
to 1. Now, when the vehicle begins its severe lane change,
the weighting factor for the bicycle model observer suddenly
drops, and the factors for other references rise. Because a severe
DLC may cause both front and rear tires to exhibit nonlinear
characteristics, the weighting factor for the pseudointegration
shoots up to induce the observer to rely more on the sensor
kinematics. When the lane change maneuver is done and the
vehicle goes into a stable steady state, both cornering stiffnesses
rise back to their linear nominal values, which result in the

immediate rise in the weighting factor for the bicycle model
observer and the opposite for the others.

Fig. 14 displays a bundle of lateral velocity reference
sources—vy obtained from pseudointegration, front tire dy-
namics, rear tire dynamics, and bicycle model observer—along
with the actual lateral velocity and v̂y,ref , the multiple-observer
estimation of the reference sources. It is shown in this plot that
this combination of the four sources of reference gives the best
lateral velocity reference, which can be used in the principal
kinematic observer, which follows the observer synthesis.
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Fig. 9. J-turn test result for longitudinal velocity and side-slip angle estimation.

Fig. 10. Spin-out test result for longitudinal velocity and side-slip angle estimation. Comparison of the side-slip angle estimation performance of this paper and
conventional work to the measured data.

The principal kinematic observer is designed to have the
form of a first-order Kalman filter, which uses the lateral
velocity estimation of the multiple-observer synthesis as the
lateral dynamics reference. Notice how the result of the ob-
server synthesis involves much noise and rough signals. This
roughness in signals is inevitably generated by splicing the
reference sources, depending on the cornering stiffness values
obtained from the adaptation and vehicle axle vertical loads that
already contain much noise in the first place.

Heavily placing a low-pass filter to get rid of the noise is
not an option, because such a design results in phase lag.
Instead, inducing the noisy reference signals to be filtered
by the principal kinematic observer can lead to an accurate

estimation. The estimation result of the vehicle lateral velocity
obtained by such a method is compared to the raw observer
synthesis result and the measured signal in Fig. 15, and it is
apparent that the accuracy is maintained in the final estimation
without causing phase lag.

Fig. 16 compares the lateral velocity estimations obtained
by the cornering stiffness adaptation [18] and the proposed
observer. The estimation algorithms are applied onto the test
vehicle that goes under a severe DLC. During this maneuver,
the tires exhibit nonlinear characteristics, and the performance
of the estimation purely by using the bicycle model is limited,
even with the parameter uncertainty compensation through
cornering stiffness adaptation. This is verified by the decreased
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Fig. 11. Bank-turn sine steer test result for longitudinal velocity and side-slip angle estimation.

Fig. 12. Cornering stiffness adaptation results for the DLC test.

estimation accuracy of the conventional observer whenever the
lateral velocity grows higher than 1 ∼ 2 m/s. On the other hand,
the proposed observer with the observer synthesis effectively
chooses to exploit the 6-D IMU through pseudointegration
in the highly nonlinear regions; therefore, the lateral velocity
estimation is robust to the sources of disturbance, as seen from
the bicycle model perspective.

D. Experiment Case 3

To more clearly visualize the weighting-factor-adjusting pro-
cedures in observer synthesis, the vehicle is gradually led into
an understeer condition. Here, the understeer is intentionally
made by constantly turning the vehicle in a circular track and
increasing its velocity at the same time.

Fig. 13. Observer synthesis weighting factors for DLC.

While the vehicle is turning a constant radius circle, the side-
slip angle is positive up to around 60 s, but it soon changes its
sign and becomes negative. This case can be accounted by the
CG, which longitudinally and laterally moves in the direction of
cornering in the lack of vehicle tangential velocity on the curve.
When the vehicle speeds up, however, the effect of the vehicle
inertia that drives the vehicle outward from the curve outgrows
the aforementioned effect and causes the vehicle to slip sideway
in the opposite direction of cornering. This phenomenon is
fairly accurately estimated, as shown in Fig. 7.

As expected, the weights of the observer synthesis show
that the major contribution of the bicycle-model-based observer
gradually shifts to the contribution of the rear wheel dynamics.
This makes sense, because the increase in the vehicle understeer



OH AND CHOI: VEHICLE VELOCITY OBSERVER DESIGN USING 6-D IMU AND MULTIPLE-OBSERVER APPROACH 1877

Fig. 14. Comparison of the four lateral velocity inputs for the observer
synthesis and its result for the measured lateral velocity.

Fig. 15. Comparison of the raw observer synthesis result and the final vy
estimation by principal kinematic observer to the measured data.

Fig. 16. Comparison of the new and conventional observer estimation
performances.

Fig. 17. Observer synthesis weighting factors for a circle turn.

indicates the decrease in the front tire cornering stiffness, which
makes it more favorable to use the rear wheel dynamics—which
is still relatively linear—for the lateral velocity estimation.
Such a phenomenon is accurately reflected in Fig. 17, where
the weighting factors for the bicycle model observer decreases,
whereas the weighting factors for the rear axle dynamics in-
creases as the understeer proceeds from around 60 s.

E. Experiment Case 4

Vertical velocity estimation is most required for the effective
CDC system. Because the most important purpose of such
semiactive suspension control is for the increase in ride quality,
the vertical velocity estimation performance is tested on the
road terrain, which can provide sinusoidal excitation onto the
tires.

As shown in Fig. 8, vehicle velocities of all axes are si-
multaneously estimated without any delay or phase lag. This
suggests a promising possibility of applying the semiactive
damper control system by exploiting the real-time estimation
of the vertical velocity.

F. Experiment Case 5

This scenario deals with a sudden J-turn on the wet road
condition, which is initiated at the longitudinal velocity of
70 km/h. As shown in Fig. 9, the observer effectively estimates
the sudden change of the side-slip angle, even under the effect
of the vehicle roll.

G. Experiment Case 6

The vehicle is maneuvered into a complete spin-out condi-
tion on a slippery road, and its test result is shown in Fig. 10.

Although it is true that this type of severe condition must be
avoided as much as possible by applying the electronic vehicle
safety control technologies, this spin-out test is performed to
show how robust the estimation performance is, even up to the
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condition that involves the side-slip angle of more than 40◦.
Through the cost effective 6-D IMU, accurate vehicle lateral
velocity estimation has been made possible, which most likely
would not be achieved by the use of the bicycle model alone.

At around 6 s and onward, the side-slip angle estimation error
instantly mounts up to 13◦. This case, however, carries less
importance, because it is caused by a low value of longitudinal
velocity, which is in the denominator for the side-slip angle
calculation. Compared with the fairly accurate estimation result
of the suggested observer, the lateral velocity estimation result
of the conventional observer [18] is more inaccurate and noisy,
particularly when the side-slip angle is large.

H. Experiment Case 7

To consider the effect of a static bank and an inclination
angle that exist in the road terrain, the vehicle is driven onto
a high-speed circuit, which comprises the corners that include
the static bank angle of up to 20◦. By performing the sine
steer maneuver on this severe bank, the vehicle experiences
biased acceleration and side slip, as well as the effect of the
longitudinal inclination angle, depending on the orientation of
the vehicle body on the banked course.

By successfully separating the lateral acceleration value with
respect to the road surface on which the vehicle is running, the
suggested algorithm effectively estimates the side-slip angle,
even on the severe bank angle, as shown in Fig. 11.

IV. CONCLUSION

This paper has proposed a novel method of effectively com-
bining the role of the bicycle-model-based observer and the
kinematic observer to estimate the vehicle velocities of all axes.
Making use of a 6-D IMU of the most affordable cost range
and discarding the dependency on GPS, the suggested velocity
observer exhibits robust and accurate estimation performance,
regardless of the possible influence of sensor error and highly
nonlinear tire characteristics. In summary, previous studies
involved the tradeoff between severely nonlinear tire dynam-
ics estimation accuracy and estimation drift issue settlement,
whereas this paper has provided both estimation accuracy in
highly transient state and freedom from signal drifting through
the multiple-observer approach and its synthesis. In addition,
although previous studies did not provide vehicle velocity
estimations on all three axes, this paper has contributed in the
simultaneous estimation of vx, vy , and vz .

With numerous real car-based experiments, the velocity es-
timation performance of the proposed observer is tested and
verified to be robust. The experiments are conducted under
various conditions, and therefore, the suggested algorithm is
ready for the production car application.

APPENDIX

Figs. 18–20 show photographs of the test vehicle, the
RT3100, and the test-drive course at the Hyundai Motor Com-
pany Namyang Main R@D Center, respectively.

Fig. 18. Test vehicle.

Fig. 19. RT3100.

Fig. 20. Test-drive course (Hyundai Motor Company Namyang Main R&D
Center).
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