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Abstract— This paper proposes a periodic adaptive distur-
bance observer (PADOB) to control a PMLSM (Permanent
Magnet Linear Synchronous Motor). The PADOB consists of
a classical linear DOB and an adaptive mechanism which has
been known as the periodic adaptive learning control (PALC).
The key idea is to compensate parametric errors between the
actual plant and the nominal model of DOB and disturbance
forces such as the friction and detent force. The PADOB
can improve the instability problem occurred by updating
parameters of nominal model in the DOB directly. Through
simulation test of the PMLSM, the validity of the PADOB is
illustrated.

I. INTRODUCTION
A Permanent Magnet Linear Synchronous Motor

(PMLSM) has been used for works required accurate
position or speed control. In PMLSMs, indirect coupling
mechanisms such as chains, gear boxes and screw
coupling are eliminated, and the effects of contact-types
of nonlinearities and disturbances such as backlash
and coupling frictional forces are reduced. Therefore,
high-speed/high-accuracy positioning control is achieved
perfectly.

However, it still exists the dominant disturbances such as
the detent and friction force to be compensated. The detent
force is occurred by the interaction between the permanent
magnets and the steel teeth of the primary section. It is a
position-dependent periodic disturbance and the pitch of per-
manent magnets becomes a period of the detent force.[1] The
friction force is a velocity-dependent nonlinear disturbance.
In most applications using PMLSMs, these disturbances
have periodic and repetitive characteristics because required
tasks are performed on the periodic trajectory under same
conditions repetitively.

Numerous literatures have addressed about how to com-
pensate these disturbances.[2] The detent force has been
compensated by using a simple sinusoidal model because
it can be represented as Fourier expansion. It estimates
unknown parameters such as magnitude and phase of
the sinusoidal model using certain parameter adaptation
mechanisms.[3] However, it is not enough to eliminate
one because it has not considered high order terms in
the Fourier series for simplicity. The friction force also
has been compensated by estimating parameters of friction
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model such as Coulomb friction model or Lugre friction
model.[4][5] Here, the friction coefficients are assumed to be
constants while nonlinearities such as deadzone, hysteresis,
and saturation are ignored. Although a model considered
high order harmonics terms and nonlinearities is used, it is
difficult to prove asymptotically convergence of estimated
parameters. On the other hand, parameter convergence is
not required in disturbance observer (DOB).[6] It eliminates
the output of inverse nominal model considered as external
disturbances which are mostly the detent and friction force.
However, it is very dependent on parameters of the nominal
model. Therefore, above mentioned schemes are extremely
constrictive to the used model.

To improve these problems, the learning control strategies
without the model have been suggested, which have been
known as the periodic adaptive learning control (PALC).
[7][8][9][10][11] Adaptive learning compensators of these
disturbances in PMLM were designed in [7]. The key idea is
to use the state-periodic characteristics of these disturbances,
which are a position-dependent detent force and a velocity-
dependent friction force. The past information of more than
one period along the state axis is used to update the current
adaptation learning law. It means that initial conditions of
the estimated disturbances are required to update the current
information of these disturbances. Therefore, certain adaptive
scheme or nonlinear functions must be designed additionally
and it can be very complicated.

In this paper, a periodic adaptive disturbance observer
(PADOB) is proposed. The classical linear DOB is used to
design initial conditions in adaptation laws, which include
parametric errors between the actual plant and nominal
model and external disturbances such as detent and friction
force. And the PALC is used to update and compensate these
disturbances. Therefore, the proposed PADOB can improve
the instability problem occurred by updating parameters of
nominal model directly in the DOB. Also, it can improve
complicated procedures to design the initial conditions in
PALC.

This paper is organized as follows: In Section II, the
used PMLSM model and control problem are introduced.
In Section III, the proposed PADOB are presented. The
simulation illustration is shown in Section IV to verify the
performance of PADOB. Concluding remarks are given in
Section V.

II. PROBLEM FORMULATION

In this section, the PMLSM model and control problem
are formulated. Also, the properties of PALC are presented.
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Fig. 1. Permanent Magnet Linear Synchronous Motor

A. PMLSM Model

The PMLSM is depicted in Fig. 1 and it is represented by
the dynamic equation as follows, [7]

mẍ(t) =−
k f ke

R
ẋ(t)+

k f

R
v(t)−Fdet(x)−Ff ric(ẋ) (1)

where, x is the position of the primary section, m the mass
of the primary section, k f the force constant, ke the back-
emf constant, R the resistance, v(t) the input voltage, Fdet
the detent force, and Ff ric the friction force. For simplicity,
the load and small external disturbance are ignored.

The control objective is to track the given desired position,
xd and the corresponding desired velocity, ẋd with tracking
error as small as possible. The performed task is assumed as
follows:

Assumption 1: The task is performed on the periodic
trajectory under same conditions repetitively.

Assumption 2: The disturbance effects are nearly identical
when the primary section moves to the positive direction and
negative direction because of good tracking performance.

Assumption 3: The measurement noise and high fre-
quency disturbance are attenuated by low pass filters.

Suppose that the detent force is described as a nonlinear
functions and the friction force is presented as a sign function
such as follows,

Fdet(x) = a(x), Ff ric(ẋ) = b(t)sgn(ẋ)

The equation of the PMLSM, (1) is rewritten as follows:

Mẍ(t) =−Bẋ(t)+u(t)−a(x)−b(t)sgn(ẋ) (2)

where, M is the mass of the primary section (M := m), u(t)
the control input

(
u(t) := k f /R · v(t)

)
, and B defines as the

viscous friction coefficient (B := k f ke/R).

B. Properties of PALC

In this section, the defined properties of PALC are
introduced, which are applied to the proposed PADOB.

Property 1: (Total pass trajectory)
The total passed trajectory is given as follows,

xs(t) =
∫ t

0

|dx|
dτ

dτ =
∫ t

0
|v(τ)|dτ

where, x is the position, and v the velocity. Since xs is the
summation of absolute position increase along the time axis,
it is a monotonously growing signal. Physically it is the total
passed trajectory; hence, it has the following property:

xs(t1)≥ xs(t2), i f f t1 ≥ t2

Fig. 2. Classical linear DOB structure

Property 2: (Trajectory periodicity)
From Assumption 1, the passed position has a periodicity

on the total passed trajectory:

x(t) = xs(t)−m′xsp

where, x is the position, xsp the moving distance for a period
and m′ the integer part of xs(t)/xsp . When it assumes that
the tracking performance is good, the position and velocity
can be presented in time-domain as follows,

x(xs) = x(xs− xsp) → x(t) = x(t−Pt), ẋ(t) = ẋ(t−Pt)

where, Pt is a time period of performed task.

Property 3: (Disturbance periodicity)
From Assumption 2 and Property 2, the detent and friction

force have the following properties:

a(t) = a(t−Pt)

b(t)sgn(ẋ(t)) = b(t−Pt)sgn(ẋ(t−Pt))

III. PERIODIC ADAPTIVE DISTURBANCE
OBSERVER

A. Disturbance Observer

The DOB has been proposed to eliminate the disturbance
which is difference between the actual system and nominal
model. The nominal model represents the desired model
based on the desired control specifications. It makes the
actual system to become a given nominal model. Fig. 2
depicts the classical linear DOB structure. The output of
DOB, τ̂(t) is an estimated disturbance which consists of the
parametric errors between the actual plant and the nominal
model of DOB and disturbance forces such as friction and
detent force. The symbols in Fig. 2 are defined as follows,

x(t), ẋ(t): the position and velocity of mover
P(s), Pn(s): the transfer function of actual, nominal plant
u(t): the control input
d(t): the disturbance including detent and friction force
Q(s): a low-pass filter
τ(t): the estimated disturbance without filtering
τ̂(t): the estimated disturbance with a low-pass filter
ζ (t): the measurement noise
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Fig. 3. Disturbance Characteristics

The transfer functions and disturbance are presented as
follows,

P(s) = 1/(Ms+B) (3)

Pn(s) = 1/(Mns+Bn) (4)

d(t) = a(x)+b(t)sgn(ẋ) (5)

where, Mn and Bn are nominal values of the nominal model.
The output of the plant, x(t) is represented by

x(t) =
PPn

D
ur(t)+

PPn(1−Q)

D
d(t)− PQ

D
ζ (t) (6)

where, D = 1/
(
Pn +(P−Pn)Q

)
.

Assume that the transfer functions in (6) are stable.
In the low frequency range(i.e., Q( jω) ≈ 1), the output
x( jω) becomes similar to Pn( jω)ur( jω)−ζ ( jω), but from
Assumption 3(ζ ≈ 0), we have the nominal input-output
relation, i.e., x( jω)≈ Pn( jω)ur( jω), which is desired. More
detailed DOBs are presented in numerous literatures.[12][13]

B. PADOB
The DOB has been known as a powerful scheme

as referred to numerous literatures. However, in case
that parameters of nominal model are inaccurate, the
performance can be worse. Therefore, the information of
nominal model must be updated. To update parameters of
the nominal model directly can occur instability problems
because poles and zeros of the transfer function of nominal
model are changed. This paper has focused on updating not
parameters of nominal model, M and B but output of DOB,
τ(t).

1) Disturbance Decomposition: In this section, the output
of DOB is calculated to decompose disturbances and use
them as initial conditions of the periodic adaptation mech-
anism. In Fig. 2, the estimated disturbance without filtering
can be presented as follows,

τ(t) = u(t)− 1
Pn(s)

(x(t)+ζ (t)) (7)

Fig. 4. Periodic Adaptive DOB structure

For simplicity, variables in time-domain and s-domains are
used simultaneously. Substituting (4) into (7),

τ(t) = u(t)−Mnẍ(t)−Bnẋ(t) (8)

where, ζ =0 by Assumption 3.
And the output of the transfer function of the actual plant

is presented as follows,

x(t) =
1

Ms2 +Bs

(
u(t)−d(t)

)
(9)

Rearranging (9), the control input, u(t) is rewritten as fol-
lows,

u(t) = d(t)+Mẍ(t)+Bẋ(t) (10)

Substituting (5) and (10) into (8), the estimated disturbance
can be presented as follows,

τ(t) = ∆Mẍ(t)+∆Bẋ(t)+a(x)+b(t)sgn(ẋ) (11)

where, the inertia error is ∆M = M−Mn and the viscous
friction coefficient error is ∆B = B−Bn.

From Assumption 1 and 2, the detent and friction force
can be described in Fig. 3 as an example. When the desired
trajectory is given as one in Fig. 3, the detent and friction
force become an even and odd function. Also, the inertia
error and viscous friction coefficient error become an even
and odd function depending on states such as position and
velocity. Therefore, the state-dependent disturbances can be
decomposed as follows,

∆Mẍ(t)+a(x) =
1
2
[
τ(t)+ τ(Pt − t)

]
(12)

∆Bẋ(t)+b(t)sgn(ẋ) =
1
2
[
τ(t)− τ(Pt − t)

]
(13)

where, Pt is the time period which a task is performed.

2) Periodic Adaptation Mechanism and Controller: The
structure of PADOB is described in Fig. 4. The system is
controlled by following two step:
• When xs < 2xsp , the system is controlled by using

the classical linear DOB to be bounded input bounded
output(BIBO).

• When xs ≥ 2xsp , the system is controlled by the pro-
posed PADOB. By the periodic adaptation mechanism,
the unknown disturbances are estimated.
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First, consider the case when xs < 2xsp . The control law
is designed as follows:

u1(t) = u f b1(t)+u f f1(t) (14)
u f b1(t) =−K0S(t)−Mnλ ėx(t)

u f f1(t) = Mnẍd(t)+Bnẋd(t)

where,

S(t) = ėx(t)+λex(t), ex(t) = x(t)− xd(t)

xd is the desired position, K0 and λ are tuning parameter
(K0 > 0, λ > 0).

Substituting (14) into (2), the closed-loop error dynamics
are obtained as follows,

Mëx(t)+Bėx(t)+Mnλ ėx(t)+K0S(t)

=−[∆Mẍd(t)+∆Bẋd(t)+a(x)+b(t)sgn(ẋ)] (15)

In (15), the effect of the inner-loop compensator (DOB)
is ignored because it forces the system to be stable. And
the desired trajectories, xd(t), ẋd(t), and ẍd(t) are bounded
in practice. Also, assuming that |∆M|, |∆B|, and |a(x) +
b(t)sgn(ẋ)| are all bounded, the system satisfies the BIBO
stable.

Next, consider the case when xs ≥ 2xsp . The designed
control law is as follows,

u2(t) = u f b2(t)+u f f2(t)+uPADOB(t) (16)
u f b2(t) =−K0S(t)−Mnλ ėx(t)+Bnẋ(t)

u f f2(t) = Mnẍd(t)

uPADOB(t) = âM(t)+ b̂B(t)

And, the adaptation laws of uPADOB(t) are designed as
follows,

âM(t) =
{

âM(t−Pt)−K1S(t) i f xs ≥ 2 · xsp

âM0(t) i f 0 < xs < 2 · xsp
(17)

b̂B(t) =
{

b̂B(t−Pt)−K2S(t) i f xs ≥ 2 · xsp

b̂B0(t) i f 0 < xs < 2 · xsp

(18)

where,

âM(t) = â(t)+∆M̂ẍ(t), b̂B(t) = b̂(t)sgn(ẋ(t))+∆B̂ẋ(t)

Here, K1 and K2 are adaptation gains (K1 > 0, K2 > 0).
The initial conditions of the disturbances, âM0 and b̂B0 are

obtained by the output of DOB, (12) and (13). The control
input, (16) and adaptation laws, (17), (18) guarantee that
the system is asymptotically stable. The Lyapunov stability
analysis is performed to prove it.

Consider the following positive Lyapunov candidate func-
tion at s(t), whose corresponding time is t:

V (s(t)) =V (t) =
1
2

S(t)2 +
1

2K1Mn

∫ t

t−Pt

eaM
2(τ)dτ

+
1

2K2Mn

∫ t

t−Pt

ebB
2(τ)dτ (19)

where,

eaM(t) = ea + e∆M ẍ(t), ebB(t) = ebsgn(ẋ(t))+ e∆Bẋ(t)

ea(t) = a(t)− â(t), eb(t) = b(t)− b̂(t)

e∆M(t) = ∆M(t)−∆M̂(t), e∆B(t) = ∆B(t)−∆B̂(t)

Then, the difference of the positive Lyapunov candidate
functions at two discrete time point (t and t −Pt ) can be
calculated as:

∆V =V (t)−V (t−Pt) =
1
2

S2(t)− 1
2

S2(t−Pt)

+
1

2K1Mn

∫ t

t−Pt

[
eaM

2(τ)− eaM
2(τ−Pt)

]
dτ

+
1

2K2Mn

∫ t

t−Pt

[
ebB

2(τ)− ebB
2(τ−Pt)

]
dτ (20)

For simplicity, let the first term on the right hand side be
denoted by A, the second integral term by B, and the third
integral term by C. Then, A is calculated as follows,

A =
1
2

S2(t)− 1
2

S2(t−Pt) =
∫ t

Pt

S(τ)Ṡ(τ)dτ (21)

=
∫ t

t−Pt

1
Mn

[
−eaM(τ)S(τ)− ebB(τ)S(τ)−K0S2(τ)

]
dτ

For a proof, see the appendix.
And, based on Property 1 and 3, the following equalities

are satisfied:
aM(t) = aM(t−Pt) (22)

bB(t) = bB(t−Pt) (23)

Then, using (22), B can be calculated as follows,

B =
1

2K1Mn

∫ t

t−Pt

[
eaM

2(τ)− eaM
2(τ−Pt)

]
dτ

=
1

2K1Mn

∫ t

t−Pt

[aM(τ)− âM(τ)]2

− [aM(τ−Pt)− âM(τ−Pt)]
2 dτ

=
1

2K1Mn

∫ t

t−Pt

[âM(τ−Pτ − âM(τ)]

· {2 [aM(τ)− âM(τ)]+ [âM(τ)− âM(τ−Pτ)]}dτ

=
1

2K1Mn

∫ t

t−Pt

α(τ) · {2eaM(τ)−α(τ)}dτ (24)

where,
α(τ) = âM(τ−Pτ)− âM(τ)

Also, using (23), C can be obtained as follows,

C =
1

2K2Mn

∫ t

t−Pt

[
ebB

2(τ)− ebB
2(τ−Pt)

]
dτ

=
1

2K2Mn

∫ t

t−Pt

[
bB(τ)− b̂B(τ)

]2
−
[
bB(τ−Pt)− b̂B(τ−Pt)

]2
dτ

=
1

2K2Mn

∫ t

t−Pt

[
b̂B(τ−Pτ − b̂B(τ)

]
·
{

2
[
bB(τ)− b̂B(τ)

]
+
[
b̂B(τ)− b̂B(τ−Pτ)

]}
dτ

=
1

2K2Mn

∫ t

t−Pt

β (τ) · {2ebB(τ)−β (τ)}dτ (25)
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Fig. 5. Case1: Mn = M and Bn = B
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Fig. 6. Case1: detent and friction force

where,
β (τ) = b̂B(τ−Pτ)− b̂B(τ)

Substituting (16), (17) and (18) into (21), (24) and (25), (20)
is rewritten as follows,

∆V =A+B+C

=
∫ t

t−Pt

− 1
Mn

K0S2− K1

2Mn
S2− K2

2Mn
S2dτ

=
∫ t

t−Pt

− 1
Mn

(
K0 +

K1

2
+

K2

2

)
S2dτ (26)

The difference of the Lyapunov candidate function becomes
∆V (t)≤ 0. From LaSalle’s invariant set theorem, the asymp-
totical stability is proved. From (26), only S = 0 makes
∆V = 0. Using the S(t) = ėx +λex, if ex(0) = 0, only ex = 0
makes S = 0. Also, since ex = 0, we have ėx = 0. Therefore,
ex and ėx are asymptotically stable at equilibrium points.
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Fig. 7. Case2: Mn = 10 and Bn = 60

IV. SIMULATION ILLUSTRATIONS

The simulation tests have been performed to verify the
performance of PADOB. The results are compared with one
of PI controller with a classical linear DOB.

For the simulation test, the following reference trajectory
is used:

xd(t) = 0.1−0.1 · cos(πt)

The friction force is modelled as follows:

Ff ric(ẋ) =
{

10+10exp(−ẋ/0.1)2)+abs(ẋ)
}

sgn(ẋ)

And, the detent force is modelled as follows:

Fdet(x) = 4sin(
2πx
Tc

)+2sin(
4πx
Tc

)+ sin(
6πx
Tc

)

+0.5sin(
8πx
Tc

)+0.25sin(
10πx

Tc
)+0.125sin(

12πx
Tc

)

where, Tc is the pitch of the permanent magnet. The param-
eters of actual plant are M = 12kg, and B = 72.38N/m/s.
The performed simulation cases are shown as follows:
• Case 1 (Fig. 5, 6): Mn = 12 and Bn = 72.68
• Case 2 (Fig. 7, 8): Mn = 10 and Bn = 60.00

In Fig 5 and 7, the tracking performance of PADOB is
superior than one of PI controller with DOB. The tracking
error has become smaller and smaller as time goes on. It
shows that disturbances have been updated as shown in Fig
6 and 8. And, Case 2 shows that the PADOB has a better
performance than the PI controller with DOB although para-
metric errors exist in the nominal model. The performance
of PI controller with DOB becomes worse if the control gain
make be higher to reduce the tracking error because it occurs
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Fig. 8. Case2: detent and friction force

serious chattering of the control input. Therefore, test results
show that the performance of PADOB is superior.

V. CONCLUSION

In this paper, a periodical adaptive disturbance observer
(PADOB) was developed which consists of periodic adaptive
learning control (PALC) and a classical linear DOB. The
key idea of PADOB is to make use of the output of DOB
as initial conditions for PALC. Therefore, the instability
problem was improved by updating the output of DOB and
the performance of DOB was higher. Also, the complicated
procedures to design initial conditions in PALC were reduced
by decomposition of disturbances of DOB based on periodic
characteristics. From simulation results, it is shown that the
PADOB provides a superior tracking performance. However,
the performance of PADOB can be restricted by Q-filter. As
future works, the effect of Q-filter (LPF) must be studied.

APPENDIX

In this appendix, we prove (21),

A =
1
2

S2(t)− 1
2

S2(t−Pt) =
∫ t

Pt

S(τ)Ṡ(τ)dτ

=
∫ t

t−Pt

1
Mn

[
−eaMS(t)− ebBS(t)−K0S2(t)

]
dτ

Here, Ṡ(t) is calculated as follows,

Ṡ(t) =ëx +λ ėx = (ẍ− ẍd)+λ ėx

=
1
M
{−Bẋ+u(t)−a(x)−b(t)sgn(ẋ)}− ẍd +λ ėx

=
1
M
{−Bẋ−K0S(t)−Mnλ ėx(t)+Bnẋ(t)+Mnẍd(t)

+ â(t)+(∆Mẍ−∆Mẍ)+∆M̂ẍ+ b̂(t)sgn(ẋ)+∆B̂ẋ

−a(x)−b(t)sgn(ẋ)}− ẍd +λ ėx

=
1
M
{−Bẋ−∆Mẍ−a(x)−b(t)sgn(ẋ)+∆M̂ẍ−K0S(t)

+∆B̂ẋ+∆Mẍ+ â(t)+ b̂(t)sgn(ẋ)−∆Mẍd +∆Mλ ėx}

=
1
M
{−e∆Bẋ− e∆M ẍ− ea− ebsgn(ẋ)−K0S(t)+∆MṠ}

=
1
M
{−ebB− eaM−K0S(t)+∆MṠ} (27)

Rearranging (27),

(1−∆M/M) Ṡ = (1/M){−ebB− eaM−K0S(t)} (28)

From (28), Ṡ(t) can be presented as follows,

Ṡ = (1/Mn){−ebB− eaM−K0S(t)} (29)

Therefore, A is obtained by substituting (29) into (21).
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