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1. INTRODUCTION 
 

Nowadays, vehicle stability problems have come to a 
very important issue. For this reason, ESP(Electronic 
Stability Program) has been studied and developed by 
many researchers and it helps the number of the vehicle 
accidents to be decreased. And also, a rollover 
prevention control method is being studied because it is 
very serious and recognized as the most threatening 
accidents. 

According to the National Highway Traffic safety 
Administration’s(NHTSA) analysis [1] from 1998 to 
2009, the number of total accidents is decreased with 
assistance of ESP, but the number of rollover accidents 
has not. The percentage of rollover occurrence of total 
accidents is increased from 30.6% to 35.4 % from 1998 
to 2009. Even though the percentage of rollover 
occurrence of total accidents is not very big, it has a 
badly large contribution to severe fatal injuries. 

One important problem of vehicle dynamics 
controllers is that they are sensitive to vehicle 
parameters like vehicle mass and vehicle height of 
center of gravity, and these parameters are variable 
factors affected by the number of passengers or the 
weight of load vehicle carries. However, these values 
are treated as constants for a vehicle safety control. 

For those reasons, several studies have been executed 
to estimate vehicle mass [2]-[6]. For example, Vahidi et 
al. [2] utilized the recursive least square method with 
multiple forgetting factors in order to estimate a vehicle 
mass and time-varying road grade simultaneously. And, 

Huh et al. [3] suggested integrated mass estimation 
algorithm based on the longitudinal dynamics, lateral 
dynamics and vertical suspension dynamics. However, 
these mass estimation schemes have some limitations. 
For example, the algorithm [2] considers only 
longitudinal dynamics, so only with no steering 
condition, vehicle mass is updated. And for the 
algorithm [3], there are some difficulties to estimate 
vehicle mass because of unknown parameter like 
cornering stiffness which is varied significantly when 
vehicle goes to nonlinear region. 

In order to overcome those limitations, this paper 
suggests an integrated vehicle mass estimation 
algorithm for variable driving situations. The integrated 
algorithm includes two sub-estimations based on the 
longitudinal and roll dynamics [7]. The first algorithm is 
designed using the longitudinal dynamics and the 
recursive least square scheme [8] and the second 
algorithm is designed using the roll dynamics with the 
adaptation scheme and the recursive least square 
method. Finally, through multiple observer synthesis [9], 
two algorithms are integrated to estimate vehicle mass 
for all sorts of situations. 

 
2. RECURSIVE LEAST SQUARE(RLS) 

METHOD WITH FORGETTING FACTOR 
 

In least square problem, the unknown parameters of a 
mathematical model should be chosen in such a way 
that the sum of the squares of the differences, between 
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the observed values and the computed values, is a 
minimum. The unknown parameter should be chosen 
such that the least squares loss function ˆ( , )V tq  is 
minimized, 
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Solving for the parameter to minimize the above loss 
function, we get the solution as follows: 

( ) ( )1

1 1

ˆ ( ) ( ) ( ) ( )
t t

T

i i

i i i y iq f f f
-

= =

= å å                    (2) 

However, because of the chance of the variability of 
the unknown parameter, it is more suitable for using a 
forgetting factor l  for loss function as follows: 
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It is desirable to make the computations recursively to 
alleviate computation of burden, since it is more 
efficient to have the observations obtained sequentially 
in real time. Therefore, RLS algorithm will be used in 
this paper to update the estimation of the unknown 
parameter ( )tq  at time t , using the results obtained at 
time 1t -  and regression vector ( )tf . The design 
procedure of the RLS algorithm at each step t  is given 
as follows. 
Step 1 : Measure the output ( )y t  and calculate the 

regression vector ( )tf . 
Step 2 : Calculate the update gain ( )K t  which is called 

weighting factors that tell how the correction 
and previous estimate should be combined: 

( ) ( ) ( )K t P t tf=  

( ) 1

       ( 1) ( ) ( ) ( 1) ( )TP t t I t P t tf l f f
-

= - + -             (4) 
and calculate the covariance matrix ( )P t  
defined as 

( ) 1
( ) ( ) ( ) ( 1) ( )TP t I K t t P t tf f

l
= - - .                (5) 

Step 3 : Update the unknown parameter vector ˆ( )tq  as 
( )ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)Tt t K t y t t tq q f q= - + - - .             (6) 

The correction term ( )ˆ( ) ( ) ( 1)Ty t t tf q- -  is 
proportional to the difference between the measurement 

( )y t  and prediction of the previous estimate. 
The parameter l , called the forgetting factor, 

reflects the variance of the time-varying parameters. 
This concept is based on the fact that the old data is 
gradually discarded, and it gives more weight on recent 
information. 

 
3. MASS ESTIMATION USING 
LONGITUDINAL DYNAMICS 

 
The mass estimation using longitudinal dynamics is a 

model based approach. This is available only when a 
vehicle accelerates without turning. Therefore we need a 
longitudinal model as follows: 

x b aero grade
mv F F F F= - - -&                          (7) 

where m  is the total mass of the vehicle, v  the 
vehicle velocity and xF  the total longitudinal tire force 
which is transmitted from engine torque at the flywheel 
to tire. It is given by 

e e

x

g

T J
F

r

w-
=

&
                                 (8) 

e
T  is the engine torque which must be scaled down 

because of the possible torque losses. 
e

J  is the 
powertrain inertia and 

g
r  the wheel radius divided by 

the gear ratio and the final drive ratio: 
w

g
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r
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where 
w

r  is the wheel radius, 
d

g  the gear ratio and 

f
g  the final drive ratio. 

b
F  is the brake force 

generated by brake at the wheels, and 
aero

F  is the 
aerodynamic drag force defined as : 
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d
C  is the aerodynamic drag coefficient, r  the air 
density and A  the frontal area of the vehicle. 

grade
F  is 

the integrated force due to the rolling resistance of the 
road and road grade which is defined as: 

( cos sin )
grade

F mg m q q= +                        (11) 
where g  is the gravity acceleration and m  the rolling 
resistance coefficient. 

Equation (7) can be rearranged in a regression form :  
( ) ( ) ( )Ty t t tf q=                               (12) 
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where ( )y t  is the measured output, ( )tf  the known 
variables, and ( )tq  the unknown parameter which 
needs to be estimated. Here, cosgm q  term is assumed 
to be a constant since this is a very small value 
compared with other terms, and sensor measurement 

x
a  

includes sing q  term. 
Here, a forgetting factor is used since vehicle mass 

can change with the number of passengers or the weight 
of load vehicle carries. However, the forgetting factor is 
set very close to 1 since vehicle mass doesn’t change 
fast. 

 
4. MASS ESTIMATION USING ROLL 

DYNAMICS 
This section deals with the mass estimation using roll 

dynamics. The first scheme is about adaptation law and 
the second scheme is about recursive least square. These 
schemes are based on the roll dynamics 
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4.1 Mass estimation using roll dynamics by 
adaptation law  

This section deals with the mass estimation using roll 
dynamics from the measured roll rate and the vehicle 
dynamic model. 

The simplified linear second order roll dynamics of a 
vehicle is described as follows:  

x ym t t
I ma h k cq q q= - -&& &                           (14) 
where the bouncing motion of the sprung mass is 
neglected. Here, m  is the sprung mass and h  the 
distance between vehicle roll center and c.g.. Also, it is 
assumed that c.g. height is known. 

Using the roll dynamics equation (14), a roll 
dynamics observer is defined using the measured roll 
rate q&  and the estimated sprung mass m̂  as follows:  

ˆ ˆ ˆ ˆˆ ( )
x ym t t o

I ma h k c kq q q q q= - - + -
&& & &&                   (15) 
Defining the estimation errors of the roll angle and 

the sprung mass as follows:  
ˆq q q= -%                                    (16) 
ˆm m m= -%                                   (17) 

Then, subtracting (15) from (14), the error dynamics 
of the observer is described as follows: 

0x ym t t
I ma h k c kq q q q= - - -&& & &% % % %%                       (18) 

Here, we can neglect 
x

I q&&%  term. Because q&&%  is a 
very small value compared with the other terms. So we 
can rewrite equation (18) as follows:  

0
0

ym t t
ma h k c kq q q- - - =& &% % %%                        (19) 
Or, equivalently as: 

0
( )

t t ym
c k k ma hq q+ + =&% % %                          (20) 
The stability of the roll dynamics observer is proved 

through Lyapunov stability analysis. Also a vehicle 
sprung mass adaptation algorithm is derived through the 
same analysis. Let a positive definite scalar function V 
be given by 
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Taking the derivatives of the Lyapunov function (21) 
and combining it with equation (20): 
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Then, update m̂  such that: 
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Now, equation (22) can be written as follows: 
2
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Equation (24) is negative semi-definite for the 
constant observer gain 

0
k  greater than 

t
c- . Now, it 

can be proved that the error of the roll angle estimation 
will converge to zero under the condition of the 
persistence of excitation. In addition, the error dynamic 
equation (20) shows that the sprung mass estimation 
error converges to zero , as well. 

 
4.2 Mass estimation using roll dynamics by recursive 
least square  

This section deals with the mass estimation using the 
recursive least square method from roll dynamics by the 
measured roll rate and the vehicle dynamic model. 

The recursive least square method is more suitable for 
online parameter estimate. 

Start with the simplified the roll dynamic equation 
derived before: 

x ym t t
I ma h k cq q q= - -&& &                           (25) 

Equation (25) can be rearranged in a regression form:  
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where ( )y t  is the measured output, ( )tf  the known 
variables, and ( )tq  the unknown parameter which 
needs to be estimated. 

While applying use the RLS algorithm derived before, 
the forgetting factor is used again since the vehicle mass 
can change with the number of passengers or the weight 
of load vehicle carries. However, the forgetting factor is 
set very close to 1 since the mass doesn’t change fast. 

 
5. INTEGRATED MASS ESTIMATION 

USING MULTIPLE OBSERVER SYNTHESIS 
 

Mass estimation using just longitudinal dynamics is 
valid only when the steering angle is nearly zero, and 
mass estimation using roll dynamics when the vehicle 
turns.  

The estimation schemes are integrated using a proper 
weighting factor. This multiple observer synthesis is 
defined as follows: 

  Multiple observer synthesis  
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Fig. 1 Multiple observer synthesis 
 
Figure 1 illustrates how the multiple observer 

synthesis is formulated as a function of the roll angle 
values. When the roll angle is small, mass estimation 
using longitudinal dynamics is more accurate. Therefore, 
the weighting is mostly on longitudinal based mass 
estimation. However, as roll angle gets bigger, mass 
estimation using longitudinal dynamics starts to become 
inaccurate. Hence, in this case, it is more efficient to 
rather use the mass estimation using roll dynamics. 
Such shift thus normally causes the estimated value to 
be less sensitive for all sorts of driving scenarios. 

Incorporating the multiple observer synthesis in the 
mass estimation schemes as defined, final mass 
estimation value is written as follows: 
ˆ ˆ ˆ(1 )

final roll longitudinal
m MOS m MOS m= × + - ×                (28) 
where MOS means the weighting factor derived from 
the multiple observer synthesis. 
 

6. SIMULATION RESULTS 
 

In this section, simulations are conducted to 
demonstrate the proposed mass estimation algorithm 
using commercial vehicle simulation softwares, Carsim 
and Simulink. 

For the simulations, a vehicle model is selected, 
whose total mass is 1530kg and sprung mass is 1370kg. 

In the first scenario, the vehicle goes straight with 
sine wave velocity profile from 65km/h to 75km/h to 
demonstrate the longitudinal mass estimation. 

Figure 2 shows that the estimated value converges to 
a real value as time goes by. 

In the second scenario, after sinusoidal steering by 
± 60deg, steering angle decreases gradually. Figure 3 
shows the steering profile. Adaptation law and recursive 
least square method are used to estimate the vehicle 
mass. Vehicle velocity is maintained at 80km/h. 
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Fig. 2 Mass estimation using the recursive least square 
method by longitudinal dynamics 
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Fig. 3 Steering profile 
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Fig. 4 Roll dynamics observer 
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Fig. 5 Vehicle mass estimation using adaptation law by 
roll dynamics 

 

0 10 20 30 40 50 60 70 80 90 100
1000

1100

1200

1300

1400

1500

1600

1700

1800

Time [sec]

M
as

s 
[k

g]

 

 
Actual sprung mass
Estimated sprung mass

 
 

Fig. 6 Vehicle mass estimation using recursive least 
square by roll dynamics 

 
Figure 4 shows that the simulation result of the roll 

dynamic observer and the roll angle observer is tracking 
the true roll angle. Initially, the observer shows some 
tracking error due to the difference of the initial mass 
value with the true mass value. However, as time goes 
by, the mass value converges to true value, and the roll 
angle observer tracks the true roll angle well. 

Figure 5 and Figure 6 show the estimated mass value 
for the adaptation law and the recursive least square 
method in the second scenario. The simulation results 
show that each proposed scheme using roll dynamics 
estimates the vehicle mass effectively. For figure 6, 
initial mass estimation value is quite excessive due to 
the problem of initial covariance matrix setting. 
However, as time goes by, the estimated mass value 
tracks the true mass value. 

In the final driving scenario, the vehicle goes straight 
with sinusoidal wave velocity from 65km/h to 75km/h 
for 50 seconds, then 60deg sinusoidal steering angle is 
added on the vehicle. This scenario demonstrates how 
this integrated mass estimation algorithm is beneficial. 
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Fig. 7 Vehicle mass estimation using only  
longitudinal dynamics 
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Fig. 8 Vehicle mass estimation using only  
roll dynamics 
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Fig. 9 Vehicle mass estimation using 
integrated algorithm 

 
Figure 7 shows that the estimated mass value 

considering only longitudinal dynamics has some 
drifting issue after steering input is added. Figure 8 
shows that it is impossible to estimate mass without any 
excitation of roll dynamics. However, figure 9 shows 
that the mass estimation by the proposed integrated 
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algorithm using a recursive least square method is very 
efficient. This integrated method can estimate the 
vehicle mass very quickly without any drifting problem. 
 

7. CONCLUSION 
 

The vehicle mass is an important parameter and plays 
a crucial role for the vehicle safety control. This paper 
has focused on the development of an integrated 
algorithm to estimate vehicle mass for all sorts of 
driving situations. In order to estimate a vehicle mass, a 
recursive least square method is used to both 
longitudinal and roll dynamics, and an adaptive 
observer has been designed to observe the roll angle and 
update the vehicle mass for roll dynamics. 

The performance of the developed algorithm has been 
investigated by simulations using Carsim and 
Matlab/Simulink. The simulation results have confirmed 
that the development algorithm performs well for all 
sorts of driving situations. 
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