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Practical vehicle rollover avoidance control
using energy method

SEIBUM B. CHOI*

Graduate School of Automobile Technology, Korea Advanced Institute of
Science and Technology, Science Town, Daejeon 305-701, South Korea

In this paper, a novel rollover prevention control algorithm is developed for application on vehicles
with a high centre of gravity. The developed algorithm can be implemented on any vehicle equipped
with an electronic stability program with or without an extra roll rate sensor. The vehicle rollover index
is defined from the vehicle lateral kinetic energy and the new concept of virtual gravity. The algorithm
is implemented on a production hydraulic control unit and tested using a typical medium size sport
utility vehicle up to a speed of 110 km h−1. The test results show that the control algorithm prevents the
vehicle rollover very successfully without any noticeable false activation or over correction resulting
in severe under steer. Also, the controlled wheel speed shows a very stable and smooth trace.

Keywords: Rollover; Control; Energy; Vehicle

Nomenclature

a distance from vehicle C.G. to front axle, m
ATh rollover index acceleration threshold, unitless
aym measured vehicle lateral acceleration, m s−2

ayMod lead compensated vehicle lateral acceleration, m s−2

b distance from vehicle C.G. to rear axle, m
C.G. centre of gravity
ct suspension roll damping coefficient, N-m∗(rad s−1)−1

d one half of vehicle track width, m
ESPPcmd pressure control command from ESP, bar
Fz tire normal load, N
g gravity constant, m s−2

h nominal C.G. height, m
Ix vehicle angular momentum with respect to x-axis, kg-m2

ka C.G. height adaptation gain of roll dynamics observer, unitless positive
constant

ko roll rate error gain of roll dynamics observer, unitless positive constant
kt suspension roll spring coefficient, N-m rad−1

LF left front wheel
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324 S. B. Choi

M vehicle mass, kg
Pbm measured wheel pressure, bar
Pcmd wheel pressure control command, bar
RF right front wheel
RSCPcmd pressure control command from rollover avoidance controller, bar
Scmd wheel slip control command, m s−1

SGR steering wheel gear ratio, unitless constant
SWA steering wheel angle, radian
Vch characteristic speed, m s−1

Vw wheel speed, m s−1

Vx vehicle longitudinal velocity, m s−1

Vy vehicle lateral velocity, m s−1

x, y sprung mass coordinates
x ′, y ′ virtual gravity coordinates
yaw vehicle yaw rate, rad s−1

β vehicle side slip angle, radian
β Mod lead compensated vehicle side slip angle, radian
λ constant associated with roll dynamics observer, unitless
μ road-to-tire friction coefficient, unitless
σ tangent angle representing force ratio, radian
ϕ roll angle of vehicle sprung mass, radian
� rollover index, (m s−1)2

�0 rollover potentiality index, (m s−1)2

1. Introduction

Contrary to common opinion, sport utility vehicles (SUV) are not safer than passenger cars
in fatal accidents. This is due to the high rollover propensity of SUV and the high fatality
rate associated with the rollover accident. Statistically, the fatality rate for accidents involving
the rollover of SUV is as high as 59% [1]. The vehicle stability control systems can reduce
the chance of vehicle rollover induced by the over steering condition [2, 3]. However, this
condition is not always the cause of the rollover even for the non-tripped rollover cases. For
example, vehicles can be neutrally or under steered but can still have a large side slip angle that
is interpreted as the large amount of lateral kinetic energy. The lateral kinetic energy can be
converted to roll kinetic energy very quickly. Also, the vehicle rollover is significantly affected
by the suspension design, especially the dampers as well as the driving conditions. Therefore,
a vehicle can be rolled over for lateral acceleration that is far less than the statically critical
one. Usually, the yaw stability of a vehicle, and therefore the performance of the electronic
stability program (ESP), is much less affected by the damper characteristics.

There have been many efforts to prevent the rollover. However, most of the solutions are
found to be too expensive due to the cost of the extra sensors and/or actuators, or too slow
to prevent the rollover, especially for the very dynamic fishhook type maneuvers [4–10].
Considering quick roll dynamics and the slow brake response of the high C.G. SUV/truck
type vehicles, it is very critical to activate the brake control very early, at the moment when the
rollover is far from being imminent. At the same time, any false activation that can be noticed
by the driver must be prevented.

In this paper, a very practical rollover avoidance control algorithm is developed which can
be implemented with no or very little extra cost on a vehicle equipped with ESP. The vehicle
rollover is prevented by the brake control only. The roll rate sensor can be added optionally
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Practical vehicle rollover avoidance control 325

to enhance the performance or minimize false activation. The algorithm is developed for
application on high C.G. vehicles with a slow brake actuator like SUVs and light trucks.
However, the same algorithm can be applied to any other types of vehicles with no technical
difficulty or extra cost.

Most of the existing rollover prevention controls estimate the rollover propensity by meas-
uring or estimating the vehicle roll angle and/or roll rate. These controls are most effective only
for slow and less dynamic situations like J-turn maneuver, and the extra cost for the sensing
is an issue. In this paper, an indirect rollover estimation method is suggested. The suggested
method predicts the propensity of vehicle rollover by monitoring the lateral kinetic energy and
the lateral acceleration of a vehicle. The lateral kinetic energy is calculated through the vehicle
longitudinal velocity and the vehicle side slip angle, which is estimated using yaw stability
control sensors and vehicle dynamic model. This method predicts the rollover propensity fairly
accurately without a roll angle or a roll rate sensor. It is also a very effective way to estimate
the rollover propensity with enough lead time. Considering the slow brake response time of
the light trucks and the very dynamic nature of a fishhook type maneuver, the control effort
needs to be initiated very early with enough lead time when the vehicle roll angle and/or
roll rate is not significant. Frequently, this type of maneuver leads to the most severe rollover
accident. However, the developed rollover avoidance controller can prevent the fatal rollover
in a very cost efficient way.

Figure 1 shows the roll dynamic response of a typical mid-size SUV for fishhook type
steering input. The rollover prevention control is not active and the vehicle speed is 100 km h−1.
When the roll angle reaches 90◦, the vehicle is declared to be rolled over. However, for the
roll angle of as little as 10–15◦, the inside wheels are lifted from the ground, and the brake
control to prevent the rollover becomes useless. The transition time from 0◦ roll angle to 10◦
degrees is less than one-half second, while the combined delay and lag of the brake actuator is
more than that. One-half second prior to the point of the wheel lift, both the roll angle and the
roll dynamic energy are very small, and the vehicle shows no sign of rollover. Therefore, it is

Figure 1. Roll dynamic response without control.
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326 S. B. Choi

necessary to monitor the vehicle response beyond the roll angle or roll rate to prevent rollover
for driving situations with a very dynamic steering input.

2. Rollover estimation algorithm

There have been several efforts to predict vehicle rollover using the vehicle roll energy and
the tipover potential energy [11]. These efforts are effective to monitor the process of vehicle
rollover, but tend to be too slow to actively prevent the rollover, especially for high C.G.
vehicles with slow brake actuators. In this section, rollover index (ROI) is defined from the
vehicle lateral kinetic energy and the virtual gravity. ROI represents the rollover propensity
of the vehicle. Figure 2 shows the diagram of the front view of a vehicle sprung mass where
y and z axes are fixed to the sprung mass C.G. and rotate with the mass. aym is the lateral
acceleration measured by the accelerometer attached to the vehicle sprung mass. The measured
acceleration is partly from the vehicle acceleration and partly from gravity. ϕ is the absolute
roll angle of the vehicle sprung mass with respect to the earth coordinates due to the lateral
acceleration and/or the super elevation angle of the road surface.

If the artificial angle σ is defined by the tangent ratio of aym and g cos(ϕ) as follows:

tan σ ≡ aym

g cos ϕ
(1)

then, figure 2 can be reconfigured as figure 3.
In the reconfigured coordinates, z′ axis is defined as parallel to the direction of the net force

on the vehicle sprung mass. Defining the net acceleration g cos(ϕ)/cos(σ ) on the vehicle
mass as virtual gravity, the problem can be equated to a mass on a σ degree hill with a gravity
constant of g cos(ϕ)/cos(σ ).

Figure 2. Diagram of vehicle coordinates.

Figure 3. Diagram of a vehicle in virtual gravity coordinates.
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Practical vehicle rollover avoidance control 327

In figure 2, the current height of C.G. is d sin(σ ) + h cos(σ ), and the critical height of
C.G., where the vehicle is at the verge of rollover, is

√
d2 + h2. Therefore, defining the height

change of C.G. required for rollover as �h:

�h =
√

d2 + h2 − (d sin σ + h cos σ)

=
√

d2 + h2 − daym + hg cos ϕ√
g2 cos2 ϕ + a2

ym

(2)

The minimum amount of potential energy – normalized with the vehicle mass – required for
the rollover is defined as (g cos ϕ/cos σ)∗�h using the concept of virtual gravity constant.
Since the lateral kinetic energy of a vehicle can be converted to potential energy very quickly
through the roll motion, a vehicle has the potential to rollover as long as the lateral energy is
larger or equal to the minimum required potential energy, i.e.:

1

2
V 2

y >
g cos ϕ

cos σ
�h =

√
g2 cos2 ϕ + a2

ym�h

=
√

g2 cos2 ϕ + a2
ym

√
d2 + h2 − (daym + hg cos ϕ) (3)

The lateral velocity Vy can be calculated from longitudinal velocity Vx and vehicle side slip
angle β as:

Vy = Vxβ (4)

Vx is calculated from the measured wheel speeds. Usually, β can not be measured directly using
a sensor at a commercially reasonable cost. However, several methods have been developed
to estimate β from the measured yaw rate, lateral acceleration, steering wheel angle and
vehicle dynamic model like the bicycle model [12–16]. The accuracy of the estimation can be
further enhanced with the additional multi-axis G sensor information [17]. There exist other
approaches to estimate β from the indirect measurement of the tire forces [18]. Further detail of
the β estimation algorithm is beyond the scope of this paper. In general, the current production
ESP algorithms have some problems in providing accurate estimation of the side slip angle,
especially during the long-term maneuvers with excessive side slip or on a severe bank.
However, the estimation is known to be quite accurate during the quick dynamic maneuvers
especially on a flat surface. Since the application of the rollover prevention control is limited
only to the cases of very quick and dynamic fishhook type maneuvers completed in a short
time period, the estimation from the production ESP algorithm is acceptable for the purpose
of the rollover control.

Motivated by the above inequality condition, a rollover potentiality index �0 is defined as
follows:

�0 = 1

2
|Vxβ|2 −

√
g2 + a2

ym

√
d2 + h2 + daym + hg (5)

While defining �0 from the above inequality condition, cos ϕ is neglected. Rollover detection
algorithm is required to detect rollover before the roll angle becomes excessive. Even when
the angle ϕ is as large as 25◦, cos ϕ is 0.9, and the effect of neglecting cos ϕ on defining �0

is less than 0.4% of �0 itself. Since this error is much less than the other uncertainties of the
vehicle parameters and the estimated vehicle side slip angle, it can be claimed that the effect
of the roll angle ϕ on defining �0 is negligible. Practically, it is required to detect the rollover
when the roll angle is far less than 8◦ or so.

Positive �0 means that the vehicle has the potential to rollover, and the possibility of rollover
increases with �0. Large �0 alone does not mean the vehicle will rollover. The large kinetic
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328 S. B. Choi

energy needs to be converted to roll dynamic energy. It usually happens when a vehicle hits
a high μ surface or a bump after a large side slip typically on a low μ surface. If the vehicle
hits a high μ surface, the lateral acceleration of the vehicle increases very quickly. In this
paper, it is determined after the analysis of the simulation results that the measured lateral
acceleration needs to be more than 80% of statically critical lateral acceleration for rollover
to happen. However, this 80% acceleration threshold (ATh) needs to be tuned for different
vehicles with different vehicle parameters and suspension characteristics. Statically, critical
lateral acceleration is defined as the acceleration to make a vehicle to rollover statically on a
flat surface and described as (d/h) ∗ g.

Of �0 and measured lateral acceleration, ROI is defined as follows:

� = �0 ×
(

|aym| − d

h
g × ATh > 0

)
(6)

The ROI is rollover potentiality index switched on or off determined by the magnitude of the
measured acceleration. If the absolute value of the measured lateral acceleration is less then the
statically critical acceleration weighted by the threshold ATh, the index is zero. The threshold
of the index itself to trigger roll stability control is yet to be fine tuned by field tests, considering
the uncertainties of the vehicle parameters and the estimated vehicle side slip angle as well
as the vehicle suspension dynamics. It should be noted that the defined ROI is the extension and
the generalization of the statically critical lateral acceleration to initiate the vehicle rollover.
Assuming that a vehicle is simplified as a rectangular box and the road surface friction is large
enough, then the statically critical lateral acceleration is equal to g ∗ (d/h). Equation (5) shows
that the index is equal to zero when the side slip angle is zero and the lateral acceleration is
g ∗ (d/h). Under the existence of the side slip angle, the index becomes equal to zero for the
lateral acceleration that is less than the statically critical one.

3. Vehicle parameter estimation

In the previous section, ROI is defined just as a function of the lateral kinetic energy and
the potential energy. That definition is fine for most of the dynamic rollover cases. However,
there is an advantage of considering the roll kinetic energy for the slow rollover cases. It is
also helpful to update the C.G. height information dynamically [19, 20]. In this section, the
vehicle roll angle and the C.G. height are estimated from the measured roll rate and the vehicle
dynamic model. The estimated C.G. height information can be used to enhance the accuracy
of ROI.

The simplified linear second order roll dynamics of a vehicle is described as follows:

Ix θ̈ = Maymh − ktθ − ct θ̇ (7)

where the bouncing motion of the sprung mass is neglected. Also, this simplified dynamic
model is valid only to the point where the inside wheels are lifted from the ground. The static
balance of the forces, and therefore the gravity force, is excluded from the above equation.
Motivated by the roll dynamics equation (7), a roll dynamics observer is defined using the
measured roll rate θ̇ and the estimated C.G. height ĥ as follows:

Ix
¨̂
θ = Maymĥ − kt θ̂ − ct

˙̂
θ + k0(θ̇ − ˙̂

θ) (8)
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Practical vehicle rollover avoidance control 329

Defining the estimation errors of the roll angle and the C.G. height as follows:

θ̃ ≡ θ − θ̂ (9)

h̃ ≡ h − ĥ (10)

and, subtracting equation (8) from equation (7), the error dynamics of the observer is described
as follows:

Ix
¨̃
θ = Maymh̃ − kt θ̃ − ct

˙̃
θ − k0

˙̃
θ (11)

or, equivalently as:

Ix
¨̃
θ + (ct + k0)

˙̃
θ + kt θ̃ = Maymh̃ (12)

The stability of the roll dynamics observer is evaluated through Lyapunov stability analysis.
Also the C.G. height adaptation algorithm is derived through the same analysis. Let a positive
definite scalar function V be defined as follows:

V ≡ 1

2
(
˙̃
θ + λθ̃)2 + 1

2

1

ka

h̃2 > 0 (13)

where λ is a constant that is yet to be determined.
Differentiating equation (13) and combining it with the differentiation of equation (10):

V̇ = (
˙̃
θ + λθ̃)(

¨̃
θ + λ

˙̃
θ) − 1

ka

h̃
˙̂
h (14)

Combining equations (11) and (14):

V̇ = (
˙̃
θ + λθ̃)

(
−ct + k0 − Ixλ

Ix

˙̃
θ − kt

Ix

θ̃

)
+

[
M

Ix

(
˙̃
θ + λθ̃)aym − 1

ka

˙̂
h

]
h̃

= −ct + k0 − Ixλ

Ix

(
˙̃
θ + λθ̃)

(
˙̃
θ + kt

ct + k0 − Ixλ
θ̃

)
+

[
M

Ix

(
˙̃
θ + λθ̃)aym − 1

ka

˙̂
h

]
h̃ (15)

Define λ such that:

λ = kt

ct + k0 − Ixλ
(16)

i.e.

λ = ct + k0 ± √
(ct + k0)2 − 4Ixkt

2Ix

(17)

then,

V̇ = −ct + k0 − Ixλ

Ix
(
˙̃
θ + λθ̃)2 +

[
M

Ix

(
˙̃
θ + λθ̃)aym − 1

ka

˙̂
h

]
h̃ (18)

Now update ĥ such that:

˙̂
h = kaM

Ix

(
˙̃
θ + λθ̃)aym (19)

then, equation (18) can be written as follows:

V̇ = −ct + k0 − Ixλ

Ix

(
˙̃
θ + λθ̃)2 (20)

Equation (20) shows that, V̇ is negative semi-definite for the positive constant observer gain
k0 greater than (Ixλ − ct ). Therefore, the error of the roll angle estimation converges to zero
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330 S. B. Choi

Figure 4. Roll dynamics observer with parameter estimation.

under the condition of the persistent actuation. Also, the error dynamics equation (12) shows
that the C.G. height estimation error converges to zero too.

The developed roll dynamics observer is implemented on Simulink and simulated with
the model of a mid-size SUV from GM. For the vehicle simulation, CarSim commercial
vehicle simulation software is used. The software allows the link to Simulink that provides the
observer output. The used vehicle model parameters and the observer gains are: Ix = 1,195 kg-
m2, M = 2333 kg, h = 0.762 m, kt = 143,000 N-m rad−1, ct = 14,800 N-m ∗ (rad sec−1)−1,
ko = 11,345, and ka = 0.01.

Figure 4 shows the simulation result of the closed loop observer for a fishhook type steering
maneuver. The driver throttle and brake inputs are set to zero, and the roll avoidance control is
active. The vehicle has 100 kg of load at the roof top. The load increases the C.G. height of the
gross vehicle by around 10%, and the height observer is tracking the increased height fairly
well. Correspondingly, the observed roll angle is converging to the true value. At the extreme
roll angles, the observer shows some tracking error. That is mostly due to the non-linearity
of the vehicle suspension system. The transient response of the observer during the extreme
events can be improved by refining the vehicle suspension model or simply by increasing
the observer gain – it depends upon the accuracy of the roll rate sensor. Since the purpose of
implementing the roll dynamics observer is in activating the rollover avoidance control far
before the roll angle reaches the critical rollover point, the accuracy of the observer beyond
5–7◦ roll angle might be meaningless.

4. Lead compensation of measured signals

As mentioned previously, the brake response of the light truck is slow while the roll dynamics
is very fast due to the nature of the high C.G. vehicles. The signals used to define ROI – lateral
acceleration and vehicle side slip angle – need to be lead compensated to cancel the lag effect
of the brake actuation. As figure 5 shows, the steering wheel angle signal precedes all the other
vehicle dynamic signals significantly and is also very clean. Therefore, it makes sense to have
the measured signals lead compensated using the steering wheel angle signal and the vehicle
lateral dynamic model.

The bicycle model of a vehicle is widely used to express the lateral dynamics of a vehicle as
a function of steering wheel input [21]. This model assumes that the left and the right wheels
are put at the same central locations along the vehicle centre line (x-axis). At the steady state,
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Practical vehicle rollover avoidance control 331

the bicycle model can be further simplified as follows:

ay = V 2
x

(a + b)[1 + (Vx/Vch)2]
(

SWA

SGR

)
(21)

When an under steered vehicle makes a circle of fixed radius and increases the speed from the
stop, the steering wheel angle has to be increased with the speed. The speed when the steering
angle is doubled is defined by Bosch as the characteristic speed, Vch. The measured lateral
acceleration is lead compensated using the acceleration calculated in equation (21) as the
reference. The compensated lateral acceleration is upper limited by the acceleration given in
equation (21) and again by the estimated load surface friction coefficient multiplied by g.Also,
the measured signal is lower limited such that the compensated lateral acceleration always has
the same sign as the steering input signal. Finally, the lead compensator is implemented with
a first-order low pass filter to reject some high frequency noise. Figure 5 shows the example
of the lead compensated lateral acceleration along with the measured lateral acceleration and
the steering input. The initial vehicle speed is 100 km h−1. The compensated signal leads the
measured signal significantly and also rejects some parasitic high frequency oscillation.

The side slip angle information from the ESP algorithm is lead compensated in the similar
way that the lateral acceleration is compensated using the preceding steering angle input
signal. Unfortunately for the side slip angle, the steady state information derived from the
bicycle model can be inaccurate due to the drifting of the signal. Knowing that more leading
of the side slip angle is necessary for the higher vehicle speed and also for the more dynamic
maneuver represented by the higher steering angle rate, the lead compensator is designed such
that the lead term is proportional to the multiple of vehicle speed and steering rate. Then,
the amplitude of the compensated signal is upper limited such that the magnitude does not
exceed the maximum slip angle produced during the previous period of the maneuver. Finally,
the compensated side slip angle is high pass filtered to eliminate the potential drifting of the
angle. The drifting side slip angle can result in too much brake intervention for too long time
period beyond the point of the rollover prevention. Figure 6 shows the example of the lead
compensated side slip angle along with the estimated vehicle side slip angle from the ESP
algorithm and the steering input. The initial vehicle speed is 100 km h−1. The compensated
signal precedes the raw input signal significantly.

Figure 5. Example of lead compensated lateral acceleration.
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Figure 6. Example of lead compensated side slip angle.

5. Brake actuator sub-loop controller

The amount of the target wheel slip is defined to be proportional to the calculated ROI. The good
performance of the actuator is important for the success of the wheel slip control, especially
when the wheel slip target is at the deep unstable region of the μ-slip curve. In that region,
the partial derivative of the tire-to-surface friction coefficient with respect to the wheel slip
is negative. Therefore, it is very critical to remove the actuation delay to achieve a good slip
control. In addition to the purpose of the good wheel slip control, it is equally important to
remove any extra closed loop delay from the rollover prevention point of view. As mentioned
before, vehicle rollover is a very dynamic process. Therefore, any slight delay of the actuation
causes a huge increment of the control input that is not recommended for noise, vibration
and harshness point of view. Unfortunately, the rollover avoidance controller has no choice
but to use the existing actuator designed and optimized for the ESP – usually not fast enough
for the purpose of the rollover avoidance control. Also, the production brake actuator used in
this study suffers the poor resolution problem especially at a high pressure. The resolution is
as large as 20 bars at 100 bar region especially for the dump cycle. Unfortunately, rollover
avoidance control is operated at that pressure region most of the time. For the variation of

Figure 7. Original brake actuation without pressure control compensation.
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Figure 8. Brake actuation with proportional pressure control compensation.

the control command less than the resolution, the actuator does not respond, and that causes
significant actuation delay as can be seen in figure 7.

The problem is fixed by implementing a simple proportional sub-loop controller described
below:

Pcmd2 = Pcmd1 + Pgain ∗ (Pcmd1 − Pestm) (22)

Where, Pcmd1 is the input of the sub-loop controller, Pcmd2 the output, Pgain the proportional
gain and Pestm the estimated wheel pressure. The gain is set to be asymmetrical and the value
is much larger for the negative error, considering the fact that dumping delay deteriorates the
tracking performance of the unstable control system significantly. The effect of the sub-loop
control is limited to [−20, +20] bars since the worst case resolution is 20 bars. The following
figure 8 shows the response of the pressure tracking after the actuator control is sub-loop
compensated. The poor resolution problem remains, but the delay problem associated with it
is resolved.

6. Control architecture

The architecture of the rollover prevention control system is as shown in figure 9. The ESP
algorithm block reads steering wheel angle, yaw rate and lateral acceleration as well as wheel
speeds and calculates vehicle side slip angle and longitudinal speed. The calculated side slip
angle and the measured vehicle lateral acceleration are lead compensated in lead compensation
block. Roll stability control block reads the lead compensated lateral acceleration and the side
slip angle and calculated ROI. The accuracy of the calculated ROI can be enhanced with the
adaptively observed C.G. height and the estimated roll angle information. They are the output
of the optional roll angle observer block. The observer block needs the roll rate information
of the vehicle in addition to ESP sensor signals. For the wheel control, pressure and wheel
slip commands are defined. The commands are simply proportional to the calculated ROI.
The commands are applied to the front outside wheel. The side is determined by the sign of
the steering wheel angle. Similar pressure and wheel slip commands are also calculated from
the ESP algorithm block. The duplicating wheel commands are arbitrated by the arbitrator
algorithm block. Usually, the maximum of the commands – both for the pressure and the slip –
are taken as the output of the arbitrator block. The wheel slip controller block reads the wheel
pressure command and the wheel slip command. From the wheel slip command and the wheel
slip tracking error, the wheel control pressure is calculated. The calculated control pressure is
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Figure 9. Diagram of control system architecture.

upper limited by the pressure command output from the arbitrator block. Finally, the pressure
command from the slip controller block is compensated by the brake sub-loop controller block
and sent to the brake actuator.

7. Test results

The performance of the developed rollover avoidance control algorithm is evaluated using a
GM mid-size SUV. The ROI is defined without the roll rate sensor, i.e. without the roll kinetic
energy. The vehicle is loaded with 100 kg of mass at the roof top. The forward velocity of the
vehicle is just above 100 km h−1. The test environment is a flat high μ surface.

Figure 10 shows the response of a fishhook type maneuver with very fast steering action
from one side to other. The switching point of the steering wheel is determined to maximize
the instability of the vehicle roll dynamics. During the first half of the steering maneuver
(0–0.5 s), the rollover avoidance control is not activated. During the second half, both the
rollover controller and ESP command the wheel brake controls. It should be noted that the
rollover controller controls only the front wheels. The control commands are in similar shapes.
However, the rollover control command precedes the ESP command by a few hundred mil-
liseconds. During the rollover control, there is a deep slip of the controlled wheel speed, but
the speed control is smooth and stable. The roll angle is not measured, but the roll dynamics is
observed to be very smooth. Therefore, the measured lateral acceleration signal also remains
very smooth. While preventing the rollover, it is equally important to prevent the over correc-
tion and to keep the vehicle still maneuverable. During the rollover control, the vehicle yaw
rate is reduced significantly. However, the yaw rate keeps the same sign as the steering input
and the vehicle stays maneuverable, e.g. the steering wheel is turned to the right-hand side,
and the vehicle turns to the same side.

The significantly lead compensated rollover avoidance controller can suffer from the false
brake actuation. However, any noticeable false activation of the brake pressure control is just
not allowed. The developed rollover control algorithm needs to be evaluated thoroughly for
the full spectrum of the vehicle tests representing the real life driving conditions. At one end
of the spectrum is the fishhook type maneuver. It represents double lane change or obstacle
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Figure 10. Fishhook type maneuver with fast steering action.

Figure 11. Half fishhook maneuver with fast steering action.

avoidance maneuver. Since it is the most severe dynamic maneuver with the most severe
brake intervention, the sudden termination of the maneuver in the middle of it can cause the
most severe false activation problem. To evaluate the severity and the frequency of the false
activation, the half fishhook type maneuver is suggested. Figure 11 shows the typical steering
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input during the half fishhook maneuver along with other measured signals and the control
inputs. During the first half of the maneuver (0–0.8 s), ESP is activated lightly. While ESP is
activated, the rollover control is activated very briefly. However, the rollover control command
overlapping with the ESP wheel command is not large enough to be noticed by the driver.
During the missing (zero steering angle) second half of the maneuver (after 0.9 s), the rollover
control is not activated falsely at all.

8. Conclusions

A new concept of ROI has been developed from the lateral kinetic energy of a vehicle using
only ESP sensor signals. Also, the rollover control algorithm has been developed to work with
the existing production brake actuator that is somewhat slow for the purpose of the rollover
control. The simulation results in several driving conditions show that the developed ROI
represents the rollover propensitiy fairly accurately with enough lead time.

An adaptive observer has been designed to observe the roll angle and to update the vehicle
C.G. height information. The stability and the performance of the developed adaptive observer
have been proven by Lyapunov analysis and evaluated by computer simulation. The defined
ROI can be further enhanced by including the calculated roll energy and updating the C.G.
height information in real time adaptively.

The ESP signal lead compensators have been designed to cancel the lag effect of the brake
actuation. The compensators lead the raw signals significantly without any side effects. A sim-
ple but very efficient brake sub-loop controller has been designed to further cancel the brake
actuation lag effect.

The new concept of the rollover avoidance control has been implemented on a test vehicle.
The test results show that the rollover prevention control is very robust for the fishhook type
maneuvers with 100 kg of load on the roof top up to the speed of 110 km h−1 and beyond. Any
noticeable false activation of the brake has not been observed. The controlled wheel pressure
and the slip are very smooth, and therefore the ride quality is not harsh during the controls.
Also, the vehicle stays maneuverable during the control.
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