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Direct Adaptive Longitudinal Control of Vehicle
Platoons

Darbha Swaroop, Associate Member, IEEE, J. Karl Hedrick, and S. B. Choi

Abstract—An important aspect of an automated highway system
design is the synthesis of an automatic vehicle following system. As-
sociated with automatic vehicle following systems is the problem of
the stability of a string of vehicles, i.e., the problem of spacing error
propagation, and in some cases, amplification upstream from one
vehicle to another, due to some disturbance at the head of the string.
Realistic vehicle following designs must also address parametric
uncertainties such as mass of the vehicle, aerodynamic drag, and
tire drag. The mass of the vehicle varies with the number of passen-
gers. At small intervehicular separations, aerodynamic drag force
changes significantly with the distance to be maintained. In this
paper, we address the problem of stability of a vehicle string in the
presence of parametric uncertainty and present a Lyapunov-based
decentralized adaptive control algorithm to compensate for such
parametric variations. We examine this direct adaptive control al-
gorithm for platoon performance and parameter convergence. We
present the simulation results to demonstrate the effectiveness of
the adaptive controller.

Index Terms—Advanced cruise-control systems, decentralized
adaptive control, direct adaptive control, intelligent vehicle
highway system (IVHS), longitudinal control.

I. INTRODUCTION

I N AUTOMATIC vehicle following systems, vehicles are dy-
namically coupled by feedback control laws. The stability

of the string of automated vehicles depends on the information
available for feedback and on how such information is processed
in the synthesis of a vehicle following controller. The problem
of investigating the stability of a vehicle string (also called pla-
toon) under automatic control has attracted significant research
in the last three decades. For a good overview of the efforts in
the area of automatic vehicle following, the reader is referred to
[16], [2], and [15]. For a good overview of the analysis of string
stability, the reader is referred to [1], [5], [3], [9], [7], and [17].

The design of an automatic vehicle following controller con-
sists of a specification of the desired following distance as a
function of the speed and the design of a control system that
regulates the speed of the vehicle in accordance with the given
spacing policy. The specification of the desired spacing as a
function of the speed of the vehicle is referred to as the spec-
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ification of a spacing policy for an automatic vehicle following
system. A spacing policy employed by a controlled vehicle is
called a constant spacing policy if the desired following dis-
tance is independent of its speed. A spacing policy is a variable
spacing policy if it is not a constant spacing policy.

The tracking requirement with a variable spacing policy
is not stringent. For this reason, the stability of a string of
controlled vehicles employing a variable spacing policy can
be guaranteed without any intervehicular communication.
Variable spacing policies, though not addressed in this paper,
are employed in adaptive cruise-control schemes. The reader is
referred to [5], [7], [17] for the synthesis of control laws based
on variable spacing policies. The reader is referred to [8] for an
adaptive vehicle following control scheme based on a variable
spacing policy.

The tracking requirement in a constant spacing policy is strin-
gent. The string stability of such a platoon of vehicles can be
guaranteed if information of a reference vehicle is fed back in
the vehicle following control law [4], [16], [9].

This paper is concerned with the design of an adaptive con-
troller when a constant spacing policy is employed by an auto-
mated vehicle. With a constant spacing policy, the desired fol-
lowing distance of every vehicle in the platoon is constant and
is independent of the speed of the vehicle.

In [10], an indirect decentralized adaptive control algorithm is
designed for a platoon of vehicles employing a constant spacing
policy. In this paper, we present a direct, decentralized adaptive
control algorithm, which satisfies the same performance objec-
tives. The advantage of such a direct scheme is the ease of its
on-line implementation.

The reader is referred to [12], [14], and [11] for an introduc-
tion to the adaptive control of nonlinear systems. The reader is
referred to [13] for the input–output properties of linear feed-
back systems.

This paper is organized as follows: In Section II, we inves-
tigate the effect of parametric uncertainty on the platoon per-
formance. In Section III, we present the adaptive control algo-
rithm. In Section IV, we examine the platoon performance with
the adaptive longitudinal controller and discuss heuristically the
conditions for parameter convergence. In Section V, we discuss
the simulation results. In Section IV, we present our conclusions
and suggest directions for further research.

II. EFFECT OFPARAMETRIC UNCERTAINTY ON THE PLATOON

PERFORMANCE

In Fig. 1, a string of automated vehicles is shown. Vehicle 0
is the lead vehicle in the string, and vehicleis its th following
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Fig. 1. Spacing errors in a platoon.

vehicle. The position, velocity, and acceleration of theth fol-
lowing vehicle are, respectively, . The corresponding
quantities for the lead vehicle are , respectively.

In the above figure, is the desired intervehicular distance
of the th following vehicle and is the deviation in the inter-
vehicular distance from its desired value.is referred to as the
spacing error of theth vehicle and is given by

The following model of the longitudinal dynamics of a
member vehicle in the platoon is used for designing the control
algorithm:

(1)

where are the position, control effort, effec-
tive aerodynamic drag coefficient, rolling resistance friction,
and effective inertia of theth following vehicle, respectively.

Any vehicle following controller must be designed to satisfy
the following performance objectives.

1) Individual Vehicle Stability:Individual vehicle stability
is the ability of any member vehicle in the platoon to track any
bounded acceleration and velocity profile of its predecessor with
bounded spacing and velocity errors.

2) String Stability: It is desired that the errors in spacing
and velocity must not amplify upstream from one vehicle to an-
other. In the presence of parametric uncertainty in each vehicle,
this objective is relaxed here. We will require that the errors in
spacing and velocity be bounded in time, and uniformly in ve-
hicle index. More precisely, we adopt the following definitions
in our analysis.

Definition II.1 (String Stability): A platoon [whose member
vehicles are governed by (1)] is string stable if, given any ,

such that

Definition II.2 (Uniform Boundedness of Errors):The
spacing errors of member vehicles in a platoon are uniformly
bounded if, for some , such that

3) Zero Steady-State Spacing Errors:Finally, we require
that as . This helps to maintain a
reliable traffic capacity.

From the definitions, it is clear that any platoon consisting of a
finite number of member vehicles will be string stable if the (in-
dividual) stability of the member vehicles is guaranteed. For de-
signing controllers for member vehicles, it is assumed that every
platoon has infinite member vehicles. This assumption can be
made without any loss of generality because the information of
vehicles ahead is only used in the synthesis of automatic vehicle
following control algorithms. Such an assumption makes it con-
venient to study the asymptotic properties of the propagation of
errors in a vehicle platoon.

In the presence of parametric uncertainty, the requirement of
string stability is very stringent. In the presence of parametric
uncertainty, there is no guarantee that the errors in spacing and
velocity are bounded. Even if the errors in spacing and velocity
are bounded, the bound is dependent on the initial spacing and
velocity errors and the initial parameter estimation errors. As a
result, given any , one can determine a set of initial estimates
of the parameter, such that the string stability definition is not
satisfied.

From a practical standpoint, uniform boundedness of spacing
errors is a reasonable performance objective. Hence, we adopt
this criterion in the design of adaptive longitudinal controller.

A. Effect of Uncertainty in Mass of the Vehicle

Define an auxillary error, , given in [6], as

Here, and are control parameters and will be chosen
later. The subscript refers to the corresponding quantities for
the lead vehicle in the string.

The control effort is chosen to make and
is given by

(2)

(3)

For individual vehicle stability, it is sufficient that
. In the presence of uncertainty in the mass
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Fig. 2. Effect of uncertainty in mass on the platoon performance.

f the vehicle

so that

In the above equations, is the estimate of the mass of the
vehicle.

Let denote the transfer function that relates the spacing
error in the first following vehicle to the acceleration of the lead
vehicle. Let denote the transfer function that relates the
spacing error of any vehicle to the spacing error of its immediate

predecessor. Then

where .
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Fig. 3. Effect of uncertainty in rolling resistance and mass on the platoon performance.

Fig. 4. Effect of uncertainty in all parameters on the platoon performance.

Proposition II.1: Given and that
, , , there exist two constants

, such that , , and,
consequently, .

The intuition is that the impulse response is a continuous
function of . If for , then in some
neighborhood of . Therefore, does not change for
small perturbations in around unity. The poles of should
be simple so that . We can also guarantee
that asymptotically whenever the lead vehicle reaches a
steady velocity after a maneuver in finite time.

Claim: Suppose . The impulse response of
is positive iff , ,

and .

Proof: Unless , the impulse response will
be oscillatory and will change sign an infinite number of times.
Write

An application of the initial value theorem indicates that unless
, the impulse response is negative in the vicinity of

. Finally, the impulse response of
is positive iff the impulse response of

is positive. Unless , the impulse response
always changes sign. The proof of the claim follows from this
observation.
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Fig. 5. Platoon performance with adaptation.

If are continuous functions of, define
, , .

Clearly, are continuous functions and is well
defined if . Suppose
and . Then, from the continuity of the functions, there
exist two constants such that and

, . The result of the
proposition, then, follows immediately from this observation.

Proposition II.2: If the conditions in Proposition II.1 hold,
the decentralized control law given by (2) ensures the uniform
boundedness of spacing errors of member vehicles in the pla-
toon.

Proof: Let

Let be the minimum and maximum absolute values of
the roots of . Let

Define

Therefore

It now follows that

Since are linear functions of and , uniform
boundedness of spacing errors can be guaranteed.

The error in the first following vehicle is governed by .
Because of a mismatch in the estimation of parameters, the max-
imum error in the first vehicle is dependent on the magnitude
and frequency content of the lead vehicle maneuver. Therefore,
string stability cannot be assured.

indicate the degree of robustness in string stability to
variations in mass. If ,

. With this choice of control gains, we have
robustness in string stability to a 10% variation in mass. The
proof of uniform boundedness relies on the fact that ,
i.e., the availability of the relative position of the lead vehicle to
every controlled vehicle.

B. Effect of Uncertainty in Rolling Resistance and Mass of
the Vehicle

With uncertainty in mass of the vehicle and rolling resistance
moment, the control effort is given by

Hence, for

(4)

where
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Fig. 6. Behavior of aerodynamic drag coefficient during adaptation.

For

(5)

Proposition II.3: If:

1) the conditions in Proposition II.1 hold;
2) , , are bounded;

then , is bounded. (That is,
the spacing errors are uniformly bounded in time and vehicle
index.)

Proof: From (4) and (5) and from the definition of
, it follows that

where are the minimum and maximum absolute values
of the roots of . For all

where is the constant associated with the initial conditions.
Hence, is bounded.

Although the spacing errors are uniformly bounded in the
presence of uncertainty in the rolling resistance moment, steady-
state spacing errors are nonzero. One way to avoid the problem
of steady-state errors is to incorporate integral action in the
definition of auxillary error given by the first equation in Sec-
tion II-A.

If there is any mismatch in the aerodynamic drag coefficient,
individual vehicle stability cannot be guaranteed in the large and
hence uniform boundedness of spacing errors or string stability
cannot be assured. Here, we resort to parameter adaptation to
improve the robustness of the control algorithm.

III. D IRECT ADAPTIVE CONTROL ALGORITHM

We assume that the lead vehicle performs a bounded velocity,
acceleration, and jerk maneuver. In the presence of parametric
uncertainty, the control effort is given by

(6)

Hence

(7)

Define a Lyapunov function candidate

(8)

Choose the adaptation laws as follows:

(9)

(10)

(11)
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Fig. 7. Behavior of mass and rolling resistance parameters during adaptation.

The reader is referred to [12], [14], and [11] for gradient and
other adaptive laws.

IV. A NALYSIS FOR UNIFORM BOUNDEDNESS OFSPACING

ERRORS ANDPARAMETER CONVERGENCE

With the choice of adaptation laws and control in the previous
section, we obtain

(12)

(13)

From (8) and (12), it follows that ;
.

A. Uniform Boundedness of Spacing Errors

Proposition IV.1: If:

1) , , , ,
, ,

exist;
2) ;

then the control law given by (6) together with the adaptation
laws given by (9)–(11) ensure that:

1) , is bounded;
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Fig. 8. Simplified vehicle model: performance of the platoon without adaptation.

2) , , ,

is bounded;
3) as ;
4) if, in addition, L , then as .

Proof: In the following proof, if .

1) By hypothesis, exists. Since is
decreasing, . There-
fore, , , , ,
where is a real and positive constant.

2) and
hence, exists. Since

(14)

it follows that

Hence, is bounded. Rewriting (14)

Hence, is bounded.
3) If , , , and

are sufficiently small so that for some
, , then are uniformly

bounded in time and vehicle index

where

Since , , exists,
it follows that
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Fig. 9. Simplified vehicle model: performance of the platoon with adaptation and behavior of inertia parameter.

and hence , exists

By hypothesis, . Since all
the other terms on the right-hand side are uniformly
bounded, it follows that is bounded uniformly in
time and vehicle index. From (13), is also bounded
uniformly in time and vehicle index. From (7), it fol-
lows that is bounded. Hence, by
Barbalat’s lemma, asymptotically for all .

4) asymptotically.
Proof: For

Since as as . Therefore,
as . Assume

as . Then

Therefore, asymptotically. Consequently,
asymptotically.

5) is uniformly continuous if are
bounded and continuous.

From (3) and (13), we have

(15)

(16)

From the above equations
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Fig. 10. Simplified vehicle model: behavior of aerodrag and tire drag coefficients during adaptation.

Since , and all the terms on the
right-hand side of the above equation are uniformly bounded, it
follows that and, hence, are uniformly bounded. Since

it follows that is uniformly bounded. Since and the
right-hand side of (7) is continuous, it follows that is con-
tinuous, and hence, is uniformly continuous. Since

and is uniformly continuous, it follows, by Barbalat’s
lemma, that asymptotically. Therefore, from the
definition of , asymptotically.

B. Convergence of Parameters

A heuristic argument is provided for the convergence of pa-
rameters in this section. Since asymptotically,

asymptotically. For the convergence
of parameters, the persistence of excitation condition must be
satisfied. Let . Then, there must exist three
positive constants such that

Since asymptotically, . If
, where , choosing ,

we have the equation shown at the top of the next page. The
matrix below is positive definite . For this reason, we
expect that the parameter estimates converge to their true values.

V. SIMULATION RESULTS

Simulations are performed for a five-vehicle platoon. The ve-
hicle plant model in the first set of simulations, from Figs. 1–5,
considers the effects of slip between the tire and the ground, slip
across the torque converter, manifold air dynamics, and the lag
in the brake torque, all of which are neglected in developing the
controller. In all of the simulations, all of the vehicles in the pla-
toon start with zero initial position velocity errors. The lead ve-
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hicle in the platoon makes the following acceleration maneuver:

where is a positive integer. The following gains are used for
simulating the five-vehicle platoon: ,

, . The set of
gains chosen are representative of the gains chosen in the ex-
periments conducted at Berkeley. However, in the experiments,

(i.e., relative position information of the lead vehicle
in the platoon was never used). In all the figures that follow,
the number “” on the figure represents the plot for theth fol-
lowing vehicle. Fig. 2 illustrates the effect of uncertainty in
mass of the vehicle on the platoon performance., shown in
the figure, denotes the ratio of the estimated mass used in the
controller and the true mass. As expected, the peak spacing er-
rors decrease geometrically at a ratio of 2/3 with vehicle index.
The spacing errors decay to zero. Fig. 3 depicts uniform bound-
edness of spacing errors in the presence of uncertainty in the
mass and rolling resistance. The controller’s mass estimate is
20% less than the actual estimate, and the rolling resistance es-
timate is 0.0 Nm. We have nonzero steady-state spacing errors
in this case. Since all the vehicles are identical (including the
estimates), . Hence, by (4), the steady-state
spacing errors decrease with vehicle index.

Fig. 4 describes how uncertainty in aerodynamic drag coeffi-
cient affects the performance of the platoon. For this simulation,
the controller has no knowledge of the aerodynamic drag coef-
ficient and the rolling resistance moment, i.e., .
As in the previous case, the estimate of mass is 20% less than
its true value. The maximum spacing errors and the steady-state
spacing errors are higher than before due to the additional un-
certainty. Fig. 5 demonstrates the effectiveness of the adaptive
controller. It can be seen that the errors go to zero and the max-
imum spacing errors are significantly smaller compared to the
nonadaptive case. Also, the peak spacing errors decrease mono-
tonically with vehicle index. Figs. 6 and 7 show how the param-
eters behave during adaptation. Parameters do not converge, but
oscillate in the neighborhood of their true values. This is due
to the fact that the controller model neglects four states associ-
ated with torque converter, manifold air dynamics, slip between
the tire and the wheels, and lag in delivering the desired brake
torque.

The vehicle plant model considered in the latter set of sim-
ulations (from Figs. 6–10) is a simplified model described by
(1) in Section II. The corresponding plots of performance with
and without adaptation are shown in Figs. 6 and 7. The plots
depicting parameter behavior are shown in Figs. 7 and 8.

The parameters converge to their true values when the sim-
plified model is used as a vehicle plant model. These simulation
results are in concurrence with the heuristic argument.

VI. CONCLUSION

In this paper, we have investigated the effect of parametric
uncertainty on the platoon performance. In order to improve
the performance of the platoon in the presence of model un-
certainty, we developed a decentralized adaptive control algo-
rithm. It guarantees zero steady-state spacing errors and uniform
boundedness of spacing errors under some mild assumptions.
The estimated parameters do not converge to their true values
when a detailed vehicle plant model is used, even if the lead ve-
hicle trajectory is persistently exciting. This is due to the fact
that the design of the controller is based on a simplified model.
To clarify this claim, we conducted simulations with the sim-
plified model as the vehicle plant model. In this case, the pa-
rameters converge to their true values, in concurrence with the
heuristic argument, if the lead vehicle trajectory is persistently
exciting.
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