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Air-to-Fuel Ratio Control of Spark Ignition Engines
Using Gaussian Network Sliding Control

Mooncheol Won, Seibum B. Choi, and J. K. Hedrick

Abstract—This paper treats air-to-fuel ratio control of a spark
ignition engine. A direct adaptive control method using Gaussian
neural networks is developed to compensate transient fueling
dynamics and the measurement bias of mass air flow rate into
the manifold. The transient fueling compensation method is
coupled with a dynamic sliding mode control technique that
governs fueling rate when the throttle change is not rapid. The
proposed controller is simple enough for on-line computation and
is successfully implemented on an automotive engine having a
multiport fuel injection system.

Index Terms—Air-to-fuel ratio control, Gaussian neural net-
work, sliding mode control, spark ignition engine, transient fu-
eling dynamics.

I. INTRODUCTION

T HE purpose of fuel injection control is to regulate the
air-to-fuel (A/F) ratio at a desired ratio depending on

the type of engine operations. These include warming up,
constant high-speed operation, and the urban traffic mode
which is characterized by frequent tip-in and tip-out movement
of the throttle. Accurate regulation of desired A/F ratios will
achieve the desired driveability, economic fuel consumption,
and emission levels. The use of three-way catalytic converters
are very common in most cars having spark ignition engines.
The purpose of a catalytic converter is to oxidize excess levels
of the tail pipe pollutants, such as CO, HC, and NOx. Unfortu-
nately, the efficiency of the catalytic converter is high enough
only in a very narrow range around 14.64 (stoichiometry) of
the A/F ratio as shown in Fig. 1. Therefore it is essential to
maintain the A/F ratio close to the stoichiometry to reduce
the pollutants. This paper will focus on regulation of the A/F
ratio as close as possible around stoichiometry under the rapid
changes of the throttle that characterize the urban traffic mode.

The A/F ratio regulation is a difficult control problem since
the oxygen sensor at the exhaust gives almost binary informa-
tion (leanness or richness of the A/F ratio as shown in Fig. 2),
and has considerable sensing time delay [3]. There has been a
great deal of research on transient air/fuel characteristics and
its control [1], [2], [15], [15], [5], [17], and it is concluded
that three characteristic delays are responsible for unwanted
A/F ratio excursions during transient operations. These are the
time-delay of the computer control system, a transport delay
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in the intake manifold, and a physical delay of the fuel flow
which results from the finite rate of evaporation of the fuel
film on the intake manifold and port walls.

Many of the current production fuel injection controllers
utilize feedforward control based on a mass air flow sensor
located upstream of the throttle plus a proportional integral
(PI) type feedback control with look-up tables which require
a laborious process of calibration and tuning to be built
are difficult to apply since they need the output magnitude
information which is not available in the A/F ratio control.

As a solution to this problem, Cho and Hedrick proposed
a sliding mode fuel-injection control method [6], [7]. This
analytic design method is in good agreement with the binary
nature of the oxygen sensor signal. However, the method
has the problem of large amplitude chattering which is due
to the unavoidable oxygen sensor time-delay. The chattering
problem limits the magnitude of the feedback gain; however,
an appropriate amount of gain is required to guarantee the
surface attraction condition under the existence of modeling
errors. Choi and Hedrick suggested a dynamic sliding mode
control method which combines the traditional “speed-density”
and “mass-air-flow-meter” methods, and reduces the chattering
considerably [8], [9]. Numerical simulation results show the
effectiveness of the method under considerable sensor time
delay. However the controller is effective only when the
throttle change is not rapid, since the controller depends
mainly on feedback sensor information. When the throttle
angle changes abruptly, which means the air flow rate into the
cylinder changes fast, the feedback sensor with time delay can
not sense the abrupt change of the air flow rate. In this paper,
a new transient fueling compensation technique is developed
to regulate A/F ratio when the throttle changes fast [21].
The developed controller is a combination of feedforward and
feedback control that utilizes a direct adaptive sliding control
method with Gaussian neural networks [16].

The mass air flow rate into the manifold can be measured by
hot wire or film sensors, and the sensor characteristics changes
with temperature and aging. Therefore, the measurement is bi-
ased with temperature and aging. The bias in the measurement
of the mass air flow rate into the manifold is also adapted on-
line by the oxygen sensor and a Gaussian neural network. The
advantage of this method is its robustness to engine aging and
individual engine characteristics by using on-line adaptation.

This paper is organized as follows. In Section II, a fuel in-
jection model for control is presented. In Section III, the struc-
ture of the fuel injection controller is presented. Section IV ex-
plains the dynamic sliding mode control. Section V introduces
a direct adaptive control method utilizing Gaussian functions.
Section VI deals the compensation of the measurement bias of
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Fig. 1. A typical catalytic converter efficiency.

Fig. 2. A typical characteristics of a product zirconia exhaust gas oxygen
sensor.

the mass air flow rate. In Section VII, the effects of transient
fuel delivery dynamics are compensated. Sections VIII and IX
present numerical simulation and experimental results.

II. FUEL INJECTIONMODEL OFPORT FUEL INJECTIONSYSTEM

A schematic diagram of fuel injection control is shown
in Fig. 3. The control problem is to vary the fuel-spray rate

so that the A/F ratio remains close to stoichiometry even
during a rapid throttle transient.

A simplified dynamic model [6], [8] for this problem is

(1)

(2)

The first equation is the air flow dynamics through the intake
manifold. is the mass of air in the intake manifold, is
the throttle angle, is the engine speed, is the air-mass-
flow rate into the manifold, and is the air-mass-flow rate
out of the manifold which is given as a function of and

. The mass air flow rate into the manifold can be
measured by a hot-wire sensor. The mass air flow rate out
of the manifold cannot be measured. However, during
steady-state operations, is identical with . Therefore,
the steady-state map of (Fig. 4) can be obtained as a

function of engine speed and manifold pressure by steady-state
engine tests.

By denoting the steady-state air flow rate out of the man-
ifold as the true air flow rate during transient
operations can be expressed as

(3)

where is a multiplicative error fraction. For S.I. engines,
the slope of the map in the direction of ,
is always positive [9]. This characteristic is exploited in
the dynamic sliding mode controller design. Exhaust gas
recirculation (EGR) is adopted in many of gasoline engines
these days for the reduction of the NOx pollutants. In this air
flow dynamics model, exhaust gas recirculation is not included
for the simplicity of the control task. However, extension of
the control algorithm when EGR is in operation is not difficult.

The second equation is a first-order linear approximation of
fuel delivery dynamics. The equation models pure time delay

in the commanded fuel injection spray rate
is the actual spray rate into the cylinder andis the fueling
time constant. The pure time delay is caused by computation
time delay and delays in opening the intake valves. The lag
(the first-order dynamics represented by the time constant
is due to the fuel wetting/evaporation on the intake wall. In
our transient fueling compensation, the fuel delivery dynamics
model is not used. We simplify the dynamic equation as a
simple algebraic equation, i.e.,

(4)

where is the lost/added fueling rate due to the fuel
delivery dynamics and can have either positive or negative
value. A physical interpretation of is the lost fueling
rate due to wall wetting and computational time delay, etc.
The algebraic equation (4) is used in the transient fueling
compensation.

III. STRUCTURE OF DEVELOPED FUEL

INJECTION CONTROL ALGORITHM

The fuel injection controller consists of the dynamic slid-
ing controller which mainly depends on the feedback sen-
sor(oxygen sensor), and a transient fueling controller which
uses mainly feedforward information (throttle angle change
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Fig. 3. Steady-state map of mass air flow rate into cylinder( _mao).

Fig. 4. Schematic diagram of developed fuel injection controller.

and mass air flow rate into the manifold) as shown in Fig. 3.
The transient fueling is computed by a Gaussian network
which is a function of the feedforward information. The
weight in the network is corrected on-line by the oxygen
sensor output. The transient fueling compensation is necessary
because the dynamic sliding controller is effective only when
the throttle change is not rapid. For this reason the sliding
controller decides “quasisteady-state” fueling rate .
When the throttle change is rapid, there exist undesirable peaks
in the A/F ratio at both tip-in and tip-out movement of the
throttle because of the fuel delivery dynamics approximated by
(4) between the actual fueling command and the actual
fueling input rate . We denote the transient fueling rate
to compensate the unknown lost/added fueling rate as

. The total fueling command is constructed as

(5)

The key idea in the control is to add or substract some
amount of fueling expected to be lost or added due to the fuel
delivery dynamics. The transient fueling rate is obtained from
the output of the Gaussian neural network having input node
variables of the throttle change rate and the mass air flow rate.

In the dynamic sliding control, the measured mass air
flow rate into the manifold is utilized in calculating the
control effort. A Gaussian network is used to compensate the
measurement bias and the weight of the network is updated
on-line by the oxygen sensor output.

IV. DYNAMIC SLIDING MODE CONTROL

Sliding mode control methods have been developed as a
systematic way to design controllers for nonlinear plants [20],
[18]. Moreover, the binary nature of the oxygen sensor output
in fuel injection control is in good agreement with that of
sliding mode control methods. The production oxygen sensor
at the exhaust tells only the richness or leanness of the air to
fuel mixture. The sensor also has a considerable time delay

because of the output measurement delay of two engine
revolutions, the time delay due to the distance between exhaust
ports and sensor location, and the sensor time constant. The
time delay can be identified by experiments, and in our engine
it is approximated by

(6)

where is the engine speed in rad/s. This considerable
measurement time delay induces large chattering of A/F ratio
in both PI control and conventional sliding control methods
[6]. Dynamic sliding mode control [8] which reduces the
chattering considerably is used to compute the quasisteady-
state fueling rate . In this section, we assume the throttle
change is not rapid, which means the effects of fuel delivery
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dynamics are negligible. In the absence of the fuel dynamics,
we can assume the fueling command is the same as
the actual fuel spray rate into the cylinder . Therefore
designing is equivalent to designing .

The objective of the fuel injection control is to maintain the
air to fuel ratio close to 14.7 (stoichiometry ratio). Since the
initial conditions are reset to near zero after the exhaust stroke,
an equivalent objective is to keep

(7)

Computing the rate of fuel to be injected is not trivial because
the mass air flow rate into the cylinder, , can not be
measured. A sliding surface is defined as

(8)

Then the control objective is to maintain close to zero.
The binary output from the oxygen sensoris expressed as

.
The sliding surface is rewritten as

(9)

Differentiation of the sliding surface yields

If is chosen to satisfy the following equation:

(10)

the following closed-loop dynamics of the sliding surface
results:

(11)

where is a positive feedback gain. In the above derivation, (1)
has been used. Since the slope is always positive
[9], the resulting closed-loop system is much faster than that
of sliding mode control, which is given as (12)

(12)

It can be shown that the chattering magnitude of A/F ratio in
dynamic sliding mode control is only 20% of that of sliding
mode control [8].

In a quasisteady state, the control input is the same
as which is given by integrating (10), thus the term
“dynamic” controller

This control law represents a good way to combine the speed-
density method and the mass-air-flow-meter (MAFM) method.

Fig. 5. Neural-network construction of̂f(x).

This control law utilizes the measured value of the mass air
flow rate into the manifold like the MAFM method, and the
information derived from the steady-state map similar to
the one used in the speed density method.

V. DIRECT ADAPTIVE CONTROL

USING GAUSSIAN NEURAL NETWORK

In this section, a direct adaptive control method using
Gaussian network [16] is introduced which is similar to
adaptive sliding mode control. This method is used in the
compensation of fuel delivery dynamics and the measurement
bias of the mass air flow rate into the manifold.

Consider a nonlinear dynamic system in the canonical form

(13)

where is an unknown function, the input, and a
nonzero known constant. The unknown functioncan be
approximated by which is expanded by the Gaussian
functions [16]

(14)

where is the number of the sampling points in the state
space, is a positive constant [16], are constant coefficients,
and are the distances from the current stateto the fixed
sampling points (nodes) in the state space. The construction of

can be viewed as a neural network with one hidden layer
(Fig. 5). For a sufficiently smooth function , it is shown
that can uniformly approximate to a chosen degree
of accuracy using finite numbers of the Gaussian functions,
i.e.,

(15)

where the approximation error satisfying for
a given constant [16]. We define as an estimate of

(16)

where are the estimates of the true coefficients.
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A sliding surface and a Lyapunov function are chosen as

(17)

(18)

where are positive constants that makes stable,
, and is a positive constant. Differentiation of

yields

where is used. Choosing the control input
satisfying

(19)

yields

(20)

where is a feedback gain. Choosing an adaptation law for
the coefficients as

(21)

gives

(22)

Therefore guarantees since which
means the Lyapunov function is bounded and the absolute
value of the sliding surface is bounded by .

VI. M EASUREMENT BIAS COMPENSATION

IN MASS AIR FLOW RATE INTO MANIFOLD

Dynamic sliding mode control is very sensitive to the
measurement bias in the mass air flow rate into the manifold

since the closed-loop dynamics are very fast, and the
term containing acts as an exciting term in the closed-
loop dynamics. is measured by a hot wire sensor, and an
one-dimensional nonlinear table is used to relate the sensor
output voltage to the actual mass air flow rate since the
hot wire sensor characteristic is not quite linear. Also, the
characteristics of the hot wire sensor change with the ambient
temperature and time. Therefore the conversion table needs
to be changed on line to give better correlation between the
sensor output and the mass air flow rate. In this section, the
measured mass air flow rate is corrected by a one-
dimensional function. This function is adapted on-line using
a Gaussian neural network.

The corrected or estimated value of the mass air flow rate
is constructed as

(23)

Fig. 6. Neural-network mesh of mass air flow rate into cylinder.

where Here are
the distance from the current measurement to
node on a axis (see Fig. 6), is a constant, and are
the estimates of true parameters. The reason for
being used rather than is that the oxygen sensor output
is available up to at time is a value which is
calculated based on the oxygen sensor measurement up to time

. The true mass air flow rate can be expressed as

(24)

where is the approximation error of the neural network.
We choose the sliding surface and a Lyapunov function

as

(25)

(26)

where is a positive constant and . When is
not zero, differentiation of becomes

(27)

Under the control given as

(28)

(which is the same as the dynamic sliding control (10), except
for the term), becomes

(29)

The estimation error in is expressed as

(30)

where This estimation
error can also be represented by

(31)

Putting (29) into (27) yields
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where
.

Choosing the adaptation law as

(32)

yields

(33)

After time shifting by , we can express the adaptation law as

(34)

Now the adaptation law is implementable at time, and the
innovated is used to calculate in (23).
The terms in represents the estimation error
of the change of the mass flow rate into the cylinders .
Since the change is bounded and so is our estimate, we can
conclude the estimation error is bounded. The approximation
error and are also bounded quantities.
Therefore in (33) is bounded, and
when . We finally conclude the
absolute value of the sliding surfaceis bounded under the
control. The quasisteady-state fueling command is obtained
from integrating (28).

The adaptation algorithm is considered to be effective not
only for the variation of the air flow rate sensor characteristic,
but also to slowly varying A/F ratio disturbances such as one
resulting from injector aging.

VII. T RANSIENT FUEL COMPENSATION

As will be seen in the experimental section, the dynamic
sliding controller shows good performance when the throttle
angle change is not rapid. However, rapid change of the
throttle angle cause sharp peaks in the A/F ratio as a result
of the fuel delivery dynamics (Fig. 15). In this section, the
fuel flow rate command is corrected to compensate for the
unknown fuel delivery dynamics. Since the transient fuel
delivery dynamics include pure time delay in the input, it
is necessary to employ a feedforward control input using
variables that are faster than the mass air flow rate into
the cylinder . The positive or negative amount of the
transient fueling rate is approximated as a function
of the rate of throttle change and the mass air flow rate
into the manifold . The reason for choosing as an
independent variable is that the rate of throttle change is faster
than the mass air flow rate out of the manifold and it
roughly decides the sign of the transient fueling rate .
The mass air flow rate into the manifold is selected
because is faster than , and is similar to . The
rate of the throttle change was obtained by low pass filtering
the numerical approximation, where
is the sampling time.

Fig. 7. Neural-network mesh for transient fueling.

In this section, the quasisteady-state control input
is combined with the transient fueling input . The total
fuel command to the injector is

(35)

where is the steady-state fueling rate of the previous
section, which is obtained by integrating (28) and is our
estimate of the additional fuel rate required to compensate for
the lost/added fueling rate. Putting (35) into (4) yields

(36)

where The sliding surface is defined as

(37)

or equivalently

(38)

Here we construct the time derivative of as

(39)

where is the Euclidian distance from the current state
to node on a grid (see Fig. 7), and is a
constant. are our estimates of the “true” constant values

. We define and
. Then can be

expressed as

(40)

where is the approximation error. A Lyapunov function is
chosen as

(41)

where is a positive constant. The absolute function is used
because only the sign of is available. When is not zero,
differentiation of becomes

(42)
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Fig. 8. Throttle angle pattern in A/F ratio control simulation.

where Combining the quasisteady-state control
(28) and the adaptation law (34) with (39) and (40) yields the
expression for

(43)

where and .
Since the error in the transient fueling rate is absolutely
bounded, so is . Using (43) and becomes

(44)

Choosing the adaptation laws for the coefficients as

(45)

yields

(46)

where Thus, is achieved for

(47)

and the absolute value of the sliding surface is bounded. Our
transient control is given by integrating (39).

The total control input is expressed as

(48)

VIII. SIMULATION OF DYNAMIC SLIDING CONTROL

In this section, numerical simulation of dynamic sliding
control is executed to verify its fast closed-loop dynamics
and small chattering magnitudes. The compensation technique
of fuel delivery dynamics and measurement bias of

was implemented in experiments with dynamic sliding mode
control.

The model error in the mass air flow rate into the cylinder
is taken to be

(49)

which represents 10% error with 0.5-Hz frequency.
The measurement time delay of the oxygen sensor is the

transportation time for an amount of air to enter the cylinders,
go through combustion, and travel down to the sensor plus
sensor response time. The sensor time delay

was used in simulations. The throttle was varied as
shown in Fig. 8 to simulate fast acceleration and deceleration
which allows the engine to be operated between 1000 and
4000 r/min.

First the performance of dynamic sliding mode control was
demonstrated for the case with modeling error but without
measurement time delay. The simulation result shown in Fig. 9
shows almost exact regulation of the A/F ratio around 14.7
except when the throttle angle changes abruptly. The sharp
peaks are due to the computational time delay in control.

Next, dynamic sliding mode control was applied to the plant
with the time delay. Fig. 10 shows that this controller is robust
to the time delay and that most of the time the A/F ratio is
within the 1.4% error boundary from stoichiometry.

IX. EXPERIMENTAL RESULTS

Some experimental results reported in the literature are
obtained for tip-in/tip-out throttle modes with the engine speed
fixed by a dynamometer. However, in many cases, the engine
speed changes dramatically during the transient throttle modes,
since such throttle modes generally accompany gear shifting.
Other results are obtained when the tip-in/tip-out modes are
in the large throttle opening zone. Since the intake manifold
air pressure (or air mass) reaches more than 80% of the
atmospheric (or full-open throttle) pressure before the throttle
is half-opened, the large change of the throttle angle in the
large throttle opening zone gives only mild variations of the
manifold pressure. In this study, all the experimental results
are obtained under more severe and more realistic conditions:
the dynamometer load is fixed where dynamometer inertia is
the only external inertia; and the throttle varies from a small
throttle angle.
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Fig. 9. A/F ratio by dynamic sliding mode control without measurement time delay (simulation).

Fig. 10. A/F ratio by dynamic sliding mode control with measurement time delay (simulation).

Fig. 11. Throttle angle pattern in A/F ratio control experiments.

Fig. 12. A/F ratio controlled by Gaussian network sliding control.

The suggested controller was evaluated at the University
of California, Berkeley engine dynamometer test rig, and
compared with a production ECM controller. The engine used
for the test is a 3.8-l V-6 sequential port-injection S.I. engine.
The controllers were implemented using a 33-MHz-CPU PC-
386 and a MicroSoft Quick-C compiler at 10-ms loop-time,

and premium gasoline was used. The throttle was controlled
by a stepper motor which has a maximum speed of 900 steps/s
and a motor controller which allows the throttle to be changed
abruptly in less than 0.1 s. The fuel injector driver was built
using six LM322N timer chips which modulate the injection
pulse width from the production ECM when it is needed to run
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Fig. 13. A/F ratio controlled by production ECM.

Fig. 14. Compensated transient fueling rate in Gaussian network sliding control.

Fig. 15. A/F ratio by Gaussian network sliding control without transient fuel compensation.

Fig. 16. A/F ratio by dynamic sliding control (no compensation of measurement error of_mai and transient fuel).
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the developed controller. Mass air flow rate through the throttle
body, manifold pressure, and temperature, and the oxygen in
the exhaust gas were measured using typical production engine
sensors. The engine speed was measured by using a magnetic
pick-up installed on the engine flywheel. A linear oxygen
sensor (NISSAN model PLR-1) installed in the exhaust pipe
was used only to monitor control performance.

The initial weights of the mass air flow rate Gaussian
network were chosen to have the correction factor
equal to zero. The initial weights of the transient fueling
Gaussian network were all zero, which means the transient
fueling compensation is zero at the initial time. In other words,
no prior knowledge of the weights are given and the weights
of the two networks have meaningful values as the on-line
learning process continues. The nodes of the mass air flow
rate network are evenly spaced from 0 to 55 g/s. with 2.5 g/s.
spacing. The nodes of the transient fueling network are spaced
from 0 to 60 g/s. in the axis with spacing of 10 g/s. and
from 60 to 60 deg/s in the axis with spacing of 10 deg/s.

The throttle variation in the experiment is shown in Fig. 11.
With the external load from a dynamometer fixed to 67.7 N-m,
the throttle variation induces large variations of the manifold
pressure. During the throttle variation, the A/F ratio (Fig. 12)
controlled by the developed controller gives about 30% smaller
standard deviation than the result of the production ECM
(Fig. 13). The result (Fig. 12) of the proposed controller is
obtained after several 20 s. learning trials in both the mass air
flow rate and the transient Gaussian networks with similar
throttle variations as the throttle variation in Fig. 11. The
learning process is the on-line adaptation of the constantsof
the transient fueling rate map, and the constants

of the mass air flow rate map. Comparing Figs. 12 and 13,
we can see the A/F ratio variation of the proposed control has
higher frequency contents than that of the ECM result, which
means that the closed-loop dynamics of the proposed control
is faster than that of the ECM controller. This is one of the
reasons that the proposed controller results a smaller standard
deviation than that of the ECM.

Fig. 14 shows the transient fueling rate command
of the proposed controller, which gives the A/F ratio of
Fig. 12. Fig. 15 shows the A/F ratio when the transient fuel
compensation is not accompanied by the dynamic sliding
control. The sharp peaks of the A/F ratio demonstrates the
necessity of the transient fueling compensation. Fig. 16 shows
the results of the A/F ratio of the proposed controller when
both the transient fueling compensation and the mass air flow
rate bias adaptation are not accompanied. It is also seen that
A/F ratio has significant drift from stoichiometry with large
transient peaks.

Experimental results during engine warming up confirm that
the mass air flow meter characteristics changes with the man-
ifold temperature. In future work, the manifold temperature
will be included as an independent variable of the mass air
flow rate network.

X. CONCLUSION

The A/F ratio control of S.I. engines have been conducted
using a dynamic sliding control method and Gaussian neural
networks. The simulation and experimental results show that
the closed-loop system is much faster than those of the conven-
tional sliding mode control and the production ECM controller.
It is verified that the developed controller gives about 30%
smaller standard deviation than that of the production ECM.
The new control method suggests a way to avoid the time
consuming gain tuning process by using an on-line learning
algorithm. The transient fueling compensation and the mass
air flow rate correction algorithm can be used with other types
of engines and is insensitive to aging since the technique
identifies the engine characteristics on-line.
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