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Integrated Control of Steering and Braking for Path
Tracking using Multi-Point Linearized MPC

Jonghyup Lee, Seibum B. Choi

Abstract—In this study, we propose an integrated braking
and steering model predictive controller for stable and accurate
path tracking. To perform model-based longitudinal control
and lateral control at the same time, it is necessary to con-
sider nonlinear characteristics caused by changing vehicle speed
and nonlinear tire forces. This paper proposes a multipoint
linearization method to minimize the linearization error, and
a controller with good computational efficiency and accurate
consideration of nonlinear vehicle behavior is also introduced.
In addition, the proposed model predictive controller (MPC)
actively utilizes the road friction limit constraint for each tire
force to ensure vehicle stability. Through this, the proposed
controller generates optimal braking and steering inputs for
situations such as high-speed turns in which braking must be
involved. Due to the proposed linearized model, the controller
achieves a significant improvement in computational efficiency
and good control performance similar to that of the nonlinear
MPC. Comparison with other control methods and performance
verification for various road conditions are performed through
simulations, and the results show very efficient calculation while
performing accurate path tracking.

Index Terms—Control and Optimization, Vehicle control;
Driver assistance, Control of dynamic systems

I. INTRODUCTION

VER the past several decades, vehicle safety has become

one of the biggest vehicle performance indicators, and all
vehicle manufacturers have conducted research and develop-
ment in various area to increase vehicle safety. Vehicle chassis
control has contributed greatly to improving vehicle safety
performance, sharply reducing the accident rate by securing
vehicle driving stability. As the development of intelligent
vehicles has accelerated, technology such as cameras and radar
sensors for recognizing conditions around vehicles has greatly
developed. These technologies enable vehicle controls that
increase safety against dangerous surrounding situations. The
advanced driver assistance system (ADAS), based on recog-
nition information such as that from autonomous emergency
braking (AEB) and emergency lane keeping (ELK) systems,
has proven its excellent accident prevention performance [1]-
[5].

Path tracking control is a type of vehicle position control
that follows the desired path created from a path planner
that plans a future path for various purposes [6]-[10]. Path
tracking control is achieved through turning control and speed
control, and it is essential for lane keeping/changing and
obstacle avoidance behavior. Due to the importance of path
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tracking control, numerous control methods such as model
free control [11], kinematic model based control [12]-[14],
dynamic model based control without prediction and model
predictive control (MPC) [7], [15]-[26] have been introduced
[15], [16]. In particular, path tracking control using MPC can
consider the physical limitations of inputs and outputs, and it
becomes possible to calculate the optimal input through future
prediction. Therefore, this method is discussed as the most
suitable method for path tracking control.

MPC is divided into linear MPC (LMPC) and nonlinear
MPC (NMPC) according to the characteristics of the model
used [27], [28]. Because the dynamic model used for path
tracking control is non-linear, studies using NMPC have been
introduced [17], [18]. Path tracking control with NMPC works
by solving a constrained nonlinear optimization problem.
However, since the nonlinear optimization such a requires
great computational effort, it has a limitations in real-time
implementation. Some studies have attempted to solve this
problem by linearizing nonlinear dynamic models.

Compared to NMPC, LMPC using a linearized model
has the advantage of significantly reducing the amount of
computational effort by utilizing linear optimization such as
quadratic programming [19]-[22]. The linearized model, by
using a Taylor expansion, can be a good replacement model for
the nonlinear model if the states are close to the linearization
points. However, this approach also has the disadvantage
that the model accuracy decreases as the prediction state
moves away from the linearization point during the predic-
tion horizon. This reduction in model accuracy impairs the
prediction accuracy of the model predictive controller, and
can be a major cause of control performance degradation,
resulting in path tracking error and excessive slip in dangerous
situations. In particular, performance can be further degraded
when longitudinal control is also implemented, as the non-
linearity of the vehicle model increases as the speed changes.

In this study, we propose a novel type of LMPC for path
tracking using the multi-point linearized model to solve the
aforementioned problems. MPC makes predictions at every
step about the states and inputs during the prediction horizon.
The strong point of the proposed linearized model is that
it requires the same level of computation as the existing
linear model, while maximally reflecting the nonlinearity of
the model. Therefore, using the proposed linear model, the
proposed controller is efficiently calculated while sufficiently
reflecting the nonlinear behavior.

In addition, as the efficient use of nonlinear models becomes
possible, we propose in this study a controller based on the
nonlinear tire force constraint. When the force of a single tire
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exceeds the road friction limit, the vehicle rapidly becomes
unstable. Therefore, existing macro-constraints such as lateral
acceleration and lateral slip angle [7], [17] can indirectly se-
cure vehicle safety, but cannot guarantee that all tires remains
in stable slip region. In other words, even if constraints such
as acceleration are satisfied, the vehicle may become unstable
due to excessive slip. In this study, the safety of the vehicle
is more accurately secured through the constraint that the
sum of the longitudinal and lateral forces of each wheel does
not exceed the road friction limit. Because, in contrast to
the conventional model, this requires calculation of the tire
force, the use of a large non-linear constraint is inevitable,
however, this constraint can be efficiently calculated through
the proposed linearization method. Through this, the proposed
controller automatically generates a braking input for stable
operation even in high-speed situations without a separate lon-
gitudinal speed planner; system generates a steering input that
accurately follows the desired path. This produces minimal
braking for a stable turn, as braking input is applied only when
the tire force constraint is expected to be violated. In addition,
depending on the situation, the maximum tire force can be
used to cope with as many dangerous situations as possible.

The main contributions of this paper are: 1) A multi-
point linearization model using predicted states and inputs
is proposed to linearize the nonlinear model used in the
controller with minimal error. 2) Through the design of the
LMPC using the integrated prediction model and tire force
constraints, a path tracking controller that can accurately and
safely cope with high-speed situations was proposed. Finally,
improved calculation speed and stable control performance of
the proposed controller compared to NMPC are confirmed.

The remainder of this paper is organized as follows: In
section II, the nonlinear vehicle model including the vehicle
dynamics model, tire model, and relative position model
are presented. In section III, an LMPC based path tracking
controller that uses a multi-point linearized vehicle model is
proposed. Sections IV verifies through simulation analysis the
control performance of the proposed path tracking controller.
Conclusion is provided in section V.

II. NONLINEAR VEHICLE MODEL

This section introduces a vehicle model that will be used
to predict vehicle behavior. Since the controller proposed in
this study is a model-based controller using a mathematically
expressed vehicle motion model, it is necessary to establish
an accurate system equation. For the design of the integrated
controller, the vehicle model used in this study simultaneously
addresses the longitudinal and lateral behavior of the vehicle.
To consider the relationship between the tire force of each
wheel and the road surface friction limit, the longitudinal,
lateral, and vertical forces of each tire were modeled. In
addition, a relative position model expressing relative position
and angle relative to path is used to predict tracking errors.

A. Planar Vehicle Model

The planar vehicle model shown in Fig.l is a vehicle
model that can handle longitudinal, lateral, and yaw motion

Fig. 1. The planar vehicle model and the relative position model

of the vehicle. The model is expressed through force balance
equations and the yaw moment balance equation. The three
velocity states of the vehicle, longitudinal velocity v,, side
slip angle 3 and yaw rate @&, are described by the following
equations [29], [30]:

1 . .
vy =—[(FI' + FI") cos§ + FI' + F)' (1)
m
— (Ef'+ F/")sind — Fp] + v,8,
o 1 7\ o r
B=— [(FI'+ F[")sing + (F]'+ F[") cosd  (2)

+F + F)T =4,

L =l [(F' + F") cos 6 + (F]' + FI") sin ] (3)
— b (F)' + F)") + w[(FJ' — FJ")siné
+ (FS" — FfYcosd + (F'" — FTY),

where Fy, Iy, Fp, 0, m, I, ly, [, and w are the longitudinal
tire force, lateral tire force, air drag force, wheel steering angle,
vehicle mass, vehicle moment of yaw inertia, distance from
front axle to vehicle center of gravity (CG), distance from rear
axle to the vehicle CG, and half of track width, respectively.
The superscripts fI, fr, rl, and rr represent the front left,
front right, rear left, and rear right wheels.

B. Tire Forces Calculation

The tire forces of each wheel required to calculate the
vehicle motion in the planar vehicle model and to consider
the road surface friction limit are modeled and calculated for
the longitudinal, lateral, and vertical directions.
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Assuming that the braking torques of the left and right
wheels are the same and that the wheel inertia can be ne-
glected, it can be assumed that the left and right braking forces
are identical. Then, from the Equation (1), the braking force
of each wheel is expressed as follows [31].

A
il — pfr —
e T 2[1=A(1—cosd )]

[mag + (FI'+ F")siné + Fp], @
F'rl — T — (1_)‘)
e T 21 =A(1—cosd )]
[max—&—(FJl—i—Fyfr)siné +FD},

where a, and A denote the longitudinal acceleration and the
braking ratio of the front and rear axles, respectively, with
a small steering angle assumption, (0 < 1), these can be
simplified.

P = FIT = 2 fmag + (Ff' + FJ7) 5+ Fo]
rl T (1 _ )‘) fl fr ®)
Fl'=F]" = ~—"* [ma, + (F]' + F]") 6 + Fp] .

Using the brushed tire model, the lateral tire force can be
modeled as follows [32], [33].

F; =Cy()
Cotan (aj) — 3LF7 ‘tan (oﬂ) |tan (oﬂ)
= +%ﬂ3}31tan (oﬂ ,1f’a3’ < tan~ (%)
pFisgn (o?) ,if|ad| > tan™ (%),

(6)
where C, is the cornering stiffness with respect to the
slip angle «, Cy is the cornering stiffness at the linear
region(i.e.|a’| < 1), o denotes the road friction coefficient,
and F7 is the vertical force of each tire. The tire slip angle
o can be expressed as :

: v
—1 V%
ol =tan™! Ty, (7)
Vta
where,
j —vl 51n(5+vfuycos§
U =
tx .
—vﬁm J= [l fr ®
j vwzcosd—i—vf;)ysiné
v, =1 5 k
t .
Y Vi y sj=rl,rr,

longitudinal velocity vw ,» and lateral velocity v,  of each
wheel position can be calculated from the vehicle velocity,
side slip angle, and yaw rate.

The maximum forces that each tire can generate are propor-
tional to the vertical force. Therefore, the vertical force of each
wheel needs to be accurately calculated not only to determine
the lateral tire force in Equation (6), but also to consider the
road surface limit. Load transfer occurs due to the vehicle’s
longitudinal and lateral acceleration. The load transfer amount

is proportional to the magnitude of the acceleration and is
determined by the shape of the vehicle and the rigidity of
the suspension [29]. In particular, because the front/rear roll
stiffnesses of the vehicle are different, the front/rear roll
stiffness ratio is dominant in the case of lateral load transfer.
The normal force of each wheel FJ can be calculated as:

szl = ;—Tng 2L —“ma, + opmay,
FIm = QZTL mg — Z—LmaT T FMmay, ©
FI" = 2l—fng 2L — 0, MGy,

where ay, g, L, and h., are lateral acceleration, gravitational
acceleration, distance from front axle to rear axle, and height
of vehicle CG. The lateral load transfer coefficients oy and o,
are calculated from the simplified roll dynamics model shown
in Fig.2, as follows.

Fig. 2. Simplified roll dynamics model

1 C¢fh,«c l
- ¥ hc - hrc )
o w (c¢f+c¢r—mgth+L( g )
1 e l
Opr = — ( ‘¢ *(hcg - hrc)) 5
w \ Cpf + Copr — Mghye L
where cgr, cer, and h,. are the front roll stiffness, rear roll
stiffness, and distance from CG to roll center.

(10)

<

+

C. Relative Position Model

The relative position model describing changes in the rela-
tive position and relative angle with respect to the desired path,
is constructed by expressing the station(longitudinal position
on path) s, the lateral distance error e,, and the heading angle
error e, as shown in Fig.1 [23]:

§ =0y (cosey — Bsiney), (11)
€y =y (siney — fcosey), (12)
€y =1 — K(s)3, (13)
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where  is the curvature of the desired path, expressed as
a function for station s by utilizing the information on the
desired path.

D. Integrated Nonlinear Vehicle Model

Finally, the total state vector is created by integrating
the velocity states [v,, 5,1/)}71 expressed through (1)-(3) and
the displacement states [s, ey, e,]7 expressed through (11)-
(13); due to the time-varying variable s, the state function
is a time-varying function. By integrating and discretizing
Equations (1)-(13), the integrated nonlinear vehicle model can
be expressed.

w(k+1) = fi (x(k),u(k)),

where, z = [Ur;ﬂ7¢7s;eyae¢]T7 U = [57 afv]T'

(14)

III. CONTROLLER DESIGN

In this section, we introduce the model predictive controller
and the state prediction model. In particular, the multi-point
linearization method, which minimizes the linearization error,
is proposed. In addition, the process of converting a nonlinear
optimization problem into a linear optimization problem using
a multi-point linearized model is described in detail.

The general structure of the nonlinear model predictive
controller is as follows [27].

arg minJ (z(k), Uy) ,
Uy

subject to.
i=0,1,...,N—1

Lok = ’I(k)7

Tigk = fr(Tjrs wipk)s

Tiy1k € Xp C Xg,

Ui € Ug C U,

u(k) = uo|x,
where, J is a cost function designed for the purpose of
controller. x;z, u;, and N are the predicted states after ¢
steps predicted at the k-th step, the planned inputs after 7 steps
calculated in the k-th step, and the number of prediction steps.
Specifically, To|ks which is the initial value for the prediction,
is determined by measuring or estimating the states at the
current step. The state sequence and the control sequence, Xy
and Uy are as follows.

15)

T1|k Uo|k

L2|k Uik
X, = |T3lk | U, = U2k

TNk UN 1|k

X and Uj are the constrained sets of the state sequence
and the control sequence respectively. The control sequence
U}, obtained through optimization minimizes the cost function
while satisfying the constraints. Only the first element is
applied to the plant in the MPC framework. By defining
an appropriate cost function and constraint, we realize the
final goal of this study, a stable and accurate path tracking
controller. And these are introduced in detail in III-B.

A. Multi-Point Linearized Prediction Model

In the MPC framework (15), MPC generates a control input
through optimization based on the relationship between the
input sequence Uj and the state sequence Xj. Therefore,
model prediction control is greatly influenced by the prediction
accuracy. This means that if, to reduce the computational
burden, the prediction performance of the linearized model is
significantly reduced compared to that of the original nonlinear
model, the expected control performance cannot be achieved.

(a) (b)
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Fig. 3. Conceptual diagrams of prediction methods

Fig.3 is the conceptual diagram of a predictive model
designed based on various system models. Fig. 3(a) shows
the concept of the predictive model using the original non-
linear model [17], [18]; Fig.3(b) shows a case in which
a linear model with appropriate assumptions, such as the
linear bicycle model, is used [7]. And, Fig.3(c) and Fig.3(d)
show prediction methods using a single-point linearized model
[20], [21] and a multi-point linearized model, respectively.
Prediction using a nonlinear model for a nonlinear system has
accurate prediction performance; however, if a linear model is
used as in Fig.3(b) or Fig.3(c), accurate prediction cannot be
expected. In particular, in the case of single-point linearization,
no matter how logically the linearization points are selected,
the prediction errors accumulate as the predicted states and
inputs move away from them. Therefore, prediction accuracy
is poor for systems with strong nonlinearity or long prediction
horizon.

In [22], effective linear time varying (LTV) model was
used through multi-point linearization for the predicted future
states using integration with respect to the previous input
u(k — 1). However, this method is also difficult to reflect the
input change during prediction, and the prediction accuracy
is inevitably lowered. In this study, multi-point linearization
is performed based on the state sequence Xj;_; and input
sequence Uy_; calculated in the previous step. During the
prediction horizon, states and inputs behave similarly to the
predictions of the previous step. Compared to the method
in [22], the proposed method can minimize the linearization
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error even for changes in the future input by considering
the predicted future inputs during the prediction horizon.
Therefore, the proposed model can represent the nonlinear
model with higher accuracy than the above-mentioned models,
and high prediction accuracy can be expected.

The multi-point linearization of the nonlinear vehicle model
(14) for the state sequence Xj_; and input sequence Uj_1,
predicted in the previous step, is expressed as:

Tit1|k
=T\ Tit1|k—15 Wit1|k—1
fu(z u )
v Tit1|lk—1
+ wfk(xau)|ui+1\k71('ri\k - xi+l|k71)
ZT; c—

+ Vufr(z,u) uiﬂi_i (ui\k - ui+1|k—1)

SA; kK + Bi kg + Eik

(16)

i=0,1,....N—1
where,

_ Tit1|lk—1 _ LTit+1|k—1
Ai,k - vﬂﬂfk(x?u) Wit1|k—17 Bi,k - wak(m,u) Wit1|k—17

E; = fk:(xiJrl\kfhui+1|k71)_Ai,k-75i+1\k71_Bi,kui+1\k71~
For multi-point linearization, it is assumed that the N-th
planned input that is not calculated in the previous step is
the same as the next and (N — 1)-th planned input, i.e.
UN|k—1 = UN-—1|k—1- Because linearization is performed
using the predictions, high order linearization errors O[(z;;, —
@i1)k—1)2)and O[(u;), — w;+1)5—1)?] can be minimized. Us-
ing the linearized model (16), the prediction model for the
state during the prediction horizon (i.e. ¢ € [1,N]) can be
summarized as follows:

Xy = Spx(k) + Sy Ui + Sk, (17)
where,
A
A1 Aok
Az kA1 kAo K
Sw = . P
N—1
H Aik
I— i
 Bos 0 0
Al,kBO,k Bl,k .. 0
Az A1 Bok Az 1 B1 . 0
Su = . . 5
N-1 N-1
H A; 1 Bok H A; Bk Bn_1k
L i=1 i=2 i
i I 0 ... 0]
Ay I ... 0
AopAin  Asy oo O
Sp=| -

~

N-1 N-1
H Aik H Ak
L i=1 i=2 J
Through Equation (17), the states during the prediction

horizon can be predicted from the current states (k) and Uy,.

1) Prediction Model Comparison: To verify the perfor-
mance of the predictive model (17), a simulation was per-
formed on the double lane change scenario with braking
shown in Fig.4. Performances of prediction models against
nonlinearities were compared. The simulation was conducted
offline through Carsim, a high-order nonlinear vehicle sim-
ulator. The future state was predicted through actual future
vehicle inputs. The states predicted by the proposed method
and those predicted by existing methods were compared with
the actual future behavior of the vehicle. The sampling time
was set to 0.1 seconds. The states were predicted for a horizon
of 20 steps, and visualized for the initial states at an interval
of 10 steps.

The results are shown in Fig.5. The predictions of speed
and station was omitted because the difference in accuracy
was insignificant. For other states, predictions based on the
single-point linearized model and predictions based on the
linear bicycle model deviated significantly from actual vehicle
behavior due to lack of consideration of nonlinearity. The
LTV linear model [22] effectively represented nonlinearity
in many areas due to multi-point linearization. However, for
some of the horizons where the input was changing, the
predictions diverges. On the other hand, it can be seen that
the results of the nonlinear model and the proposed multi-point
linearization model predict the future behavior well within a
small error range. Compared with the actual future behavior
of the vehicle, the error increases for predictions in the distant
future due to uncertainty of the nonlinear model. However,
considering that the nonlinear model-based prediction and
the proposed model-based prediction are very similar, it can
be confirmed that the linearization error is greatly reduced.
Therefore, the proposed linearization method enables linear
calculation without significantly impairing the performance of
the nonlinear prediction model.

B. Model Predictive Controller Design

In this section, the design of a model prediction controller
using a multi-point prediction model (17) is introduced. The
cost functions and constraints to achieve the control objectives

DLC path (ISO 3888)

4 . .
p
0 ! !
20 40 60 80 100 120 140 160
Vx )i(\m) curvature
100 Eom
= T
15 5 o0
X 50 @
= £-0.02
3
2 4 6 0 100 200
time(s) station(m)

Fig. 4. Model comparison scenario
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beta(deg)

(@)

yawrate(deg/s)

1.5
_ 1
E
LE- 05}
& Q-
™
o -05¢
o

At

-1.5

2
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(@)

Q = diag(0,0,0,0, g, ge,, ), R = diag(rs,74,),

pugy = {me k=) it i=0
T Vg — g if i=1,2,.. N1,

Qeys Gey» 75, and r,, are positive gains for suppressing each
state and the amount of change in each input. An input
sequence that minimizes the cost function has two main
purposes. The first is to minimize the path tracking error,
expressed by the lateral position error e, and the heading angle
error e,;. With this, the input sequence is generated so that the
vehicle follows the path as far as possible. The second purpose
is to reduce vehicle jerks, which degrade driver comfort and
vehicle stability. Sudden changes in acceleration and steering
angle, which are inputs of the proposed controller, can cause
longitudinal and lateral jerks of the vehicle. Therefore, a
cost function(18) taking this into account is used to suppress
sudden changes of input. Changes of input are expressed in
compact matrix form, as follows:

yaw error{deg)
(=} wn

'
(&)

'
-h
o

N

w

time(s)

= = =True
Nonlinear model
-+ Bicycle model

Single-point Linearized model
LTV Linear model
Multi-point Linearized model(Proposed)

Fig. 5. Prediction model comparison results

are defined. In addition, these are transformed into quadratic

optimization.

1) Cost Function: The cost function for optimization for
the finite horizon of the model prediction controller is as

Auo‘k
Auyy
AU, = . = DUy — Upi, (19)
AUN—1|k_
where,
1 0 0] u(k —1)
-1 1 0 0
Du = aUp,k -
0 0 ... 1] 0
The cost function (18) can be summarized as follows.
J = X' QX + AUL RAU, (20)
where,
Q = diag(Q,Q,...,Q), R = diag(R, R, ..., R).

Substituting the prediction model (17) and the input varia-
tion vector (19) into (18) gives the following equation.

J =XFQX, + AU RAU,
=(Spx(k) + SuUs + Sp)" Q(Spa(k) + SuUk + Sk)
+ (DuUx — Up k)" R(DL Uy — Uy )
=(Spx(k) + Sp)TQ(Syx(k) + Sg) + U}l (S5 QSu) Uy
+2(S,2(k) + Sp)TQS, Uy + UL (DI RD,)Uy

follows.
N1 — (2U) . RDy)Uy + U, . RU, ..
J= 2 2 2n
- Z Ge, (€y,it11k)” + dey (€p,it1lk) Since the goal of optimization is to find the input that mini-
=0 - mizes the cost function, terms not related to the input sequence
+ Aui\kRA“i\k (18)  are deleted and the quadratic cost function is summarized as
N-1 s - oo follows.
= Z Z‘i+1|kai+1‘k + AuilkRAuillﬁ
=0 Ju =UF (ST QS. + DY RD,)Uy )
where, +2[(Szz(k) + Sp)T QS — Ug:kRDu]Uk-
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2) Constraints: For stable path tracking control, tire forces
must be generated within the limits of road friction. When the
tire force of each wheel is required by the controller to be
above the road surface friction limit, the tire loses friction
and this causes unstable behavior. In particular, since the
combined tire forces in the longitudinal and lateral directions
must not exceed the road surface friction limit, not only
the force in each direction but also the magnitude of the
resultant force must be considered in situations in which both
turning and braking input occur simultaneously. Therefore, the
following constraints are defined to ensure that the sum of the
longitudinal/lateral forces of each wheel during the prediction
horizon does not exceed the road surface friction limit.

VL + (F0? < nFLy, (23)
,i=0,1,....N=1,7=fl, fr,rl,rr.

In addition, to improve control robustness for uncertainties
of the vehicle model, constraints have been applied more
strictly than original constraints(23). During the prediction
horizon, more stringent constraints for the distant future were
applied through the robustness parameter n(€ [0,1]) , lead-
ing to robustness against progressively increasing prediction
errors.

VE 02+ (F) 02 <D (24)

The tire force constraint (24) can be satisfied when the
following equations of longitudinal force constraint and lateral
force constraint are satisfied.

|F£7i‘,€| Sn“_”uFiﬂk (252)

F il </ 0 DpFd 02 = F 2.

(25b)

For the longitudinal force expressed in (5), its constraint
(25a) can be converted into a simplified acceleration constraint
because it is most affected by the longitudinal acceleration. To
calculate the upper bound of the magnitude of the longitudinal
acceleration by using the past prediction information, it is
assumed that the N-th input plan of the previous step is
the same as the (N — 1)-th input plan as in the previous
linearization process, i.e. un|i—1 = Un—_1|k—1. The simplified
acceleration constraint is as follows:

|z ikl Smjindi’ilk, 26)

where,
@ = %%[n(iil)HFii_:,_uk_l — Ip] if, j=fl, fr
wlt % (IEA) [n(l_l)ﬂFZJ,iHm_l — Fp| if, j=rl,rr

Lateral force constraints(25b) can be replaced with con-
straints of slip angle which create lateral forces. Again, the
upper bound utilizes the past predicted value, as in the
longitudinal constraint (26).

|ag\k‘ aS 5‘§|k

_ 1 1 (i—1) Fj 2 Fj 5

T CoF (M IuE eo1)? = (Fyiae—1)®
zyi+1lk—1

27)
&* is the upper bound of the slip angle constraint; Cjy is
the linear cornering stiffness. A simple calculation is possible
by utilizing the linear cornering stiffness, which ignores the
saturation of the lateral tire force. Since the cornering stiffness
Cy in the low-slip linear section is larger than the non-linear
cornering stiffness C,, (), the constraint (27) is stricter than
when using the non-linear cornering stiffness, as follows.

%

. 1 1 - -
&y < WL e )? — (B y)?
ilk — z,i+1|k—1 z,i+1k—1
Co Fj.,iﬂ\kfl
< 1 1 \/(qu B )2 — (Fj " )2
= N 1 zyi+1k—1 z,i+1|k—1/ *
Ca(a?) Fz],i+1|k71

(28)
The tire forces used to calculate the upper limits (26), (27)
are calculated using the predicted states and inputs though
tire force models.

a; has a nonlinear relationship with the states and the
inputs expressed in (7). Therefore, we applied the multi-point
linearized constraint in the same manner as the multi-point
linearized prediction model (17). The linearized slip angle
predictions are as follows.

oy =0 (i, wigr)

2o (T4 1) k—1, Wit1|k—1)

+ Vool (2,u) a3 (e — Tigjp-1) (29
+ Vo (2, u) zj:‘\i:i(uz\k — Uit1)k—1)

_1J J J
=0 ik + Ai,k“ilk + @i,kv

where,

Fg‘k = V.ol (z,u)

Tit1|k—1 J j Tit1|k—1
ui+1\k—17Ai7k - VuOé (x’u)|ui+1\k—17

Joo_ J J
@i,k =a’ ($¢+1\k—1»ui+1|k—1) - Fi7k$i+1|k—1 - Ai7kui+1|k—17
1=0,1,....N—=1,5 = fl, fr,rl,rr.

Equation (29) is expressed in vector form for the prediction
horizon, as follows.

Ag :Cka-i-CuUk-f—CE, 30)

where, o .
i FO,k 0 0
o4 oo o
aolk Iox 0 0

Ap=| oo |,Co= |tk O e

: 0 F{,k 0
N1 : : : :

| 0 0 v N1
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The slip angle prediction is expressed as follows by substi-

tuting the prediction model Equation (17) into Equation (30).

Ay, =Co(Spx(k) + S Ui, + Sg) + C Uy + Cg
=(CySy + C)Ux + (CpSpx(k) + C Sk + Cg),

Finally, the constraint is defined as follows through equa-
tions (27) and (31).

€29

(CoSu+Cu)T 1" U
_ [ Rk = (CaSo(k) + CoSp+ Cp)}T 1"

(32)

where, P

7Ak = 7Ak-.

=1
=
Il
Qi
. o3
B

=TT
AN_1|k

3) Linear optimization problem: Finally, through multi-
point linearization of the nonlinear prediction model and the
constraints, nonlinear MPC defined as a nonlinear optimization
problem(15) was changed into a quadratic cost function (22)
and linear inequality constraints (26) and (32). Therefore,
the nonlinear optimization problem (15) was changed into
a quadratic optimization problem, and the optimal input se-
quence was calculated using quadratic programming (QP).

IV. SIMULATION RESULTS

Simulations were conducted to verify the performance of the
proposed controller. The simulations used Carsim, a high-order
vehicle simulator; the proposed controller was designed using
Matlab Simulink. A comparison was carried out between the
proposed controller and existing controllers for a curved path.
Also, the behavior of the proposed controller was analyzed
with respect to the initial speed. To verify robustness against
model parameter errors, additional errors of 10% were given to
the vehicle model parameters, vehicle mass and moment yaw
inertia, for all scenarios. Table I shows the parameters of the
proposed controller used in the simulations. The controller has
a prediction range of 2 seconds with an interval of 0.1 seconds,
which is set in consideration of the amount of calculation and
the prediction time required to cope with dangerous situations.
These parameters can be adjusted according to the hardware
performance and the required performance of the controller.
In addition, each weight is roughly set according to the scale
of the corresponding state, and then tuned in detail based on
the control result.

TABLE I
CONTROL PARAMETERS
Parameter Value
Ts(s) 0.1
N 20
ey dey 10, 10
75 ay 30, 0.01
n 0.98
TABLE II
COMPUTATIONAL TIMES
Method Avg comp. time  Max comp. time
(ms) (ms)
Proposed LMPC 0.9 1.3
Single-point LMPC 0.6 1.3
NMPC (max iter.) 740 1800
NMPC (min iter.) 96 130

A. Comparison with Existing Control Methods
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Fig. 6. Vehicle motions : Comparison of simulation results between the
proposed controller and existing MPCs at low speed situation (50km/h)

The performance of the proposed LMPC was verified
through comparison with NMPC and single-point linearized
model-based LMPC on a curved path. The single-point lin-
earized model-based LMPC was designed by linearizing the
nonlinear model for states z(k) and inputs u(k — 1) of each
step. LMPCs was calculated using quadprog in matlab,
and the optimality tolerance was set to 1073. This toler-
ance represents the degree of convergence of optimization,
and the scale is set in the range in which the proposed
controller converges stably. NMPC was implemented through
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Fig. 8. Normalized resultant force of each wheel : Comparison of simulation
results between the proposed controller and existing MPCs at high speed
situation (110km/h)

nonlinear optimization via sequential quadratic programming
(SQP). SQP is a non-linear optimization method that iterates
linearization and optimization by solving sub-QP problems
[24], [34]. SQP was calculated using fmincon in matlab. For
comparison of control performance and computational burden,
NMPCs with sufficient iterations(< 100) and fewer than

= g’
L L
8 o
i 508
© ©
E £
S <]
b= =z
0
40 60 80 100 120 140 40 60 80 100 120 140
station(m) station(m)
(©) (d)
L e iy S 1l —— —
Y Py
IS h =4 A
g \" \\I \ g \ /\
ﬁ 0.5 ‘! v g 0.5 \
© 1 \ ® \ \
E N £ : |
2 [ 1 ZO || \
|\ | VS — V-G
0 e o Voo
40 60 80 100 120 140 40 60 80 100 120 140
station(m) station(m)
Resultant Lateral
————— Longitudinal — — — Constraint

Fig. 9. Normalized forces of each wheel : Simulation result of the proposed
controller at high speed situation (110km/h)

sufficient iterations (< 20) to reduce computational amount
were used. Also, the optimality tolerance was set equal to the
LMPC.

Fig.6 shows the control results for a low constant speed situ-
ation in which stable driving is possible without braking; Fig.7
shows the control results for a high speed turning situation that
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Fig. 11. Normalized resultant force of each wheel : Comparison of simulation
results according to road conditions

must be accompanied by braking control. In a stable driving
situation at low constant speed, the motion of the vehicle
does not have much non-linearity. Therefore, all controllers
including the proposed controller performed path tracking
stably and accurately. However, nonlinearity of vehicle motion
is maximized for the high-speed turning situation shown in

Fig.7. As a result, the control performance was significantly
different depending on the nonlinear prediction performance
of each controller.

The single-point linearized model-based controller and
NMPC with fewer iterations failed to track the path due to
large linearization errors and insufficient number of iterations.
These controllers did not brake in advance, and the simulation
was terminated because no solution was found that satis-
fies the constraints during turning. Conversely, the proposed
controller and NMPC, with sufficient iterations, achieved
stable and accurate control results because of their accurate
prediction models. These controllers showed stable control
results in that the normalized resultant force of each tire, as
shown in Fig.8, did not exceed the road friction limit, i.e.

(F3)? + (Fy)?/F, < p. Also because the system performed
accurate steering control, the path tracking errors shown in
Fig.7(c) and Fig.7(d) were within 0.1m of the lateral error and
2° of the heading error for both controllers. For stable control,
the proposed controller suppresses the generation of lateral
tire force during turning through appropriate braking prior to
steering. This braking control was performed despite the fact
that there was no command related to the longitudinal behavior
other than the constraints on the tire force on each wheel. The
normalized tire forces for each direction shown in Fig.9 not
only control the vehicle so that the force in each direction
does not exceed the road friction limit, but also ensure that
the resultant force does not exceed the road friction limit at
moments when forces in both directions occur simultaneously.

Table II shows the calculation time consumed by each
controller in the high-speed turning situation. For LMPCs, a



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. , NO. ,

maximum of 6 iterations occurred to satisfy the optimality
tolerance. Compared to NMPC, calculation through LMPC has
a large difference in calculation speed because not only the
number of iterations is small, but also there is a difference in
the amount of calculation during one iteration. Nevertheless,
the proposed controller has a level of control performance
equivalent to that of the nonlinear controller.

Through comparison with existing controllers, it was veri-
fied that the proposed controller has the nonlinear processing
capability of the NMPC and, at the same time, exhibits break-
through computational efficiency by implementing LMPC
through multi-point linearization.

B. Comparison of Behavior Changes According to Changes
in Road Conditions

Since the purpose of this study was to prevent individual
tire forces from exceeding the road friction limit, control
performance for various road surface conditions was verified.
Simulation were conducted with the same approach speed for
a total of three road surfaces, from a road surface with a
large friction limit to a slippery road surface. Vehicle behavior
resulting from control and forces exerted on each tire are
shown in Fig.10 and Fig.11, respectively. As a result of the
control, the road surface limit condition was satisfied, as shown
in Fig. 11, on all three road surfaces. In addition, our controller
showed accurate path tracking performance through stable tire
force generation and proper steering control. At a road friction
limit of 1, there was little braking control because system
was able to generate sufficient lateral forces. However, as the
road surface became slippery, the speed was reduced to secure
stability during turning. In particular, on the slippery road
surface, a braking force close to the road friction limit was
applied to actively prepare for future behavior. Through this,
it can be confirmed that the proposed controller performs ap-
propriate control according to road surface limitations without
unnecessary braking.

V. CONCLUSION

In this study, we propose an MPC using a multi-point lin-
earized model for stable and accurate path tracking. Compared
to the existing single-point based linearization method, the
newly proposed multi-point linearization method dramatically
reduces the linearization error. Using the proposed controller,
non-linear vehicle behavior is accurately handled through
efficient calculations. Utilizing this method, the proposed
controller accurately predicts vehicle behavior and ensures that
tire force of each wheel, expressed in a non-linear manner,
do not exceed road friction limit. In situations in which
unstable lateral motion is expected due to high speed or
slippery road surfaces, vehicle stability is guaranteed through
braking input generated by constraints on tire forces. The
improved computational efficiency and control performance
of the proposed controller for the nonlinear vehicle model
were verified through simulation results and a comparison with
other control methods. In addition, results for various road sur-
face conditions showed that stable and accurate path tracking
performance could be obtained through optimal braking and
steering input that satisfied the road friction limits.
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