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Abstract: Depth perception capability is one of the essential requirements for various autonomous
driving platforms. However, accurate depth estimation in a real-world setting is still a challenging
problem due to high computational costs. In this paper, we propose a lightweight depth comple-
tion network for depth perception in real-world environments. To effectively transfer a teacher’s
knowledge, useful for the depth completion, we introduce local similarity-preserving knowledge
distillation (LSPKD), which allows similarities between local neighbors to be transferred during the
distillation. With our LSPKD, a lightweight student network is precisely guided by a heavy teacher
network, regardless of the density of the ground-truth data. Experimental results demonstrate that
our method is effective to reduce computational costs during both training and inference stages while
achieving superior performance over other lightweight networks.

Keywords: depth completion; local similarity; knowledge distillation; model compression; sensor
fusion; multimodal learning

1. Introduction

Recent advances in autonomous driving technologies have realized commercial self-
driving platforms operating in dynamic real-world environments [1,2]. These real-world
systems often benefit from various sensors, such as color cameras, radars, LiDARs, ultra-
sonic sensors, and thermal cameras, for robust perception in changing environments [3–5].
However, the computational cost typically increases with the increasing number of sensors.
This problem is critical to commercial platforms because these systems strictly require
real-time performance for reliable and robust operation in real-world environments. To
ensure real-time performance, existing systems utilize high-cost custom processing units
or lightweight perception agents with reduced computational costs but limited perfor-
mance [6,7].

Among them, robust depth perception is one of the most important tasks for au-
tonomous platforms. A LiDAR is the most popular sensor for accurate depth perception in
both indoor and outdoor environments. It provides highly accurate depth measurements
from near to far distances; however, it only collects sparse depth values of a scene due
to its mechanical and structural limitations. To overcome this limitation, various depth
completion algorithms are proposed to combine RGB and LiDAR data because of their
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complementary characteristics. Ma and Karaman [8] proposed a simple encoder–decoder
network for dense depth estimation. A 4-channel image containing RGB and sparse depth
is fed into their network for depth estimation. Moreover, spatial propagation algorithms
utilizing local and non-local neighbors are proposed to benefit from relevant local informa-
tion around sparse depth measurement. Cheng et al. [9] presented a convolutional spatial
propagation network (CSPN) for depth completion. The CSPN predicts an initial dense
depth and it is iteratively refined by a spatial propagation process with local 8-neighbor
pixels. Park et al. [10] proposed a non-local spatial propagation network (NLSPN), which
utilizes pixel-wise non-local neighbors during the propagation. Unfortunately, the afore-
mentioned algorithms rely on heavy networks that do not ensure real-time performance.
To overcome this limitation, lightweight networks for depth completion tasks were pro-
posed. Tao et al. introduced lightweight depth completion with a Sobel edge prediction
network [11] and self-attention-based multi-level feature integration and extraction [12].
Although these approaches contribute to decreasing the computational cost by effectively
reducing the parameter size and model complexity, they cannot leverage or surpass the
better performance of existing networks.

Recently, various knowledge distillation (KD) methods have been proposed to consider
the balance between high performance and computational costs. They aim to maintain the
robust performance of heavy networks while reducing computational costs and network
sizes based on the concept of teacher and student networks. For instance, a heavy teacher
network is trained with large-scale datasets, and then a lightweight student network is
trained with both large-scale (or small-scale) datasets and precise guidance from the teacher
network. With the KD, the lightweight student can achieve better performance compared
to the student trained without guidance from the teacher. Therefore, various KD methods
have been proposed for numerous low- to high-level perception tasks recently. Xu et al. [13]
proposed logit, feature, and structure distillations for human pose estimation. Liu et al. [14]
adopted KD for video-based egocentric activity recognition. Yoon et al. [15] proposed
spatial- and channel-wise similarity-preserving KD for image matting problems. Yang et
al. [16] proposed a cross-image relation KD for semantic segmentation problems. However,
typical KD methods require large computational resources during the distillation. Therefore,
distillation is often conducted with high-level features requiring small computing resources,
although distillation on low-level features is proven to be more effective [15].

In order to benefit from lightweight network architectures with low- to high-level
distillation, in this paper, we propose local similarity-preserving knowledge distillation
(LSPKD) for depth completion. Previous KD methods [15,17] have demonstrated that the
intra-similarity of features can accurately guide student networks during the distillation.
However, they utilize global similarity, consuming large computing resources, while local
information is more beneficial in various depth completion methods [9,10]. Based on this
observation, we propose to focus on local similarity preservation for reduced computational
costs during both distillation and inference. With our LSPKD, a lightweight student network
achieves superior performance compared to those trained with conventional distillation
methods or without distillations.

2. Method

In this section, we first describe the baseline teacher and student architectures for the
depth completion. Afterwards, the proposed local similarity-preserving KD is presented.

2.1. Problem Formulation

A dense depth map D can be predicted from network g with a sparse depth map D′

with parameter θ [18,19].
D = g(D′; θ) (1)

Due to the sparse nature of typical LiDAR point clouds, it is important to combine
local information from the paired color image around these points for accurate dense depth
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estimation. If a corresponding RGB image I whose pixels are aligned with D′ is utilized as
a guide for input sparse depth, (1) can be formulated by

D = g(D′, I; θ). (2)

The parameter θ can be optimized to train the network by minimizing loss function L
with given ground-truth depth Dgt.

θ∗ = argmin
θ

L(g(D′, I; θ), Dgt) (3)

The learning problem is to determine θ∗ with effectively designed loss function L.
Predicted depth maps are evaluated based on metrics such as RMSE, MAE, iRMSE, and
iMAE [3] to estimate performance. Moreover, the size of parameter θ mainly affects the
computational cost.

2.2. Network Architecture

Various methods have adopted the convolutional neural network [20] and encoder–
decoder network architecture with skip connections [8–10,21,22] to solve depth completion
problems. In this work, we utilize a ResNet34-based network [23] with skip connections as
our teacher network for fair comparison. The teacher network comprises two encoders for
RGB and LiDAR and one decoder to fuse multi-modal high-level features. Each encoder
has an input convolutional layer, 16 successive basic residual blocks [23], and the last
convolutional layer. High-level features extracted from encoders are concatenated to be
fed into the decoder that consists of 6 deconvolutional layers. The output feature of each
decoder layer is concatenated with corresponding RGB and LiDAR encoder features by
skip connections, and then fed into the next decoder layer. Figure 1 shows the overall
architecture of our baseline teacher network.
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Figure 1. An overall pipeline of the proposed algorithm. The ResNet34-based teacher network
consists of two separate encoders for RGB and LiDAR and a decoder for depth prediction. Output
feature dimensionalities of each layer are shown together. Encoder features from RGB and LiDAR are
concatenated and fed into the decoder. Skip connections deliver encoder features to decoder layers
by concatenation. The ResNet18-based student network is distilled with the knowledge from the
teacher network.
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For the student network, we halve the number of basic blocks of the encoders
(i.e., ResNet18 [23]) and reduce the number of channels in all the layers of the encoders and
decoder. Exact parameter comparisons will be provided for each experimental result separately.

2.3. Local Similarity-Preserving Knowledge Distillation

Hinton et al. have shown that it it possible to transfer knowledge from a large model
into a smaller, distilled model and demonstrated that the knowledge distillation (KD)
method is applicable for not only image classification but also commercial acoustic model
systems [24]. Similarity-preserving KD algorithms [15,17] have demonstrated their effec-
tiveness in various applications, such as classification and image matting. These tasks are
suited to exploiting inter-image similarity [17] or global intra-image similarity [15].

However, many depth completion works [9,10] make use of local and non-local infor-
mation around depth measurements rather than the global information across the entire
image due to the geometric nature of natural scenes. In other words, a local area in a scene
typically has continuous depth values, except for object boundaries. Moreover, measuring
global similarity across the entire image consumes a huge amount of GPU memory during
the distillation process [15]. Therefore, conventional methods usually search for a subset of
layers of the network to distill due to the limited computational resources.

With this observation, we propose a local similarity-preserving KD to effectively utilize
the similarity information of low-level features without huge memory requirements during
the distillation process. We first calculate the local similarity of a reference feature to its
neighbors as follows:

S(x, y, j) = f (x, y)⊤ · f (x + pj, y + qj), (4)

where f denotes the ℓ2 normalized feature, x and y are the reference pixel coordinates, j
is the index of the neighbors, and pj and qj are pixel offsets of the j-th neighbor from the
reference, respectively. We adopt the conventional 8-neighbor configuration N for the
distillation as follows:

N = {(p, q) | p, q ∈ {−1, 0, 1}, (p, q) ̸= (0, 0)}. (5)

Note that given a feature map F ∈ RH×W×C, the local similarity S is calculated for
each pixel and then we construct S ∈ RH×W×N , regardless of the channel dimensionality
C, where H, W, and N are the height, width, and the number of local neighbors, respec-
tively. Based on the local similarity S calculated from paired teacher and student layers,
the proposed LSPKD loss is defined as follows:

LLS(Ft, Fs, St, Ss) = ∥Ft − ϕ(Fs)∥2 + α∥St − Ss∥2, (6)

where α is a weight parameter and t and s indicate that F and S come from the teacher and
student networks, respectively. ϕ(·) is a dimensionality matching function between teacher
and student features in case their channel numbers are different. We adopt a 1×1 convo-
lutional layer as ϕ(·) for efficiency. The proposed LLS consists of two components. The
first term enforces pixel-level feature similarity (with auxiliary dimensionality matching) to
directly distill features extracted from the deep network. This direct distillation is simple
but effective in transferring valuable knowledge from the teacher to the student [25]. The
second term further improves the student by enforcing it to preserve the local similarity of
the teacher network. Note that the local similarity is closely related to the affinity, which is
proven to be highly effective in densifying predictions for various applications [10,26,27].

2.4. Training Lightweight Depth Completion Network

To train the lightweight student network, we utilize both the dense depth prediction
from the teacher and the ground truth (GT). Let Dgt, Dt, and Ds be the GT and predictions
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from the teacher and student networks, respectively. The student prediction Ds can be
supervised with Dt and Dgt as follows:

Lgt
(

Dgt, Ds
)
=

∥∥Dgt − Ds
∥∥

1, (7)

Lpred(Dt, Ds) = ∥Dt − Ds∥1, (8)

where ℓ1 loss is adopted for better depth boundary predictions.
The final loss function is defined as follows:

Ldistill = Lgt + w1Lpred + w2LLS, (9)

where w1 and w2 are user parameters.

3. Experiments

In this section, we describe the implementation details of the proposed LSPKD. Then,
we present quantitative and qualitative evaluations on two public depth completion bench-
mark datasets [3,28], as well as in-depth analyses. Moreover, we present the impact of layer
selection for knowledge distillation by providing a comparison of performance among the
results of various layer combinations. Robustness to the sparsity of the supervision signal
is presented to verify the effectiveness of our algorithm.

3.1. Implementation Details

Our algorithm is implemented using the PyTorch framework [29] on a machine
equipped with two NVIDIA V100 GPUs. For the training, the ADAM optimizer is used
with the initial learning rate 0.001, β1 = 0.9, and β2 = 0.999. For all the experiments, we
set α = w1 = 1. We follow conventional depth completion works [8–10] and adopt RMSE
(mm), MAE (mm), iRMSE (1/km), iMAE (1/km), REL, and δt for our evaluation metrics.
More detailed configurations will be described for each dataset in the following sections.

For the distillation, we adopt probabilistic knowledge transfer (PROB) [30] and at-
tention transfer (ATT) [31] for comparisons. These methods are adopted because they
introduce small additional computational burdens during the distillation. Implementation
details for layer combinations for the distillation will be explained in Section 3.4 in detail.

3.2. KITTI Depth Completion

The KITTI Depth Completion (KITTI DC) dataset [32] provides approximately 86K
RGB and LiDAR depth images for the training and 7K images for the validation, respectively.
The teacher and student networks are trained for 20 epochs with 8 and 16 batch sizes,
respectively. For the student network, we halved the number of channels in all the layers
and set w2 = 1. As a result, the student network has approxiately 16.53% parameters
compared to those of the teacher network.

Table 1 shows quantitative evaluation results on the KITTI DC validation set, as well
as the number of parameters and FLOPs. We adopted Self S2D [33] for comparison because
it has the same baseline architecture. Note that our teacher network has more parameters
because of the individual encoders for the RGB and LiDAR branches. However, due to the
progressive downsampling of features, our network requires fewer computational opera-
tions. As reported in Table 1, our teacher network shows better performance compared
to Self S2D. The small student network trained from scratch shows poor performance, as
expected. However, with various distillations, including PROB [30] and ATT [31], the small
network achieves a substantial performance improvement. Furthermore, the proposed
LSPKD outperforms both PROB and ATT. In addition, LSPKD can be seamlessly combined
with PROB and ATT to further improve the performance. We argue that the reason for
the superiority of the LSPKD is that the local information is highly important in depth
completion tasks. Figure 2 shows qualitative comparisons on the KITTI DC dataset. Com-
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pared to the other methods, our method successfully preserves fine depth structures for
dense prediction.

Table 1. Quantitative evaluation results on the KITTI DC validation dataset [32] (T: Teacher, S: Student,
D: Distilled).

Network # Params (M)/GFLOPs (912 × 220) Distillation
Metrics

RMSE MAE iRMSE iMAE

Self S2D [33] 26.11/637.89 - 878.6 260.9 3.3 1.3

ResNet34 (T) 51.77/349.36 - 865.2 222.1 2.4 1.0

ResNet18 (S) 8.56/59.22 - 921.5 233.3 2.7 1.0

ResNet18 (D) 8.56/59.22

PROB [30] 902.6 243.3 8.5 1.1

ATT [31] 907.6 245.0 2.7 1.1

Ours 893.0 234.9 2.8 1.0

Ours + PROB 893.7 238.6 2.6 1.0

Ours + ATT 893.3 243.5 2.6 1.0

Ours + PROB + ATT 891.8 238.6 2.7 1.0

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Depth prediction results on the KITTI DC validation dataset [32]. (a) RGB. (b) Sparse Depth.
(c) GT. (d) Teacher. (e) Student. (f) PROB [30]. (g) ATT [31]. (h) Ours.

3.3. NYU Depth V2

The NYU Depth V2 (NYUv2) dataset [28] consists of approximately 50K RGB and
depth images for the training and 1.5K images for the evaluation, respectively. The teacher
and student networks are trained for 15 epochs with a batch size of 32, similarly to the
KITTI DC dataset configuration. For the student network, the number of channels in all the
layers is reduced to 1/8 (i.e., 1.30% parameters) and w2 is set to 0.1.

Table 2 provides quantitative evaluations on the NYUv2 validation set. Due to the sig-
nificantly reduced number of parameters, PROB [30] failed to improve the student network
(i.e., worse performance than the student trained from scratch). Contrarily, the proposed
LSPKD successfully distilled the student network and outperformed the naive student
network. Different from the KITTI DC case, combining conventional algorithms does not
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always lead to improved performance in the NYUv2. Therefore, we conclude that our
LSPKD is sufficient for highly lightweight network distillation.

Table 2. Quantitative evaluation results on the NYUv2 validation dataset [28] (T: Teacher, S: Student,
D: Distilled).

Network # Params (M)/GFLOPs (304 × 228) Distillation
Metrics

RMSE REL δ1.25 δ1.252 δ1.253

S2D + SPN [8,27] 31.88/24.53 - 172.0 0.0310 0.9710 0.9940 0.9980

DeepLiDAR [34] 143.98/502.12 - 115.0 0.0220 0.9930 0.9990 1.0000

ResNet34 (T) 51.77/112.32 - 114.4 0.0184 0.9932 0.9989 0.9998

ResNet18 (S) 0.66/1.46 - 152.1 0.0282 0.9875 0.9978 0.9995

ResNet18 (D) 0.66/1.46

PROB [30] 154.8 0.0328 0.9891 0.9982 0.9996

ATT [31] 149.9 0.0302 0.9891 0.9982 0.9996

Ours 138.8 0.0248 0.9899 0.9984 0.9997

Ours + PROB 138.9 0.0249 0.9900 0.9984 0.9997

Ours + ATT 138.7 0.0248 0.9899 0.9984 0.9997

Ours + PROB + ATT 143.6 0.0268 0.9899 0.9984 0.9997

3.4. Ablation Studies

In this subsection, we provide analyses of the impact of layer selection for distillation
and robustness to the sparsity of the supervision signal to verify the effectiveness of
our algorithm.

3.4.1. Layer Selection for Distillation

The effectiveness of the distillation on each layer of a deep network can vary drasti-
cally depending on the network architecture or target tasks. Table 3 shows performance
comparison results with various combinations of layers for the distillation. Overall, the
distillation performance is poor when using only the layers in the encoder. Moreover, the
performance is degraded when using only the high-level feature layers of the encoder
and decoder (i.e., {E2, E2, E4} and {D0, D1, D2} in Figure 1). In contrast, mid-level layers
(i.e., {E1, E2, E3} and {D1, D2, D3} in Figure 1) have shown a substantial performance im-
provement when used for the distillation. We presume that the similarities of very low-level
or very high-level layers provide limited local or overly wide-range information that is not
suitable for depth completion. Thus, we have adopted {E1, E2, E3} and {D1, D2, D3} for
the distillation for all experiments.

3.4.2. Sparsity of Supervision

The KITTI DC dataset provides semi-dense ground-truth depth data for the training
by accumulating a number of successive frames to the reference frame with outlier filter-
ing. The density (i.e., precision) of the GT can vary depending on how many frames are
accumulated. Therefore, this level of GT density is often not available in various real-world
scenarios. In the extreme case, there may be only one frame to produce the GT depth data,
in which case only very sparse depth data (e.g., exactly the same as the input LiDARs)
are available. Therefore, we validate the effectiveness of our method with highly sparse
supervision signals (i.e., self-supervision with input LiDARs).

We trained the student network with very sparse depth data instead of GT ones. Note
that the teacher network is trained by GT and its parameters are fixed during the distillation.
Each distillation method achieved the following RMSE: {Naive student: 16140.7, PROB [30]:
1185.4, ATT [31]: 1197.3, Ours: 1179.0}. Note that the density of sparse supervision decreases
to 9.1% of the semi-dense GT; therefore, the naive student failed to converge and the overall
performance is decreased for all methods. However, our method still achieves the best
performance compared to the others. This result empirically demonstrates that our LSPKD
is robust to the density of supervision signals thanks to the local similarities.
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Table 3. Performance comparison with various combinations of layers for the distillation on the
KITTI DC validation dataset [32].

Encoder Decoder Metrics

E0 E1 E2 E3 E4 D0 D1 D2 D3 D4 RMSE MAE iRMSE iMAE

- - ✓ ✓ ✓ - - - - - 899.3 241.8 2.7 1.1

- - - - - ✓ ✓ ✓ - - 897.1 239.9 2.9 1.0

- ✓ ✓ ✓ - - - - - - 894.4 235.5 2.5 1.0

- - - - - - ✓ ✓ ✓ - 896.4 237.9 2.6 1.0

✓ ✓ ✓ - - - - - - - 901.7 239.4 2.8 1.1

- - - - - - - ✓ ✓ ✓ 899.8 242.0 2.6 1.0

✓ ✓ ✓ ✓ - - - - - - 898.1 237.2 2.6 1.0

- - - - - - ✓ ✓ ✓ ✓ 894.1 238.3 2.6 1.0

- - ✓ ✓ ✓ ✓ ✓ ✓ - - 902.8 236.7 2.7 1.0

- ✓ ✓ ✓ - - ✓ ✓ ✓ - 893.0 234.9 2.8 1.0

✓ ✓ ✓ - - - - ✓ ✓ ✓ 898.7 236.8 2.6 1.0

✓ ✓ ✓ ✓ - - ✓ ✓ ✓ ✓ 894.9 235.7 2.6 1.0

3.4.3. Comparison to Global Similarity-Preserving KD

We compare the proposed LSPKD with a global similarity-preserving KD method (i.e.,
SPKD [15]) to validate the efficiency and effectiveness of our method. Because the SPKD
requires a huge amount of memory to distill low- and mid-level features, we have distilled
{E2, E3, E4} and {D0, D1, D2} for comparison with the batch size 12, and we obtained
the following RMSE and GPU memory consumption for the training per image: {SPKD:
901.6/7.2 GB, LSPKD: 903.6/1.70 GB, LSPKD (Mid-level): 893.0/1.71 GB}. Note that our
method shows comparable performance to the SPKD, and outperforms it with the mid-level
feature distillation. Low- or mid-level distillations are possible only for our LSPKD because
the GPU memory requirement is significantly smaller compared to that of the original
SPKD. Therefore, we conclude that our method is suitable for distilling low- or mid-level
features without enormous GPU memory requirements for both training and inference for
efficiency and performance improvement.

4. Conclusions

In this paper, we have proposed a lightweight depth completion network with local
similarity-preserving knowledge distillation. A lightweight depth completion network is
effectively trained by the proposed distillation algorithm, with low computational costs
for both training and inference stages. The trained network maintains performance
comparable to that of previous depth completion networks and superior to the performance
of a student network without distillation. Additionally, the experimental result shows
that our LSPKD outperforms previous distillation algorithms in both indoor and outdoor
datasets. Moreover, the proposed method is verified to be robust to the density level of the
supervision signals. For future works, various similarity metrics can be considered for the
local similarity estimation.
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