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Abstract—This paper focused on improving a model predic-
tive control (MPC) using Laguerre functions. This study was
conducted to achieve high performance while reducing the com-
putational complexity of MPC for autonomous vehicle tracking
control. Previous studies have used a conventional linear time-
varying MPC (LTV-CMPC) for the linear time-varying (LTV)
vehicle model. For LTV-CMPC, the computational complexity
increases exponentially as a predictive horizon and control hori-
zon increase. Real-time implementation of LTV-CMPC with long
horizons was difficult due to limited computational resources.
For reducing computational complexity, we proposed LTV-MPC
using Laguerre functions (LTV-LMPC). Considering the vehicle
system, LTV-LMPC used a non-augmented model and described
the input rate as Laguerre functions. The proposed LTV-LMPC
significantly reduced the number of optimization variables. The
number of Laguerre functions and the Laguerre pole determined
the performance of the LTV-LMPC. In this study, we derived
and proved propositions for analyzing the performance change
of LTV-LMPC according to the Laguerre pole. LTV-LMPC
with pole optimization (LTV-OLMPC) was proposed based on
these propositions. The performance of the proposed algorithm
was verified by simulation. The LTV-OLMPC guarantees low
computational complexity and high performance.

Index Terms—Autonomous vehicle, Laguerre functions, La-
guerre pole optimization, Model predictive control (MPC), Track-
ing control.

I. INTRODUCTION

INTELLIGENT transportation systems are attracting at-
tention due to the development of sensors and control

technologies [1]. Advanced driver assistance systems, which
provide adaptive cruise control [2], [3], and lane-keeping assist
[4], [5] assist the driver by reducing some of the tedious parts
of driving [6]. Moreover, autonomous vehicle technology has
also attracted attention, which improves driving safety, effi-
ciency, and comfort [7]. The core technologies of autonomous
driving include perception, decision making, path planning,
and tracking control. Among these, only tracking control is
directly involved in the vehicle movement. Therefore, a precise
tracking control algorithm is essential to ensure the stability
of autonomous driving [8].

The primary goal of the tracking control algorithm is to
track reference paths. Due to the complexity of vehicle sys-
tems, precise tracking control along reference paths is not easy.
Vehicle models are essential for accurate tracking control.
Vehicle models such as the improved kinematic model [9],
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path preview model [10], and bicycle model [11] have been
used for tracking control. A simple model, a bicycle model, has
been used in many previous studies because of its simplicity
[12]. For the same reason, the bicycle was used as a vehicle
model in this study. The tracking control algorithms have been
proposed based on sliding mode control [13], linear quadratic
Gaussian control [14], nonlinear adaptive control [15], and
model predictive control (MPC) [16]. Among these options,
MPC has been used in many tracking control studies because
it uses moving horizons and can consider constraints easily
[17].

MPC is a well-known and widely used optimal control
algorithm. Conventional MPC (CMPC) is robust against model
uncertainty and disturbance due to the characteristic of reced-
ing horizon control by which it calculates input for each step
[18]. It also uses a moving horizon window. Thus, not only
regulation control but also tracking control is possible [19]. In
the field of autonomous driving, tracking control algorithms
have been proposed using CMPC for lane-keeping [20], lane
change [21], and collision avoidance [22]. The vehicle model
was a time-varying system that changes according to vehicle
velocity. Therefore, linear time-varying CMPC (LTV-CMPC)
has been proposed and used [8], [23]. For CMPC, the horizon
window is determined by the predictive and control horizon.
Precise control requires a large prediction horizon and a
control horizon. However, it is impossible to use a vaguely
large horizon window because of limited computational re-
sources [24]. For this reason, autonomous driving systems
using CMPC had no choice but to use a small horizon window.
This phenomenon may led to poor control performance.

To overcome this, MPC using Laguerre functions (LMPC)
has been proposed. The LMPC had the characteristic that it
can drastically reduce the number of optimization variables.
Therefore, computational complexity increases in proportion
to the square of the horizon in CMPC, whereas it increases
in proportion to the horizon in LMPC [19]. These LMPC
characteristics have advantages when using a large horizon
with limited computational resources. In autonomous driving
and vehicle control, LMPC has sometimes been applied [25],
[26]. Research on linear time-varying LMPC (LTV-LMPC)
has been beginning in various fields [27], [28]. In this study,
considering the characteristics of the vehicle model, LTV-
LMPC using a non-augmented model and describing the input
rate as a Laguerre function was proposed and applied to the
tracking control system.

The performance of LTV-LMPC depends on the character-
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istics of the Laguerre functions and the number of Laguerre
functions used. LTV-LMPC with many Laguerre functions
guaranteed high performance regardless of the Laguerre func-
tion used [19]. However, because of the limitation of compu-
tational resources, the number of Laguerre functions is also
limited. Therefore, for LTV-LMPC with a limited number of
Laguerre functions, the tracking control performance varies
depending on the characteristics of the Laguerre function
utilized [24].

The characteristics of the Laguerre function are determined
by the Laguerre pole, which determines the decay rate of
the control signal. A low Laguerre pole represents a La-
guerre function with a fast decay rate, and a high Laguerre
pole represents a Laguerre function with a slow decay rate.
Therefore, it is essential to select an appropriate Laguerre
pole for the performance of LTV-LMPC. In most previous
studies, the Laguerre pole was selected through experimental
tuning, and there was no detailed analysis of this. In addition,
some previous studies have made efforts to find the optimal
Laguerre pole offline, not in real-time [24], [29]. However, the
optimal Laguerre pole changes depending on the initial states
and references. In the LTV system, the optimal Laguerre pole
changes more significantly. Therefore, real-time Laguerre pole
optimization is essential to ensure the performance of LTV-
LMPC.

Previous studies did not address how to optimize the
Laguerre pole in real-time. The complexity of LTV-LMPC
made it hard to analyze the effect of the Laguerre pole on
LTV-LMPC performance. To overcome this, based on the
Laguerre pole characteristics, we derived propositions and
corollary that can analyze the performance change of LTV-
LMPC according to the Laguerre pole. It enables real-time
Laguerre pole optimization. Furthermore, it could be used as a
general framework to analyze the performance of LTV-LMPC
according to the Laguerre pole.

This study proposed a Laguerre pole optimization algorithm
based on the derived propositions and corollary. The gradient
descent algorithm was applied as the Laguerre pole adaptation
algorithm. The gradient descent algorithm has a local mini-
mum issue. Nevertheless, the gradient descent algorithm has
the advantage of being simple to compute. If the computa-
tional complexity of the Laguerre pole adaptation algorithm is
large, it may be efficient to increase the number of Laguerre
functions. In this respect, the gradient descent algorithm was
attractive. The local minimum issue using gradient descent
was dealt with in detail in Section V. Finally, LTV-LMPC
with pole optimization (LTV-OLMPC) was proposed.

The main contributions of this study are as follows: (1) An
LTV-LMPC algorithm suitable for the vehicle tracking control
using a non-augmented model was proposed. (2) Propositions
and corollary to analyze the performance of LTV-LMPC
according to Laguerre pole change were derived and proved.
(3) A real-time Laguerre pole optimization algorithm and
LTV-OLMPC were proposed. The performance was analyzed
for the static obstacle avoidance scenario considering the
preceding vehicle through CarSim.

The rest of the paper is organized as follows. Section II
provides the vehicle dynamics model for tracking control. In
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Fig. 1. Model used by model predictive control for tracking control.
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Fig. 2. 2-DOF bicycle model.

Section III, LTV-CMPC for tracking control is introduced.
In Section IV, propositions and corollary for analyzing the
performance according to the Laguerre pole change are derived
and proved. Also, LTV-LMPC and LTV-OLMPC are proposed.
The performance validation results by the simulations are
provided in Section V. Conclusions and future works are
presented in Section VI.

II. VEHICLE DYNAMIC MODEL FOR TRACKING CONTROL

The vehicle model was used for tracking control. A suitable
vehicle model is significant for the design of the tracking con-
trol algorithm. Many previous studies which develop control
algorithms rather than vehicle modeling have used a bicycle
model and a linear tire model [20], [30], [31]. Likewise, this
study aimed to develop the advanced model predictive control
algorithm. Therefore, the vehicle model consisted of a bicycle
model, a linear tire model, and an error dynamics model in
this study. The vehicle states and tracking errors are as shown
in Fig. 1.

The bicycle model describes the vehicle as a 2-degrees of
freedom (DOF) model. The vehicle bicycle models used in
this study are as shown in Fig. 2. The vehicle parameters used
are as shown in Table I. The force balance equation and the
torque balance equation are as follows:

m1ay = Fyf + Fyr

Izφ̈ = lfFyf − lrFyr
(1)
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TABLE I
SPECIFICATIONS OF THE VEHICLE.

Symbol Parameter Value
m Mass of the vehicle 1830 kg
Iz Yaw inertia of the vehicle 3.77× 103 kgm2

lf Front length of the center of gravity 1.41m
lr Rear length of the center of gravity 1.64m
Cf Cornering stiffness of the front axle 1.47× 105 N/rad
Cr Cornering stiffness of the rear axle 1.30× 105 N/rad

The kinematic constraints between sideslip angle, yaw rate,
velocity, and lateral acceleration are as follows:

ay = φ̇vx + β̇vx (2)

The linear tire model was used to describe the tire lateral
force. The linear tire model is suitable for describing tire force
when the tire slip angle is small. It has advantages in model
simplicity and computational complexity because it linearly
describes the relationship between tire slip angle and tire
lateral force. In this study, the lateral tire force was expressed
through cornering stiffness and tire slip angle as follows:

Fyf = −Cfαf = −Cf

(
β +

lf

vx
φ̇− δ

)

Fyr = −Crαr = −Cr

(
β −

lr

vx
φ̇

) (3)

Error dynamics were added to describe tracking errors. The
tracking errors of the vehicle for the reference path consisted
of lateral error and yaw angle error, as shown in Fig. 1. The
dynamics of lateral error and yaw angle error are as follows:

ėφ = φ̇− φ̇des

ėy = vy + vxeφ
(4)

Finally, vehicle dynamics for tracking control, including the
bicycle model, the linear tire model, and error dynamics are
as follows:

Let, x =
[
vy φ̇ eφ ey

]T
,u = δ, r = φ̇des,

y =
[
vy φ̇ eφ ey

]T
ydes =

[
0 φ̇des 0 0

]T
ẋ = Acx+Bcu+Brcr,
y = Ccx, ydes = Drcr,

where

Ac =


−
Cf + Cr

mvx

− Cf lf + Crlr

mvx
− vx 0 0

− Cf lf + Crlr

Izvx
−
Cf l

2
f + Crl

2
r

Izvx
0 0

0 1 0 0
1 0 vx 0

 ,

Bc =


Cf

m
Cf lf

Iz
0
0

 ,Brc =


0
0
−1
0

 ,Cc = I4×4,Drc =


0
1
0
0


(5)

where vy is the lateral velocity, φ̇ is the yaw rate, eφ is the yaw
angle error, and ey is the lateral error. Here, φ̇ is measured

directly by the vehicle inertial measurement unit, and it was
assumed that vy , eφ, and ey could be estimated. It was also
assumed that the cornering stiffness of the front and rear axles
are known. The input is the forward steering angle, δ.

When describing vehicle dynamics in this paper, vy was
used instead of sideslip angle. When vy is used as a state, Bc

can be expressed independently of vx. This has the advantage
that Bc is time-invariant. The vehicle model was converted to
a discrete-time system.

x(k + 1) = Akx(k) +Bu(k) +Brr(k),
y(k) = Cx(k),ydes(k) = Drr(k),

where Ak ≡ A(k) = I4×4 +Ac|vx=vx(k)△t
B = Bc△t, Br = Brc△t

C = Cc, Dr = Drc

(6)

where △t is the sampling time. Because vx varied with time,
Ak was time-varying. And B, Br, C, and Dr were time-
invariant because they were not affected by vx. Moreover, we
assumed that the future velocity profile, vx, is known through
path planning [32]. That is, the future system matrix is known.

III. CONVENTIONAL MODEL PREDICTIVE CONTROL FOR
TRACKING CONTROL

In this study, LTV-CMPC was introduced as a path tracking
control algorithm. The vehicle model was used to predict
future tracking errors. Tracking errors were predicted up to
the predictive horizon, and control inputs were optimized up to
the control horizon. The cost function consisted of a quadratic
form of input and tracking errors. Weight matrices determined
the weights between the input and the tracking error. The
optimized control inputs over the control horizon satisfied the
constraints and minimize the cost function.

A. Formulation of Path Tracking Control Problem

The purpose of tracking control was to find the optimal
control input that minimized the cost function. Q and R
determined the weights of tracking errors and inputs. A large
Q reduced the tracking error, and a large R reduced the input
rate. The predictive horizon (Np) and control horizon (Nc) set
the prediction and optimization horizon. In this paper, terminal
costs were not considered for algorithm clarity but could easily
be included. In path tracking control, the cost function was
expressed as in (7).

Model prediction control has the advantage of being able
to consider constraints easily [19]. Introducing appropriate
constraints is essential for controller implementation and ve-
hicle safety. This study aimed to improve the path tracking
algorithm, not to set the constraints precisely. Therefore,
commonly used constraints on input rate (△δ), input value (δ),
sideslip angle (β = vy/vy), and lateral acceleration (ay ≈ φ̇vx)
were considered. Path tracking control was transformed into an
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optimal control problem using vehicle models, cost functions,
and constraints.

min
u

J =

Np∑
m=1

∥y(k +m|k)− ydes(k +m)∥Q

+

Nc−1∑
m=0

∥△u(k +m)∥R

s.t. x(k + 1) = Akx(k) +Bu(k) +Brr(k)

△δmin ≤ △δ ≤ △δmax

δmin ≤ δ ≤ δmax

βmin ≤ β ≤ βmax

ay,min ≤ φ̇vx ≤ ay,max

(7)

Finally, the optimized control input satisfying the above
constraints and minimizing the cost function was chosen as
the tracking control input.

B. Conventional Model Predictive Control for Linear Time-
varying System (LTV-CMPC)

For LTV-CMPC, predicting future tracking errors was done
first. A future tracking error that occurred during a predictive
horizon is as (8).

Using the prediction model, the cost function of (7) was
transformed to (9). The cost function, independent of the input,
is expressed as J0C .

min
u

J = UT (Ψ
T
QΨ+R)U

+ 2UT
(
ΨTQ(Fx(k) +ΛRdes −Ydes)−Gu(k − 1)

)
+ J0C

where J0C = ∥Fx(k) +ΛRdes −Ydes∥Q + ∥u(k − 1)∥R
G =

[
R 0 · · · 0

]T
,

Q =


Q 0 · · · 0
0 Q · · · 0
...

...
. . .

...
0 0 · · · Q

 , R =


2R −R · · · 0
−R 2R · · · 0

...
...

. . .
...

0 0 · · · R


(9)

Constraints can be expressed as (10) through pair of the
matrix and vector for inequality constraints. The constraints
handling method introduced in [19] was applied to construct
MLTV-CMPC, γLTV-CMPC.

MLTV-CMPCU ≤ γLTV-CMPC (10)

The optimal control input that minimizes the cost function
is expressed as (11).

U =− (ΨTQΨ+R)−1

×
(
ΨTQ(Fx(k) +ΛRdes −Ydes)−Gu(k − 1)

) (11)

Constraints were satisfied through Hildreth’s quadratic pro-
gramming [19].

Û = U+Uconst (12)

where Uconst was modified input to satisfy the constraints.
Finally, applying the receding horizon, the optimal control
input for each step was given as follows:

uLTV-CMPC(k) = Û(1) (13)

IV. MODEL PREDICTIVE CONTROL USING LAGUERRE
FUNCTIONS FOR TRACKING CONTROL

The idea behind reducing the computational complexity
of LTV-MPC was to describe the future control input as
the sum of several orthonormal functions. The Nc future
control inputs were described as a linear combination of N
orthonormal functions. With this, the optimization variable was
reduced from Nc to N . Functions, such as Kautz functions
[19] and general orthonormal functions [33] have been pro-
posed as orthonormal functions. The Laguerre function has
been often used because of its simplicity and good system
description. In this study, LTV-LMPC that considered vehicle
tracking control characteristics was proposed. The number of
Laguerre functions (N ) and the Laguerre pole (a) determine
the performance of the LTV-LMPC. However, most studies
have excluded analysis of the Laguerre pole. In this study,
propositions and corollary about the effect of the Laguerre
pole on LTV-LMPC performance were derived and proved.
Finally, an LTV-OLMPC was proposed.

Y −Ydes = Fx(k) +ΨU+ΛRdes −Ydes

where Y =

 y(k + 1|k)
...

y(k +Np|k)

Ydes =

 ydes(k + 1)
...

ydes(k +Np)

Rdes =

 φ̇des(k)
...

φ̇des(k +Np − 1)

U =

 u(k)
...

u(k +Nc − 1)



F =


Ak

Ak+1Ak

...∏Np−1
m=0 Ak+m

 ,Ψ =


B 0 · · · 0

Ak+1B B · · · 0
...

...
. . .

...∏Np−1
m=1 Ak+mB

∏Np−1
m=2 Ak+mB · · ·

∏Np−1
m=Nc

Ak+mB

 ,

Λ =


Br 0 · · · 0

Ak+1Br Br · · · 0
...

...
. . .

...∏Np−1
m=1 Ak+mBr

∏Np−1
m=2 Ak+mBr · · · Br



(8)
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A. Laguerre Functions

The Laguerre network is determined by the number of
functions used (N ) and the Laguerre pole (a). A discrete-time
Laguerre network is shown in Fig. 3. The z-transforms of the
discrete-time Laguerre networks are as follows:

Γa,n(z) =

√
1− a2

1− az−1

(
z−1 − a

1− az−1

)n−1

(14)

where Γa,n(z) is the nth Laguerre network. The Laguerre
function is defined as the inverse z-transform of the Laguerre
network.

ln(k) = Z−1 (Γa,n(z)) (15)

The sequence of Laguerre functions can be expressed in the
vector form as (16).

La,N (k) =
[
la,1(k) la,2(k) · · · la,N (k)

]T (16)

The Laguerre function sequence satisfied the following
difference equation in state-space form.

La,N (k + 1) = Ala,NL(k)
where β = (1− a2),

La,N (0) =
√
β
[
1 − a · · · (−1)N−1aN−1

]T
Ala,N =


a 0 · · · 0
β a · · · 0
...

...
. . .

...
(−1)N−2aN−2β (−1)N−3aN−3β · · · a


(17)

These Laguerre function properties were utilized in the LTV-
LMPC configuration and pole optimization.

B. Model Predictive Control Using Laguerre Functions for
Linear Time-Varying System (LTV-LMPC)

In this section, an LTV-LMPC suitable for vehicle tracking
control was proposed. Unlike previous studies, this study used
the non-augmented model. If the commonly used augmented
model is used, the future desired curvature rate (φ̈des) is used,
which may cause problems such as continuity. Therefore, a
non-augmented form was appropriate for the vehicle model.
Also, it was hard to describe distant future inputs due to
the decaying property of Laguerre functions [19]. Therefore,
the future control input rate, not the future control input,
was described using Laguerre functions. The proposed LTV-
LMPC was analyzed not only for the regulation problem but
also for the tracking control. In all formulas, the subscript

N represented the result of using N Laguerre functions. The
future control input and future control input rates are expressed
as (18).

△ua,N (k +m) =

N∑
n=1

ca,nla,n(m) = La,N (m)T ηa,N

ua,N (k +m) = u(k − 1) +

m∑
i=0

La,N (i)T ηa,N

where ηa,N =
[
ca,1 ca,2 · · · ca,N

]T
(18)

where ca,i is the coefficient of the ith Laguerre function. The
predicted states for the future control input rate are expressed
as (19).

xa,N (k +m|k) = λ(k,m)T + ϕa,N (k,m)T ηa,N

where

λ(k,m)T =
m−1∏
j=0

Ak+jx(k)+m−1∑
i=0

 m−1∏
j=i+1

Ak+j

 (Brr(k + i) +Bu(k − 1))


ϕa,N (k,m)T

=


m−1∑
i=0

 m∑
p=i+1

m−1∏
j=p

Ak+j

BLa,N (i)T



(19)

Also, ϕa,N (k,m) and λ(k,m) can be calculated by a con-
volution sum as (20). These properties reduced computational
complexity.

ϕa,N (k,m)T =Ak+m−1ϕa,N (k,m− 1)T +B

m−1∑
i=0

La,N (i)T

λ(k,m)T =Ak+m−1λ(k,m− 1)T

+Bu(k − 1) +Brr(k +m− 1)
(20)

Constraints can also be satisfied by LTV-LMPC as follows:

Ma,Nηa,N ≤ γ
where m = 0, 1, · · · , Np − 1,

Ma,N =



...
La,N (m)T

−La,N (m)T∑m
i=0 La,N (i)T

−
∑m

i=0 La,N (i)T

ϕa,N (k,m)T

−ϕa,N (k,m)T

...


, γ =



...
△δmax

−△δmin

δmax − u(k − 1)
−δmin + u(k − 1)
xmax − λ(k,m)T

−xmin + λ(k,m)T

...


,

xmax = [βmaxvx(k +m) ay,max/vx(k +m)∞∞]T ,
xmin = −[βminvx(k +m) ay,min/vx(k +m)∞∞]T

(21)

Finally, LTV-LMPC was transformed into quadratic pro-
gramming (QP) problem, as shown in (22). Furthermore, the
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constant cost function independent of the input is expressed
as J0L.

min
ηa,N

Ja,N = ηTa,NΩa,Nηa,N + 2ηTa,NΦa,N + J0L

s.t. Ma,Nηa,N ≤ γ

where J0L =

Np−1∑
m=1

(
λ(k,m)T−ydes

)T
Q
(
λ(k,m)T−ydes

)
Ωa,N =

Np−1∑
m=1

ϕa,N (k,m)Qϕa,N (k,m)T+RL,N

Φa,N =

Np−1∑
m=1

ϕa,N (k,m)Q
(
λ(k,m)T−ydes

)
RL,N = R× IN×N

(22)

The optimal control input that minimizes the cost function
is as follows:

ηa,N = −Ω−1
a,NΦa,N (23)

The constraints were satisfied using Hildreth’s quadratic
programming. The constrained optimal input is expressed as
(24). These expressions were used in pole optimization.

η̂a,N = ηa,N −Ω−1
a,NMT

a,N,actλa,N,act

where λa,N,act = −H−1
a,N,actKa,N,act

Ha,N,act = Ma,N,actΩ
−1
a,NMT

a,N,act

Ka,N,act = γact +Ma,N,actΩ
−1
a,NΦa,N

(24)

The subscript “act” in (24) means the active constraint set
[19]. Finally, the optimal control input through LTV-LMPC is
described as follows:

△uLTV-LMPC(k) = La,N (0)T η̂a,N

uLTV-LMPC(k) = u(k − 1) + La,N (0)T η̂a,N
(25)

In this section, a tracking control algorithm through LTV-
LMPC was proposed. The proposed LTV-LMPC was suitable
for the vehicle tracking controller.

C. Minimum Cost Function for Various Laguerre Poles

In this section, the minimum cost function was analyzed
according to the Laguerre pole. The optimal Laguerre pole
minimizes the minimum cost function. In the LTV system,
the optimal Laguerre pole changes according to the initial
condition, reference path, and velocity. The minimum cost
function analysis was preceded to analyze the effect of the
Laguerre pole. The minimum cost function was defined as the
value obtained by substituting the optimal control input of (24)
into the cost function in (22). The minimum cost function for
LTV-LMPC is as follows:

Jmin,a,N

= −ΦT
a,NΩ−1

a,NΦa,N +KT
a,N,actH

−1
a,N,actKa,N,act + J0L

(26)

The effect of the Laguerre pole on LTV-LMPC performance
was analyzed through simple simulations. The vehicle model,
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Fig. 4. Minimum cost function for various numbers of Laguerre functions
and Laguerre poles. (a) Simulation at 60km/h. (b) Simulation at 90km/h.

defined in Section II, was used for the simulation. Here, △t =
20ms, Np = 100, φ̇des = 0, x(k) = [0, 0, 0, 4]T . For two
velocities (vx = 60 and 90 km/h) and four different numbers
of Laguerre functions (N = 4, 6, 8, and 10), the minimum
cost function values were compared according to the Laguerre
pole. The simulation results are as shown in Fig. 4.

As shown in Fig. 4, as the number of Laguerre functions
increases, the minimum cost function decreases. For a large
N , the properly tuned Laguerre pole did not degrade LTV-
LMPC performance. However, when it was not possible to
use a large N due to the limitation of the computational
resources, the Laguerre pole affected performance. As shown
in Fig. 4, the incorrectly selected Laguerre pole for a small
N caused performance degradation. In addition, there were
different optimal Laguerre poles depending on the velocity, as
shown in Fig. 4(a) and 4(b).

For a small N , selection of the optimal Laguerre pole
is essential, and this value changes with the velocity. Fur-
thermore, the optimal Laguerre pole changes with the initial
condition and the reference path. Therefore, to guarantee the
performance of LTV-LMPC using a small N , an algorithm
that optimizes the Laguerre pole in real-time is required.

D. Model Predictive Control Using Laguerre Functions with
Pole Optimization for Linear Time-Varying System (LTV-
OLMPC)

This section introduces an adaptation algorithm for optimiz-
ing the Laguerre pole in real-time. The partial derivative of the
minimum cost function for the Laguerre pole at the optimal
Laguerre pole is zero, as shown in (27).

∂Jmin,a,N

∂a

∣∣∣∣
a=aopt

= 0 (27)

It’s best to find all analytic solutions that make the above
equations zero, but it’s not easy. Because Jmin,a,N was a high-
order function for a. For this reason, in previous studies, the
Laguerre pole was experimentally tuned offline. However, if
the effect of the Laguerre pole on LTV-LMPC performance
is analyzed, it is also possible to optimize the Laguerre
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pole in real-time. In this study, propositions and corollary
for analyzing LTV-LMPC performance change according to
Laguerre pole change were derived and proved. The property
of the Laguerre function used for derivation is as shown in
Theorem IV.1 [34]. Also, the proposed algorithm uses N + 1
Laguerre functions. Of these, the N Laguerre functions were
used to find the optimal control input, and one Laguerre
function was used to optimize the Laguerre pole. The subscript
N +1 (ex. Φa,N+1) indicates a value calculated using N +1
Laguerre functions. Also, the subscript N (ex. Φa,N ) indicates
a value calculated using N Laguerre functions.

Theorem IV.1. For the nth order Laguerre function with the
Laguerre pole, a, the following condition holds:

∂la,n(m)

∂a
=

1

1− a2
[nla,n+1(m)− (n− 1)la,n−1(m)] (28)

The following proposition was derived based on the La-
guerre function property, as in Theorem IV.1.

Proposition 1. For any k, m, the partial derivative of
ϕa,N (k,m), derived from N Laguerre functions, for a is
expressed as a linear combination of ϕa,N+1(k,m), derived
from N + 1 Laguerre functions, as follows:

∂

∂a
ϕa,N (k,m)T = ϕa,N+1(k,m)TTT

a

where Ta =
1

1− a2


0 1 · · · 0 0 0
−1 0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · 0 N − 1 0
0 0 · · · −(N − 1) 0 N


(29)

Proof. Please refer to Appendix VI-A.

A consequence of Proposition 1 is the statement of the
following corollary.

Corollary 1. The partial derivatives of Ωa,N , Φa,N , and
Ma,N , derived by N Laguerre functions, for a are expressed
as follows:

∂

∂a
Ωa,N =Ta(Ωa,N+1 −RL,N+1)E

T

+E(Ωa,N+1 −RL,N+1)T
T
a

∂

∂a
Φa,N =TaΦa,N+1

∂

∂a
MT

a,N =TaM
T
a,N+1

where E =
[
IN×N 0N×1

]
(30)

Corollary 1 expresses the partial derivative of matrices,
derived from LTV-LMPC, for a. The N+1 Laguerre functions
were required for the partial derivative of N Laguerre func-
tions. Using Corollary 1, the partial derivative of Jmin,a,N for
a is expressed as the following proposition:

Proposition 2. For constrained LTV-LMPC, the partial
derivatives of Jmin,a,N , the minimum cost function of LTV-
LMPC, for a is expressed as follows:

∂Jmin,a,N

∂a
= η̂Ta,N

(
TaΩa,N+1E

T +EΩa,N+1T
T
a

)
η̂a,N

+2η̂Ta,N
(
TaΦa,N+1 +TaM

T
a,N+1,actλa,N,act

)
(31)

Proof. Please refer to Appendix VI-B.

Such propositions and corollary enable an analysis of the
performance of LTV-LMPC according to the Laguerre pole.
In previous studies, it has been observed that performance
changes as the Laguerre pole changes. However, the analysis
was insufficient due to the absence of the above relational
expression. The derived propositions and corollary were used
in the Laguerre pole optimization algorithm.

The optimal Laguerre pole that satisfies (27) was adapted
using the gradient descent method as follows:

aadap(k + 1) = aadap(k)− ω
∂Jmin,N

∂a

∣∣∣∣
a=aadap(k)

(32)

where ω is the weighting coefficient and has a positive con-
stant. The gradient descent method has a local minimum issue.
Despite this, the gradient descent method has the advantage
of having low computational complexity. If the computational
complexity of the Laguerre pole optimization algorithm is
high, simply increasing the number of Laguerre functions may
be efficient, so this advantage is attractive. Also, in the case
of the used LTV-LMPC, the global minimum point changes
with time, and the cost function of the local minimum and
the global minimum do not differ significantly. Therefore,
the gradient descent method was applied. The local minimum
issue of the gradient descent method was discussed in detail
in Section V.

Finally, the control input was optimized using the optimized
Laguerre pole as (33).

△uLTV-OLMPC(k) = Laadap,N (0)T ηaadap,N

uLTV-OLMPC(k) = u(k − 1) + Laadap,N (0)T ηaadap,N

(33)

The complete algorithm of LTV-OLMPC is summarized in
Alg. 1.

V. SIMULATION RESULTS

A. Simulation Scenarios

The performance of the proposed algorithm was verified
by simulations using CarSim. The driving scenario was the
avoidance of static obstacles considering the preceding vehicle.
The ego vehicle was chosen as a general passenger vehicle.
Velocity profile and reference curve were made based on
previous path planning studies based on discrete optimization
[35], [32]. The velocity profile and reference curve are shown
in Fig. 5. The scenarios consisted of (1) static obstacle
avoidance (∼ 600m,∼ 25 sec), (2) following the preceding
car (600 ∼ 950m, 25 ∼ 45 sec), and (3) lane change to the
initial lane (950m ∼, 45 sec ∼). Since this study deals with
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Algorithm 1 Algorithm for the proposed LTV-OLMPC
Input: x(k), vx(k),· · · ,vx(k+Np−1), φ̇des(k),· · · ,φ̇des(k+

Np − 1), u(k − 1), aadap(k − 1).
Output: u(k), aadap(k).

Initialisation : Q,R, ω > 0, N,Np ∈ Z, u(0) = 0,
aadap(0) ∈ (0.7, 1), constraints.

1: a← aadap(k − 1)
2: compute Ak, · · · ,Ak+Np−1,B,Br using (5), (6)
3: compute La,N (0),Ala,N using (17)
4: for m = 1 to Np − 1 do
5: La,N (k +m)← Ala,NL(k +m− 1)
6: convolution sum: ϕa,N (k,m), λ(k,m) using (20)
7: end for
8: compute using Ωa,N ,Φa,N ,Ma,N , γ (21), (22)
9: ηa,N ← −Ω−1

a,NΦa,N

10: if all states and inputs satisfy constraints then
11: η̂a,N ← ηa,N
12: TaM

T
a,N+1,actλa,N,act ← 0

13: else
14: solve λa,N,act using Hildreth’s quadratic programming

[19]
15: η̂a,N ← ηa,N −Ω−1

a,NMT
a,N,actλa,N,act

16: end if
17: u(k)← u(k − 1) + L(0)T η̂a,N
18: compute ∂Jmin,a,N/∂a using (31)
19: aadap(k)← a− ω × ∂Jmin,a,N/∂a

60
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0 500 1000 1500
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Fig. 5. Simulation scenario. (a) Velocity profile. (b) Reference curve.

the lateral tracking controller, the longitudinal tracking con-
troller for all algorithms was designed through conventional
PID control. The vehicle parameters and LTV-MPC tuning
parameters are shown in Tables I and II.

The comparison algorithms used were LTV-CMPC, LTV-
LMPC, and LTV-OLMPC. Several optimization variables were
used for each LTV-MPC algorithm. The number of optimiza-
tion variables was the control horizon (Nc) for LTV-CMPC,
and the number of Laguerre functions (N ) for LTV-LMPC
and LTV-OLMPC. The algorithms were evaluated using two
benchmarks. The first benchmark evaluated the tracking per-
formance of algorithms. Benchmark 1 was defined as the

TABLE II
TUNING PARAMETERS OF THE TRACKING CONTROL.

Symbol Parameter Value
△t Sampling time 20ms
Q Weight matrix for errors I4×4

R Weight matrix for input rate 1/△t2

Np Predictive horizon 100
Nc Control horizon for LTV-CMPC 20 ∼ 100
N Number of Laguerre functions 3 ∼ 11
a Laguerre pole 0.7 ∼ 1
ω Step size of the pole adaptation 1.5× 10−3

△δmax,△δmin Constraints of input rate ±180 deg/sec
δmax, δmin Constraints of input value ±360 deg
βmax, βmin Constraints of sideslip angle ±1 deg

ay,max, ay,min Constraints of lateral acceleration ±4m/s2

correlation coefficient between the input rate sequence over
the simulation of LTV-CMPC with Nc = Np = 100 and the
input rate sequence over the simulation of various LTV-MPC
algorithms. The input rate sequence through LTV-CMPC with
Nc = Np = 100 was the most optimal input rate solution.
Because it optimized all control input during the predictive
horizon. Therefore, as the correlation value is closer to 1, the
input rate sequence of the corresponding LTV-MPC is close
to optimal.

Benchmark 1: corr(△ULTV-CMPC,Nc=Np
,△U) (34)

where △ULTV-CMPC,Nc=Np
is the input rate sequence vector

over the simulation of LTV-CMPC with Nc = Np = 100,
△U is the input rate sequence vector over the simulation of
each LTV-MPC.

Benchmark 2 was defined as the maximum floating-point
operation (FLOP) for each step. FLOP is an objective indicator
of computational complexity and has been used to analyze
computational complexity [36], [37]. In addition, FLOP can
determine whether an algorithm is a real-time implementation.
The on-board CPU of autonomous vehicles recently supports
1 Giga FLOP (GLOP) [38]. Assuming that 10% of the
computational resource is used by the tracking controller, for a
sampling rate of 20ms, it can be calculated that the maximum
allowable FLOP is 2 Mega FLOP (2 MFLOP) as follows:

Maximum allowed FLOP =

0.1× 1GFLOP
1 sec

1 sec

50 samples
= 2MFLOP

(35)

The performance-to-computational complexity of the algo-
rithm was analyzed using benchmark 1 and benchmark 2.

B. Simulation Results

The performance of each LTV-MPC algorithm is shown
in Table III. The performance of each LTV-MPC algorithm
is also shown in Fig. 6, in which the x-axis represents
benchmark 1 and the y-axis represents benchmark 2. For
LTV-MPC algorithms, it is better to have a large bench-
mark 1 and a small benchmark 2. In other words, the al-
gorithm on the lower-right corner means better performance-
to-computational complexity. As a results, it was verified
that LTV-OLMPC, LTV-LMPC, and LTV-CMPC have high
performance-to-computational complexity in that order.
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TABLE III
PERFORMANCES OF TRACKING CONTROLLERS THROUGH SIMULATION.

Nc/N 20/3 30/4 40/5 50/6 60/7 70/8 80/9 90/10 100/11

Benchmark 1 LTV-CMPC 0.4513 0.7166 0.9431 0.9732 0.9854 0.9959 0.9992 0.9998 1
[-] LTV-LMPC 0.4323 0.8111 0.9379 0.9545 0.9685 0.9790 0.9897 0.9955 0.9966

LTV-OLMPC 0.8607 0.9350 0.9611 0.9739 0.9831 0.9867 0.9949 0.9974 0.9980
Benchmark 2 LTV-CMPC 46.9827 66.0467 88.1043 113.4597 142.4167 175.2795 212.3519 253.9381 300.0251

[MFLOP] LTV-LMPC 1.2900 1.7590 2.6611 4.2734 5.6425 8.1735 12.3389 15.3449 18.3553
LTV-OLMPC 0.9050 1.4327 3.0412 5.3688 7.4141 10.2388 13.3419 16.9162 20.6802

0.7 0.75 0.8 0.85 0.9 0.95 1
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Fig. 6. Performance of each tracking control algorithm with defined bench-
marks.
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Fig. 7. Tracking control performance of LTV-LMPC and LTV-OLMPC for
various numbers of the Laguerre functions.

The difference in benchmark 1 for LTV-LMPC and LTV-
OLMPC according to N is shown in Fig. 7. For large N (N =
8 to 10), there is no significant difference in performance
because the performance has already been saturated. However,
for small N (N = 3 to 7), there is a difference in performance
depending on the pole optimization. Hence, the proposed algo-
rithm has an advantage for systems with limited computational
resources.

Next, the tracking control results are analyzed. LTV-CMPC
with Nc = 100, whose inputs were optimized for all predictive
horizons, was used as the first comparison group. Although
this gives the best performance, real-time implementation is
impossible due to excessive computational complexity. LTV-
LMPC and LTV-OLMPC with N = 4, which are possible
for real-time implementation (benchmark 2 < 2 MFLOP),
were compared and analyzed. The analysis focused on static
obstacle avoidance (15 ∼ 25 sec) and lane change to initial
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Fig. 8. Simulation results. (a) Optimized input rate, steering wheel angle
rate. (b) Optimized input, steering wheel angle. (c) Sideslip angle. (d) Lateral
acceleration.

lane (45 ∼ 55 sec) situations. In Figs. 8 - 11, the graph
on the left shows the static obstacle avoidance situation,
and on the right shows the lane change to the initial lane
situation. Moreover, the dashed line indicates LTV-CMPC with
Nc = 100, the dotted line indicates LTV-LMPC with N = 4,
and the solid line indicates LTV-OLMPC with N = 4.

The input rate, input, sideslip angle, and lateral acceleration
are as shown in Fig. 8. The dash-dotted line indicates con-
straints. As shown in Fig. 8, all inputs and states satisfied the
constraints. As shown in Fig. 8(a) and 8(b), for an LTV-LMPC,
the control input rate and input were disparate from an LTV-
CMPC. On the other hand, an LTV-OLMPC had the control
input rate and input similar to an LTV-CMPC. Likewise, as
shown in 8(c) and 8(d), an LTV-OLMPC showed a closer
sideslip angle and lateral acceleration to an LTV-CMPC.

The longitudinal velocities and trajectories resulting from
the tracking control are as shown in Fig. 9. As shown in Fig.
9(a), the longitudinal velocities were the same control result
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Fig. 9. Longitudinal velocity and trajectory resulting from the tracking
control. (a) Longitudinal velocity. (b) Lateral position. (c) Lateral tracking
error.

because the PID controller was the same in all algorithms. The
lateral position and tracking error are as shown in Fig. 9(b)
and 9(c). The lateral position and tracking error of LTV-LMPC
showed some difference from that of LTV-CMPC. On the other
hand, the trajectory of LTV-OLMPC was almost similar to that
of LTV-CMPC. In other words, the proposed LTV-OLMPC
had a similar performance to that of the LTV-CMPC using
100 control horizons, even though only using four Laguerre
functions.

Fig. 10(a) shows the optimized Laguerre pole for each step.
As shown in Fig. 4, the minimum cost function according
to the Laguerre pole had several local minimums, including
the global minimum. In Fig. 10(a), the black region indicates
the region of global minimum and the gray region indicates
the region of local minimum, which is the second minimum.
These are the iteratively calculated results of changing the
Laguerre pole offline. As shown in Fig. 10(a), the global
minimum changed over time. This provided an opportunity for
the Laguerre pole to escape from the local minimum to the
global minimum. Simulation results show that the Laguerre
pole escaped from the local minimum to the global minimum
region at about 19, 47, and 49 sec.

Fig. 10(b) shows the minimum cost function (Jmin,a,N )
according to the Laguerre pole (a). The gray region shows the
distribution of the minimum cost function as the Laguerre pole
changes from 0.7 to 1. For LTV-LMPC with the fixed Laguerre
pole, the minimum cost function was much different from the
global minimum. On the other hand, for LTV-OLMPC with
the optimized Laguerre pole, the minimum cost function was
close to the global minimum. Due to these parts, a difference
in control performance between LTV-LMPC and LTV-OLMPC
occurred. Like this, the proposed Laguerre pole optimization
algorithm converged to a global minimum over time due to
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Fig. 10. The Laguerre pole for each step and the corresponding minimum
cost function. (a) Laguerre pole (a). (b) Minimum cost function (Jmin,a,N ).

15 20 25
10

3

10
4

10
5

10
6

10
7

10
8

10
9

45 50 55

Fig. 11. FLOP of various algorithms for each step.

the characteristics of LTV-LMPC, despite using the gradient
descent method. Also, even in the local minimum, there is no
significant performance difference from the global minimum.

The computational complexity of each algorithm is shown in
Fig. 11. LTV-LMPC and LTV-OLMPC were about 200 times
lower computational complexity than LTV-CMPC. Also, the
proposed LTV-OLMPC had computational complexity similar
to that of LTV-LMPC because it did not require a high
computational complexity for the Laguerre pole optimization
algorithm.

C. Discussions

The performance of the proposed tracking control algorithm
was verified through simulation using CarSim. The three LTV-
MPC algorithms used in the comparison have the following
characteristics: LTV-CMPC was a good solution when com-
putational resources were sufficient. However, as the predicted
and control horizons increased, the computational complexity
increased exponentially. Therefore, high performance could
not be guaranteed for a system with limited computation re-
sources. LTV-LMPC had less computational complexity com-
pared to LTV-CMPC. However, when using a small number of
Laguerre functions, it was difficult to ensure high performance
because the Laguerre pole was not optimized. The proposed
LTV-OLMPC optimized the Laguerre pole in real-time. It
guaranteed high performance, even when using a small number
of Laguerre functions.
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However, as shown in Fig. 8, the input rate and input
of LTV-LMPC and LTV-OLMPC were noisy and oscillated.
The oscillation was caused by minimizing the cost function
while satisfying the constraints through a small number of
optimization variables. It was seen not only in LTV-LMPC
and LTV-OLMPC but also in LTV-CMPC with a small control
horizon (Nc). These oscillations of input rates and input could
cause mechanical loss of the actual plant. The following ways
can reduce oscillations. First, add the term of the second
derivative of the input (△2u(k+m)) in the cost function in (7).
Second, increase the number of Lager functions when more
computational resources are available. Third, eliminate noise
through post-processing such as a low-pass filter. Reduction
of oscillation of input or input rate through these methods has
advantages when applied to actual plants.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed three LTV-MPC algorithms for
tracking control. As a prediction model, a general vehicle
model incorporating the bicycle model and the linear tire
model was used. LTV-CMPC used many optimization vari-
ables up to the control horizon. The proposed LTV-LMPC
significantly reduced the number of optimization variables by
expressing the control input as a sum of Laguerre functions.
The Laguerre pole determines the performance of the LTV-
LMPC. Propositions and corollary were derived for ana-
lyzing the performance change according to the Laguerre
pole change. The Laguerre pole optimization algorithm was
proposed based on propositions and corollary. Finally, LTV-
OLMPC was proposed. The performance of the proposed
algorithm was verified using two benchmarks. As a re-
sult, LTV-OLMPC, LTV-LMPC, and LTV-CMPC have high
performance-to-computational complexity in that order. The
proposed algorithm has the following advantages. First, it can
significantly reduce the computational complexity of vehicle
tracking control. Conversely, longer horizons are available
for limited computational resources. Second, the proposed
algorithm can be used not only for vehicle systems but also
for systems with limited computational resources.

In future studies of autonomous vehicle control, the LTV-
OLMPC can apply in the following ways. First, developing
combined longitudinal and lateral tracking controllers. The
proposed LTV-OLMPC can extend to a multi-input multi-
output (MIMO) system. LTV-OLMPC, extended with a MIMO
system, can combine longitudinal and lateral tracking con-
trollers. Second, application to nonlinear vehicle models (pla-
nar vehicle model or nonlinear tire models). We proposed LTV-
OLMPC in the form of linear MPC. Therefore, it is hard to
directly apply the LTV-OLMPC to a nonlinear MPC (NMPC)
for a nonlinear model. However, some recent studies aimed
to study algorithms that convert NMPC to LTV-MPC using a
linearization technique. For the converted LTV-MPC problem,
the proposed LTV-OLMPC is applicable. In these ways, LTV-
OLMPC can apply to various fields of vehicle control as a
way to reduce computational complexity.
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APPENDIX

A. Proof of Proposition 1
Using Theorem IV.1, the following state is satisfied:

∂

∂a
La,N (i) =

1

1− a2


la,2(i)

−la,1(i) + 2la,3(i)
...

−(N − 1)la,N−1(i) +Nla,N+1(i)

 =

1

1− a2


0 1 · · · 0 0 0
−1 0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · 0 N − 1 0
0 0 · · · −(N − 1) 0 N




la,1(i)
la,2(i)

...
la,N (i)

la,N+1(i)


= TaLa,N+1(i)

(36)

Using (16), (19), and (36) partial derivative ϕa,N (k,m)T

with respect to a as follows:

∂

∂a
ϕa,N (k,m)T

=


m−1∑
i=0

 m∑
p=i+1

m−1∏
j=p

Ak+j

B
∂

∂a
La,N (i)T


=


m−1∑
i=0

 m∑
p=i+1

m−1∏
j=p

Ak+j

BLa,N+1(i)
T

TT
a

= ϕa,N+1(k,m)TTT
a

(37)

B. Proof of Proposition 2
Minimum cost function partial derivative for a is expressed

as follows:
∂Jmin,a,N

∂a
= ηTa,N

∂Ωa,N

∂a
ηa,N − 2ηTa,N

∂Φa,N

∂a

+ λT
a,N,act

∂Ha,N,act

∂a
λa,N,act − 2λT

a,N,act

∂Ka,N,act

∂a

(38)

For matrices of the active set, the partial derivative for a is
expressed as follows:

∂Ha,N,act

∂a
= −2Ma,N+1,actT

T
a ζa,N,act

− 2ζTa,N,actTaΩa,N+1E
T ζa,N,act

∂Ka,N,act

∂a
= −Ma,N+1,actT

T
a ηa,N − ζTa,N,actTaΦa,N+1

− 2ζTa,N,actTaΩa,N+1E
T ηa,N

where ζa,N,act = −Ω−1
a,NMa,N,act

(39)

As a result of substituting equation (39) into equation (38),
the following equation is derived.

∂Jmin,a,N

∂a
= η̂Ta,N

(
TaΩa,N+1E

T +EΩa,N+1T
T
a

)
η̂a,N

+2η̂Ta,N
(
TaΦa,N+1 +TaM

T
a,N+1,actλa,N,act

)
(40)


