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A B S T R A C T
In this paper, a constrained lateral dynamics model of articulated vehicles and an algorithm for
estimation of sideslip angle and cornering stiffness are proposed. The articulated vehicle was modeled
using the bicycle model, linear tire model, and modified Dug-off model. The normal force of each axle
included in the model was estimated based on the longitudinal load transfer model. Physical constraints
were applied to reduce model states. Accurate sideslip angle and cornering stiffness are essential for
vehicle control safety and autonomous driving performance. The sideslip angle and cornering stiffness
were simultaneously estimated using a dual linear time-varying (LTV) Kalman filter. The observability
matrix guaranteed the convergence of the proposed estimation algorithm. The estimation performance
was verified by simulation with TruckSim and an experiment using an articulated bus.

1. Introduction
Currently, articulated vehicles are widely used as heavy

trucks and commercial vehicles and have become the most
important vehicles in freight transport. In public transporta-
tion systems, articulated buses have been developed and
used, including such as Phileas in The Netherlands, bi-
modal trams in Korea, and Lancaster in the USA [1], [2].
Heavy-duty trucks (including articulated vehicles) have a
large load capacity and provide efficient transport, but have
the disadvantage of economic and human damage in case
of an accident [3]. There is also a disadvantage in terms
of vehicle stability due to the characteristics of articulated
vehicles: heavy mass and high center of mass [4]. Therefore,
the modeling, control, and state estimation of articulated
vehicles constitute important research in the field of vehicle
systems and control.

A number of improvements have been proposed in previ-
ous studies of articulated vehicles, including roll dynamics
to prevent roll-over [5], active chaos control through pitch
dynamics modeling [6], a lateral model for all-wheel steer-
ing vehicles [7], and a model for differential braking control
[8]. In most previous studies, many states were used due
to the characteristics of articulated vehicles. In [9], a seven
degrees-of-freedom (DOF) model was proposed to estimate
the hitch force and tire lateral force. To guarantee observ-
ability, longitudinal tire force and lateral velocity (which are
difficult to know in practice) were used. Models using many
states cannot guarantee observability with typical measure-
ments. Moreover, complex modeling and algorithms have
disadvantages in calibration issues, time-consuming, and
real-time applications. Model state reduction can be used as
a solution to the above problems. In this paper, the number
of states was reduced using physical constraints.
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The sideslip angle is an essential vehicle state that must
be known for vehicle safety and effective autonomous driv-
ing systems [10]. Because the sideslip angle cannot be
measured directly, estimation algorithms have been pro-
posed for that purpose. In previous studies, sideslip angle
estimation algorithms were classified as either kinematics-
based or dynamics-based algorithms [11]. Kinematics-based
algorithms estimate the sideslip angle based on vehicle
velocity and acceleration. This method has the advantage
that it is not affected by tire-road friction parameters and
dynamic properties [12]. It uses a strategy to estimate the
sideslip angle in the form of an integrator. The integral
estimation strategy has the disadvantage in that a cumulative
estimation error occurs. Recently, sideslip angle estimation
algorithms using a global positioning system (GPS) signal
have been studied. In combination with GPS, sideslip angle
estimation algorithms using an event trigger [13], a neural
network [14], and a magnetometer with GPS [15] have been
proposed. However, GPS signals have the disadvantages of
being noisy and having a low sampling rate. Moreover, the
GPS reception rate and accuracy decreases in urban areas,
and the cumulative estimation error increases because the
estimation algorithm works with a simple integrator [16].

Dynamics-based sideslip estimation algorithms consider
vehicle dynamics and tire forces. The full-car model and
bicycle model were used as vehicle dynamics models. The
full-car model has the advantage of accurately depicting
vehicle dynamics because it models the forces of all the
tires. However, many parameters were introduced and used
and most previous studies assumed that the values of these
parameters were known [17]. In contrast, the bicycle model
describes the lateral dynamics of the vehicle as a 2 DOF
model. Because of this, fewer states and parameters are used.
Because of these advantages, the bicycle model has been
widely used [11]. The tire models used included nonlinear
tire models with combined longitudinal and lateral slip,
along with linear tire models with a pure lateral slip angle. In
[18], tires were modeled using the brush tire model and the
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sideslip angle was estimated using an interacting multiple
model Kalman filter. In [19], the longitudinal and lateral
velocities were estimated by modeling the tire force using the
LuGre model. However, both algorithms assumed that the
parameters representing the tire characteristics were known.
The exact value of these tire parameters was unknown, and
inaccurate values caused poor estimation performance [20].
In contrast, the linear tire model expressed the lateral force
and the tire sideslip angle in a linear relationship. More-
over, only one tire parameter, cornering stiffness, was used.
Therefore, the feasibility of estimating unknown parameters
was high. However, the linear tire model does not describe
the force well when the longitudinal slip ratio and lateral
slip angle are combined. Nevertheless, the linear tire model
has often been used because of its simplicity and good
performance for pure lateral slip [11].

A range of models, from complex to simple, have been
studied to represent vehicle dynamics and tire forces. Using
complex models requires many parameters. These values
have a significant impact on estimation performance [20]
and sometimes on change [21]. Therefore, it is necessary
to design a parameter estimator to ensure the estimation
performance and validity of a complex model when it is
used. However, typical automotive sensors alone cannot
guarantee observability when estimating many parameters
and states. In [22], algorithms for estimating brush tire
model parameters and tire forces were proposed. However, to
ensure observability, it was assumed that the sideslip angle
and slip ratio were known. A limitation of using complex
models is that unknown parameters (or states) are often
used. Therefore, in this study, we tried to describe the lateral
dynamics of an articulated vehicle using a simple model,
to avoid the use of unknown parameters or states. Vehicle
dynamics and tire forces were modeled using the bicycle
model and the linear tire model. In other words, in this
study, lateral dynamics modeling for articulated vehicles was
performed by focusing on the pure slip angle situation and
the linear sideslip region.

Cornering stiffness is the ratio of the tire slip angle
and lateral force. Inaccurate cornering stiffness adversely
affects sideslip angle estimation performance. Therefore,
the sideslip angle and cornering stiffness should be esti-
mated simultaneously. For general passenger cars, a beta-
less estimation algorithm [23], estimation using an extended
Kalman filter [24], and estimation using GPS [25] have been
proposed. For articulated vehicles, a cornering stiffness esti-
mation algorithm using a dual Kalman filter [26] has been
proposed. Most studies have used the first order Dug-off
model and assumed that the nominal cornering stiffness was
known. However, cornering stiffness cannot be said to be
perfectly linear with a normal load, and nominal cornering
stiffness changes with the road surface and tires. For accurate
estimation, it is essential to estimate the absolute cornering
stiffness value using the modified tire model.

Algorithms for estimating states and parameters at the
same time are classified into two types according to the
method used for parameter adaptation. There are Lyapunov

RT 3000
for the front unit

RT 3000
for the rear unit

Figure 1: Articulated bus and experimental set-up

function-based methods (such as adaptive observers [27],
[28]) and Kalman filter-based methods (such as extended
Kalman filters [29], interactive multi-modal algorithms [30],
and dual Kalman filters [31], [32]). Adaptive observers have
advantages in terms of computational time [27]. Moreover,
intuitive design of an observer is possible through the Lya-
punov function [28]. However, it shows weakness because ’a
posteriori’ information is not used in parameter estimation.
Conversely, in the case of the Kalman filter-based method,
robust observer design is possible because parameters are
estimated using ’a posteriori’ information. Among these
Kalman filter-based algorithms, the extended Kalman filter,
which uses augmented states, and the interactive multi-
model algorithm, which uses multiple models and Kalman
filters, required long computation times. On the other hand,
the dual Kalman filter, which estimated states and param-
eters using two Kalman filters, requires a relatively short
calculation time [31].

In this paper, we propose a constrained lateral dynam-
ics model and an algorithm for estimating sideslip angle
and cornering stiffness. Articulated vehicles with complex
dynamics and many states were used for modeling. Phys-
ical constraints were used to reduce the number of states
modeled. The proposed model can describe dynamics in
fewer states than the previous models and has advantages in
calibration issues, calculation time, and observability. The
sideslip angle and cornering stiffness were estimated using
the dual linear time-varying (LTV) Kalman filter. Vehicle
states, including the sideslip angle, were estimated in the first
Kalman filter. The cornering stiffness was estimated in the
second Kalman filter using the output residual and ’a poste-
riori’ information. The estimation stability is guaranteed by
using an observability matrix [33]. The proposed estimation
algorithm was verified through simulation using TruckSim
and by an experiment performed using an articulated bus
equipped with two RT3000s as shown in Fig. 1.

The rest of the paper is organized as follows. In Section 2,
constrained lateral dynamics model for articulated vehicles
is proposed with physical constraints. In Section 3, the
cornering stiffness and sideslip angle estimation algorithm
using the dual LTV Kalman filter is proposed. The simula-
tion and experimental results are provided in Sections 4 and
5. Conclusions are provided in Section 6.
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Table 1
Specifications of the articulated bus used in the experiment.

Symbol Parameter Value

𝑚1 Total mass of front unit 11180 𝑘𝑔
𝑚2 Total mass of rear unit 10130 𝑘𝑔
𝑚1𝑢 Unsprung mass of 1𝑠𝑡 axle 350 𝑘𝑔
𝑚2𝑢 Unsprung mass of 2𝑛𝑑 axle 350 𝑘𝑔
𝑚3𝑢 Unsprung mass of 3𝑟𝑑 axle 350 𝑘𝑔
𝐼1 Yaw inertia of front unit 60193 𝑘𝑔𝑚2

𝐼2 Yaw inertia of rear unit 54540 𝑘𝑔𝑚2

𝑙𝑓1 Distance between 1𝑠𝑡 axle to 𝐶𝐺1 4.6260𝑚
𝑙𝑟1 Distance between 2𝑛𝑑 axle to 𝐶𝐺1 3.0840𝑚
𝑃1 Distance between 2𝑛𝑑 axle to hitch 1.123𝑚
𝑙𝑓2 Distance between hitch to 𝐶𝐺2 3.8712𝑚
𝑙𝑟2 Distance between 3𝑟𝑑 axle to 𝐶𝐺2 2.5808𝑚
𝐶1 Cornering stiffness of the 1𝑠𝑡 axle ∼ 4𝐸05𝑁∕𝑟𝑎𝑑
𝐶2 Cornering stiffness of the 2𝑛𝑑 axle ∼ 7𝐸05𝑁∕𝑟𝑎𝑑
𝐶3 Cornering stiffness of the 3𝑟𝑑 axle ∼ 5𝐸05𝑁∕𝑟𝑎𝑑

Table 2
States of the articulated vehicle.

Symbol Parameter Unit

𝛿 Front wheel steering angle 𝑟𝑎𝑑
𝛽𝑖 Sideslip angle of the 𝑖𝑡ℎ unit 𝑟𝑎𝑑
𝑟𝑖 Yaw rate of the 𝑖𝑡ℎunit 𝑟𝑎𝑑∕𝑠
𝛼 Articulated angle 𝑟𝑎𝑑
𝜎𝑥𝑖 Tire slip ratio of the 𝑖𝑡ℎ axle −
𝜎𝑦𝑖 Tire sidealip angle of the 𝑖𝑡ℎ axle 𝑟𝑎𝑑
𝑣𝑥𝑖 Longitudinal velocity of the 𝑖𝑡ℎ unit 𝑚∕𝑠
𝑣𝑦𝑖 Lateral velocity of the 𝑖𝑡ℎ unit 𝑚∕𝑠
𝑎𝑥𝑖 Longitudinal acceleration of the 𝑖𝑡ℎ unit 𝑚∕𝑠2
𝑎𝑦𝑖 Lateral acceleration of the 𝑖𝑡ℎ unit 𝑚∕𝑠2
𝐹𝑥𝑖 Longitudinal force of the 𝑖𝑡ℎ axle 𝑁
𝐹𝑦𝑖 Lateral force of the 𝑖𝑡ℎ axle 𝑁
𝐹𝑧𝑖 Normal force of the 𝑖𝑡ℎ axle 𝑁
𝐹𝑥ℎ Longitudinal force of hitch 𝑁
𝐹𝑦ℎ Lateral force of hitch 𝑁
Δ𝑡 Sampling time 𝑠

2. CONSTRAINED LATERAL DYNAMICS
MODEL FOR ARTICULATED
VEHICLES
The constrained lateral dynamics model for articulated

vehicles was proposed in order to estimate the sideslip angle
and cornering stiffness. The bicycle and linear tire models
were used to ensure observability. These models showed
good performance for estimating the pure sideslip angle
and linear sideslip angle regions. Therefore, the following
assumptions were applied to the modeling:

• The tire sideslip angle is in the linear sideslip angle-
lateral force region.

𝐶𝐶𝐺𝐺1

𝐶𝐶𝐺𝐺2

ℎ𝑖𝑖𝑖𝑖𝑖𝑖ℎ 𝛼𝛼 𝛽𝛽1
𝛽𝛽2
𝑣𝑣𝑥𝑥2

𝑣𝑣𝑥𝑥1𝑣𝑣y2

𝑣𝑣y1

𝑟𝑟1

𝑟𝑟2

𝑙𝑙𝑓𝑓1𝑙𝑙𝑟𝑟1𝑃𝑃1𝑙𝑙𝑓𝑓2𝑙𝑙𝑟𝑟2

ℎ ℎℎ𝑟𝑟

Figure 2: The coordinate system of articulated vehicles

𝐶𝐶𝐺𝐺1

𝐶𝐶𝐺𝐺2

ℎ𝑖𝑖𝑖𝑖𝑖𝑖ℎ 𝛼𝛼 𝛽𝛽1
𝛽𝛽2
𝑣𝑣𝑥𝑥2

𝑣𝑣𝑥𝑥1𝑣𝑣y2

𝑣𝑣y1

𝑟𝑟1

𝑟𝑟2

𝛿𝛿

𝑙𝑙𝑓𝑓1𝑙𝑙𝑟𝑟1𝑃𝑃1
𝑙𝑙𝑓𝑓2

𝑙𝑙𝑟𝑟2

𝐹𝐹𝑦𝑦1𝐹𝐹𝑦𝑦2
±𝐹𝐹𝑦𝑦𝑦

(Internal force)

𝐹𝐹𝑦𝑦𝑦

Figure 3: The bicycle model of articulated vehicles

|𝜎𝑦1|, |𝜎𝑦2|, |𝜎𝑦3| << 1

where 𝜎𝑦1 = 𝛽1 +
𝑙𝑓1
𝑣𝑥1

𝑟1 − 𝛿,

𝜎𝑦2 = 𝛽1 −
𝑙𝑟1
𝑣𝑥1

𝑟1, 𝜎𝑦3 = 𝛽2 −
𝑙𝑟2
𝑣𝑥2

𝑟2

(1)

• The tire slip ratio is negligible.
𝜎𝑥1, 𝜎𝑥2, 𝜎𝑥3 ≈ 0

where 𝜎𝑥1 =
𝑅𝑒𝑓𝑓 ,1𝜔1 − 𝑣𝑥1

𝑣𝑥1
,

𝜎𝑥2 =
𝑅𝑒𝑓𝑓 ,2𝜔2 − 𝑣𝑥1

𝑣𝑥1
, 𝜎𝑥3 =

𝑅𝑒𝑓𝑓 ,3𝜔3 − 𝑣𝑥2
𝑣𝑥2

,

(2)

The cornering stiffness was modeled using the modi-
fied Dug-off model. Moreover, a longitudinal load transfer
model and physical constraints were proposed. Finally, a
constrained lateral dynamics model was proposed for ar-
ticulated vehicles. The coordinate system of an articulated
bus is shown in Fig. 2. The specifications and states of the
articulated vehicle used in the experiments are shown in
Tables 1 and 2, respectively.
2.1. Bicycle model of articulated vehicles

The bicycle model describes the vehicle as a 2 DOF
model. The bicycle model has the advantage of being able
to describe complex vehicle models simply [34]. The articu-
lated vehicle bicycle model used in this paper is shown in
Fig. 3. From previous assumptions, the longitudinal force
was assumed to be zero, and the steering angle and articu-
lated angle were assumed to be very small. The force/torque
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balance equation based on the center of gravity (CG point)
of the front unit and rear unit is as follows:

𝑚1𝑎𝑦1 = 𝐹𝑦ℎ cos 𝛼 + 𝐹𝑦1 cos 𝛿 + 𝐹𝑦2
≈ 𝐹𝑦ℎ + 𝐹𝑦1 + 𝐹𝑦2
𝑚2𝑎𝑦2 = −𝐹𝑦ℎ + 𝐹𝑦3

(3)

𝐼1�̇�1 = −(𝑃1 + 𝑙𝑟1)𝐹𝑦ℎ cos 𝛼 + 𝑙𝑓1𝐹𝑦1 cos 𝛿 − 𝑙𝑟1𝐹𝑦2
≈ −(𝑃1 + 𝑙𝑟1)𝐹𝑦ℎ + 𝑙𝑓1𝐹𝑦1 − 𝑙𝑟1𝐹𝑦2

𝐼2�̇�2 = −𝑙𝑓2𝐹𝑦ℎ − 𝑙𝑟2𝐹𝑦3

(4)

The kinematic constraints for the lateral acceleration and
articulated angle were used as shown in the equation below.

𝑎𝑦1 = 𝑟1𝑣𝑥1 + �̇�1𝑣𝑥1
𝑎𝑦2 = 𝑟2𝑣𝑥2 + �̇�2𝑣𝑥2

�̇� = 𝑟2 − 𝑟1
(5)

The bicycle model of articulated vehicles was used in
combination with the tire model and physical constraints.
2.2. Tire model

A vehicle’s pneumatic tires generate longitudinal and
lateral forces that play a key role in vehicle motions. Because
tires are made of complex materials, modeling tire force is
a huge challenge. In previous studies, tire models such as
the Pacejka model [35], the Brush tire model [22], and the
flexible ring tire model [36] have been studied. However,
these nonlinear tire models were difficult to apply to vehicle
dynamics because they used many tire model parameters.
Among the nonlinear tire models, the most frequently used
brushed tire models are:

𝐹𝑥𝑖 =
𝐶𝑥𝑖

(

𝜎𝑥𝑖
1+𝜎𝑥𝑖

)

𝑓𝑖
𝐹𝑖, 𝐹𝑦𝑖 = −

𝐶𝑖

( tan 𝜎𝑦𝑖
1+𝜎𝑥𝑖

)

𝑓𝑖
𝐹𝑖,

where

𝐹𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑓𝑖 −
1

3𝜇𝐹𝑧𝑖
𝑓 2
𝑖 + 1

27𝜇2𝐹 2
𝑧𝑖

𝑓 3
𝑖 , if 𝑓𝑖 ≤ 3𝜇𝐹𝑧𝑖

𝜇𝐹𝑧𝑖, else

𝑓𝑖 =

√

√

√

√𝐶2
𝑥𝑖

(

𝜎𝑥𝑖
1 + 𝜎𝑥𝑖

)2

+ 𝐶2
𝑖

(

tan 𝜎𝑦𝑖
1 + 𝜎𝑥𝑖

)2

(6)

where 𝐶𝑥𝑖 is the longitudinal stiffness of the 𝑖𝑡ℎ axle, 𝐶𝑖is the cornering stiffness of the 𝑖𝑡ℎ axle, and 𝜇 is the tire-road
friction coefficient.

In this study, tire forces were modeled using the linear
tire model. The linear tire model is the relationship between
the lateral tire force and the sideslip angle at a small slip ratio
and sideslip angle. The tire force by the linear tire model is
defined in (7). The linear tire model is suitable for describing
tire force when the tire slip angle is small.

𝐹𝑦𝑖 ≈
𝜕𝐹𝑦𝑖

𝜕𝜎𝑦𝑖

|

|

|

|𝜎𝑥𝑖=𝜎𝑦𝑖=0
𝜎𝑦𝑖 = −𝐶𝑖𝜎𝑦𝑖 (7)

Moreover, the tire slip angle and tire lateral force have a
linear relationship, which does not harm the linearity of the
vehicle model. Eq. (8) shows the lateral tire force on each
axle expressed through the linear tire model.

𝐹𝑦1 = −𝐶1𝛼1 = −𝐶1

(

𝛽1 +
𝑙𝑓1
𝑣𝑥1

𝑟1 − 𝛿

)

𝐹𝑦2 = −𝐶2𝛼2 = −𝐶2

(

𝛽1 −
𝑙𝑟1
𝑣𝑥1

𝑟1

)

𝐹𝑦3 = −𝐶3𝛼3 = −𝐶3

(

𝛽2 −
𝑙𝑟2
𝑣𝑥2

𝑟2

)

(8)

In (8), the cornering stiffness of each axle was used.
In previous studies, the Dug-off model was used, which
assumed that the cornering stiffness had a linear relationship
with the normal force. However, the cornering stiffness is
not perfectly linear with the normal force. According to
[17], the cornering stiffness is expressed as a second-order
polynomial of the normal force. This tire model was called a
modified Dug-off model in previous studies. The cornering
stiffness of each axle is expressed by (9).

𝐶𝑖 = 𝑎𝐹𝑧𝑖 − 𝑏𝐹 2
𝑧𝑖 (9)

where 𝑎 and 𝑏 are cornering stiffness parameters and 𝐹𝑧𝑖is the 𝑖𝑡ℎ axle normal force. Through the linear tire model
and modified Dug-off model, the lateral force of each axle is
expressed as (10).

𝐹𝑦1 = −
(

𝑎𝐹𝑧1 − 𝑏𝐹 2
𝑧1
)

×

(

𝛽1 +
𝑙𝑓1
𝑣𝑥1

𝑟1 − 𝛿

)

𝐹𝑦2 = −
(

𝑎𝐹𝑧2 − 𝑏𝐹 2
𝑧2
)

×

(

𝛽1 −
𝑙𝑟1
𝑣𝑥1

𝑟1

)

𝐹𝑦3 = −
(

𝑎𝐹𝑧3 − 𝑏𝐹 2
𝑧3
)

×

(

𝛽2 −
𝑙𝑟2
𝑣𝑥2

𝑟2

)

(10)

Here, (10) expresses three cornering stiffness (𝐶1, 𝐶2, 𝐶3)as two cornering stiffness parameters (𝑎, 𝑏). This shows
the result of reducing the number of unknown parameters
from three to two. The reduction in the number of unknown
parameters plays an important role in the observability
analysis in Section 3.2.
2.3. Algorithm for estimating the normal force of

each axle
In (10) the normal force of each axle was used. The

normal force on each axle was estimated through vehicle
specifications and the longitudinal load transfer model. The
longitudinal load transfer model of the articulated vehicle
used is shown in Fig. 4. The load transfer was modeled
based on the sprung mass and unsprung mass. Total mass
is defined as the sum of the sprung mass and unsprung mass
as in (11). Moreover, because the unsprung mass was very
small compared to the sprung mass, it was assumed that the
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𝑙𝑙𝑓𝑓1𝑙𝑙𝑟𝑟1𝑃𝑃1𝑙𝑙𝑓𝑓2𝑙𝑙𝑟𝑟2

ℎ ℎℎ𝑟𝑟

𝑚𝑚1𝑠𝑠𝑎𝑎𝑥𝑥1𝑚𝑚2𝑠𝑠𝑎𝑎𝑥𝑥2
𝐹𝐹𝑥𝑥𝑥

𝐹𝐹𝑧𝑧𝑥
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Figure 4: Longitudinal load transfer model for an articulated
vehicle

CG point of the sprung mass is the same as the CG point of
gravity of total mass.

𝑚1 = 𝑚1𝑠 + 𝑚1𝑢 + 𝑚2𝑢
𝑚2 = 𝑚2𝑠 + 𝑚3𝑢

(11)

For the front unit and rear unit, the force balance equa-
tions in the X and Z directions are expressed as in (12) and
(13), and the torque balance equations at O1 and O2 are
expressed as (14). In the torque balance equation, it was
assumed that the pitch acceleration is zero.

• Force balance equation in longitudinal direction
𝑚1𝑎𝑥1 + 𝑚2𝑎𝑥2 = 𝐹𝑥1 + 𝐹𝑥2 + 𝐹𝑥3

𝑚1𝑎𝑥1 = 𝐹𝑥1 + 𝐹𝑥2 + 𝐹𝑥ℎ
(12)

• Force balance equation in vertical direction
𝑚1𝑔 + 𝑚2𝑔 = 𝐹𝑧1 + 𝐹𝑧2 + 𝐹𝑧3

𝑚1𝑔 = 𝐹𝑧1 + 𝐹𝑧2 + 𝐹𝑧ℎ
(13)

• Torque balance equation in 𝑂1 and 𝑂2

(𝑙𝑓1 + 𝑙𝑟1)𝐹𝑧2 − ℎ𝑚1𝑠𝑎𝑥1 − 𝑙𝑓1𝑚1𝑠𝑔 − (𝑙𝑓1 + 𝑙𝑟1)𝑚2𝑢𝑔
+ℎ𝑟𝐹𝑥ℎ + (𝑙𝑓1 + 𝑙𝑟1 + 𝑃1)𝐹𝑧ℎ = 0

−ℎ𝑚2𝑠𝑎𝑥2 + 𝑙𝑟2𝑚2𝑠𝑔 − ℎ𝑟𝐹𝑥ℎ + (𝑙𝑓2 + 𝑙𝑟2)𝐹𝑧ℎ = 0
(14)

Articulated vehicles have different load transfers de-
pending on the longitudinal force of each axle due to the
hitch characteristics. In this study, an articulated vehicle with
front-wheel drive was used. Therefore, when accelerating
(𝑎𝑥1 > 0 and 𝑎𝑥2 > 0), the first axle was used as the
driveshaft. During deceleration (𝑎𝑥1 < 0 and 𝑎𝑥2 < 0), it was
assumed that the braking force of each axle was proportional
to the brake pressure as follow:

𝜖3 =
𝐹𝑥3

𝐹𝑥1 + 𝐹𝑥2 + 𝐹𝑥3
=

𝐵𝑟3
𝐵𝑟1 + 𝐵𝑟2 + 𝐵𝑟3

(15)

where 𝐵𝑟𝑖 is the brake pressure of the 𝑖𝑡ℎ axle. Through
the force and torque balance equations and (15), the normal
force of each axle during acceleration and deceleration is
expressed as in (16) and (17).

• Normal force of each axle during acceleration

0

50

100

(a)

Front unit

Rear unit

0 10 20 30 40

Time (s)

-2

0

2

(b)

Figure 5: Simulation scenario: (a) Longitudinal velocity of front
unit and rear unit (b) Longitudinal acceleration of front unit
and rear unit

𝐅 = 𝐋𝐒 × 𝑔 + 𝐋𝐓𝟏 × 𝑎𝑥1 + 𝐋𝐓𝟐 × 𝑎𝑥2,

where 𝐅 =
⎡

⎢

⎢

⎣

𝐹𝑧1
𝐹𝑧2
𝐹𝑧3

⎤

⎥

⎥

⎦

, 𝐋𝐓𝟏 =

⎡

⎢

⎢

⎢

⎣

− ℎ
𝐿1
ℎ
𝐿1
0

⎤

⎥

⎥

⎥

⎦

𝑚1𝑠,

𝐋𝐓𝟐 =

⎡

⎢

⎢

⎢

⎣

𝑃1ℎ
𝐿1𝐿2

−ℎ(𝐿1+𝑃1)
𝐿1𝐿2
ℎ
𝐿2

⎤

⎥

⎥

⎥

⎦

𝑚2𝑠 +

⎡

⎢

⎢

⎢

⎢

⎣

−ℎ𝑟(𝑃1+𝐿2)
𝐿1𝐿2

ℎ𝑟(𝐿1+𝑃1+𝐿2)
𝐿1𝐿2

− ℎ𝑟
𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

𝑚2,

𝐋𝐒 =

⎡

⎢

⎢

⎢

⎣

𝑙𝑟1
𝐿1
𝑙𝑓1
𝐿1
0

⎤

⎥

⎥

⎥

⎦

𝑚1𝑠 +

⎡

⎢

⎢

⎢

⎢

⎣

−𝑃1𝑙𝑟2
𝐿1𝐿2

(𝐿1+𝑃1)𝑙𝑟2
𝐿1𝐿2
𝑙𝑓2
𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

𝑚2𝑠 +
⎡

⎢

⎢

⎣

𝑚1𝑢
𝑚2𝑢
𝑚3𝑢

⎤

⎥

⎥

⎦

,

𝐿1 = 𝑙𝑓1 + 𝑙𝑟1, 𝐿2 = 𝑙𝑓2 + 𝑙𝑟2

(16)

• Normal force of each axle during braking
𝐅 = 𝐋𝐒 × 𝑔 + 𝐋𝐓𝟏 × 𝑎𝑥1 + 𝐋𝐓𝟐 × 𝑎𝑥2 + 𝐁𝐫,

where 𝐁𝐫 =

⎡

⎢

⎢

⎢

⎢

⎣

ℎ𝑟(𝑃1+𝐿2)
𝐿1𝐿2

−ℎ𝑟(𝐿1+𝑃1+𝐿2)
𝐿1𝐿2
ℎ𝑟
𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

(

𝑚1𝑎𝑥1 + 𝑚2𝑎𝑥2
)

𝜖3
(17)

As shown in (16) and (17), the normal force of each
axle for acceleration and deceleration was estimated using
the vehicle specifications and acceleration signals. Because
there was no equipment capable of measuring the normal
force during the experiment, the estimation performance was
verified by simulation using TruckSim. The vehicle plant
used in TruckSim had the same specification as the artic-
ulated bus used in the experiment. The simulation scenarios
selected are shown in Fig. 5. The normal force of each
axle estimation result is shown in Fig. 6. The estimation
algorithm had a root mean square (RMS) error of 1%. This
means that the estimated values are accurate enough to
be used in the model. The estimation performance can be
improved if the effect of pitch dynamics is considered.
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Figure 6: Simulation results from estimating the normal force:
(a) First axle normal force (b) Second axle normal force (c)
Third axle normal force

𝐶𝐶𝐺𝐺1

𝐶𝐶𝐺𝐺2
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𝛽𝛽1
𝛽𝛽2
𝑣𝑣𝑥𝑥2
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𝒗𝒗𝒚𝒚𝒉𝒉

Figure 7: Physical constraint 1: Lateral velocity at the hitch
point

2.4. Physical constraints
In this section, the reduction of the number of model

states using physical constraints is introduced. The physical
constraints were analyzed in terms of lateral velocity and
lateral force at the hitch point. We assumed the articulated
angle and the steering angle are small (|𝛼| ≪ 1, |𝛿| ≪ 1) and
that the longitudinal velocities of the front and rear units are
the same (𝑣𝑥1 = 𝑣𝑥2 = 𝑣𝑥). Physical constraints were used
to allow the creation of the proposed constrained articulated
lateral dynamics model.

• Lateral velocity at the hitch point
Articulated vehicles have geometric movements, as shown

in Fig. 7. The hitch point is the kinematic connection
between the front unit and the rear unit. Therefore, the lateral
velocities at the hitch point calculated for the front unit and
rear unit have to be equal. In (18), the middle side and
right side represent the lateral velocity calculated through
the front unit and rear unit.

𝑣𝑦ℎ = 𝑣𝑦1 − (𝑙𝑟1 + 𝑃1)𝑟1 = 𝑣𝑥𝛼 + (𝑣𝑦2 + 𝑙𝑓2𝑟2) (18)

𝐶𝐶𝐺𝐺2

ℎ𝑖𝑖𝑖𝑖𝑖𝑖ℎ
𝛽𝛽2
𝑣𝑣𝑥𝑥2

𝑣𝑣y2

𝑟𝑟2

𝑙𝑙𝑓𝑓2

𝑙𝑙𝑟𝑟2

𝐹𝐹𝑦𝑦𝑦

𝐹𝐹𝑦𝑦𝑦

Figure 8: Physical constraint 2: Lateral force at the hitch point

Eq. (18) can be expressed as (19)

𝛽2 = 𝛽1 − 𝛼 −
(𝑙𝑟1 + 𝑃1)𝑟1 + 𝑙𝑓2𝑟2

𝑣𝑥
(19)

Here, (19) expresses the sideslip angle of the rear unit
in terms of the sideslip angle of the front unit and its
measurement. Through (19), it was verified that the sideslip
angle of the front unit and of the rear unit was dependent.
Through the lateral velocity of the hitch point constraint, the
sideslip angle of the rear unit (𝛽2) can be expressed using the
remaining states. This means that reduction of the number of
states modeled was achieved.

• Lateral force at the hitch point
A second physical constraint was proposed to act through

the lateral force at the hitch point. The lateral states and
forces of the rear unit are shown in Fig. 8. At the center of
gravity (CG) point of the rear unit, the force/torque balance
equation is:

𝑚2𝑎𝑦2 = −𝐹𝑦ℎ + 𝐹𝑦3
𝐼2�̇�2 = −𝑙𝑓2𝐹𝑦ℎ − 𝑙𝑟2𝐹𝑦3

(20)

Through (20), the lateral force at the hitch point can be
expressed as (21).

𝐹𝑦ℎ = −
𝑙𝑟2𝑚2𝑎𝑦2 + 𝐼2�̇�2

𝑙𝑓2 + 𝑙𝑟2
(21)

Substituting (5) and (19) into (21), the lateral force at the
hitch point can be expressed as (22).

𝐹𝑦ℎ = −
𝑙𝑟2

𝑙𝑓2 + 𝑙𝑟2
𝑚2𝑣𝑥

×

(

𝛽1 + 𝑟1 −
𝑙𝑟1 + 𝑃1

𝑣𝑥
�̇�1 +

𝐼2 − 𝑙𝑓2𝑙𝑟2𝑚2

𝑙𝑟2𝑚2𝑣𝑥
�̇�2

) (22)

Here, (22) expresses the lateral force at the hitch force as
a combination of vehicle states. The lateral force at the hitch
point cannot be measured by vehicle sensors, but it plays an
important role in the lateral dynamics. Analysis of the lateral
force at the hitch point was used to improve the modeling as
well as to reduce the state number.
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2.5. Constrained lateral dynamics model for
articulated vehicles

In this section, the constrained articulated lateral dynam-
ics model is proposed that uses the bicycle model, tire model,
normal force estimation, and physical constraints. In the pro-
posed model, four vehicle states (𝑣𝑦1, 𝑟1, 𝑟2, 𝛼), one input (𝛿),
and three outputs (𝑟1, 𝑟2, 𝛼) were used. The final form of the
proposed model was created by substituting (5),(10),(19),
and (22) into the bicycle model shown in (3) and (4). The
proposed constrained articulated lateral dynamics model is
shown in (23).

Let, 𝐱 =
[

𝑣𝑦1 𝑟1 𝑟2 𝛼
]𝑇 ,𝐮 = 𝛿, 𝐲 =

[

𝑟1 𝑟2 𝛼
]𝑇

�̇� = 𝐀𝐱 + 𝐁𝐮, 𝐲 = 𝐂𝐱,
where 𝐀 = 𝐓−𝟏

𝟎 𝐀𝟎,𝐁 = 𝐓−𝟏
𝟎 𝐁𝟎,

𝐓𝟎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝑙𝑟2
𝐿2

𝑚2
𝑚1

− 𝑙𝑟2(𝑃1+𝑙𝑟2)
𝐿2

𝑚2
𝑚1

1
𝐿2

𝐼2−𝑙𝑓2𝑙𝑟2𝑚2

𝑚1
0

− (𝑃1+𝑙𝑟1)𝑙𝑟2
𝐿2

𝑚2
𝐼1

1 + (𝑃1+𝑙𝑟1)2𝑙𝑟2
𝐿2

𝑚2
𝐼1

− 𝑃1+𝑙𝑟1
𝐿2

𝐼2−𝑙𝑓2𝑙𝑟2𝑚2

𝐼1
0

− 𝑙𝑓2𝑙𝑟2
𝐿2

𝑚2
𝐼1

1 + (𝑃1+𝑙𝑟1)2

𝐿2

𝑚2
𝐼1

𝑙𝑟2
𝐿2

𝐼2+𝑙2𝑓2𝑚2

𝐼2
0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐀𝟎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝐶1+𝐶2
𝑚1𝑣𝑥

−𝐶1𝑙𝑓1+𝐶2𝑙𝑟1
𝑚1𝑣𝑥

−
(

1 + 𝑙𝑟2
𝐿2

𝑚2
𝑚1

)

𝑣𝑥 0 0
−𝐶1𝑙𝑓1+𝐶2𝑙𝑟1

𝐼1𝑣𝑥

−𝐶1𝑙2𝑓1−𝐶2𝑙2𝑟1
𝐼1𝑣𝑥

+ (𝑃1+𝑙𝑟1)𝑙𝑟2
𝐿2

𝑚2𝑣𝑥
𝐼1

0 0
𝐶3𝑙𝑟2
𝐼2𝑣𝑥

−𝐶1𝑙𝑟2(𝑃1+𝑙𝑟1)
𝐼2𝑣𝑥

+ 𝑙𝑓2𝑙𝑟2
𝐿2

𝑚2𝑣𝑥
𝐼2

−𝐶3𝑙𝑟2𝐿2
𝐼2𝑣𝑥

−𝐶3𝑙𝑟2
𝐼2

0 −1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐁𝟎 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1
𝑚1

𝐶1𝑙𝑓1
𝐼1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

,𝐂 =

[

0 1 0 0
0 0 1 0
0 0 0 1

]

,

𝐶𝑖 = 𝑎𝐹𝑧𝑖 − 𝑏𝐹 2
𝑧𝑖

(23)
In Section 2, articulated vehicles were modeled using

the bicycle model and the tire model. The modified Dug-
off model was used to express three cornering stiffness as
two cornering stiffness parameters. Reducing the number
of parameters played an important role in the observability
analysis in Section 3.2. The modified Dug-off model uses
a normal force of each axle, each oh which was estimated
using a longitudinal load transfer model. Physical constraints
were introduced for state reduction and improved the mod-
eling. Finally, the constrained articulated vehicle model was
proposed. Compared with previous models, the proposed
model can describe lateral dynamics with only four states.
This has advantages in terms of computation time and esti-
mation stability of the algorithm.

Vehicle
Sensor data

Parameter
adaptation

States
prediction

States
correction

Adaptive law LTV KALMAN filter

𝑦𝑦𝑘𝑘 𝑦𝑦𝑘𝑘

�𝜃𝜃𝑘𝑘|𝑘𝑘−1

�𝑥𝑥𝑘𝑘|𝑘𝑘 �𝜃𝜃𝑘𝑘|𝑘𝑘−1 �𝑥𝑥𝑘𝑘|𝑘𝑘
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prediction

States
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�𝑥𝑥𝑘𝑘

�𝑥𝑥𝑘𝑘−
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correction
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Step 𝑘𝑘 − 1
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Step 𝑘𝑘 + 1

Figure 9: Schematic of the dual LTV Kalman filter

3. ALGORITHM FOR ESTIMATING
SIDESLIP ANGLE AND CORNERING
STIFFNESS
In Section 3, the algorithm for estimating the sideslip

angle and cornering stiffness using the constrained articu-
lated vehicle model is proposed. The dual LTV Kalman filter
was used as the estimation method. As shown in Fig. 9,
the estimation algorithm consists of two Kalman filters. The
sideslip angle was estimated by the left Kalman filter and the
cornering stiffness was estimated by the right Kalman filter.
3.1. Dual LTV Kalman filter for estimation of

sideslip angle and cornering stiffness
The dual LTV Kalman filter was used to estimate the

sideslip angle and cornering stiffness. The dual LTV Kalman
filter consists of the state Kalman filter and the parameter
Kalman filter [37]. Each Kalman filter contains prediction
and correction stages. In this section, the proposed dual LTV
Kalman filter is introduced.

• Discretization of system dynamics
Here, (23) is expressed in the form of (24) in the discrete-

time domain.
Let, 𝐱𝑘 =

[

𝑣𝑦1(𝑘) 𝑟1(𝑘) 𝑟2(𝑘) 𝛼(𝑘)
]𝑇 ,𝐮𝑘 = 𝛿(𝑘),

𝐲𝑘 =
[

𝑟1(𝑘) 𝑟2(𝑘) 𝛼(𝑘)
]𝑇 , 𝜃𝑘 =

[

𝑎(𝑘) 𝑏(𝑘)
]𝑇

𝐱𝑘+1 = 𝐅𝑘𝐱𝑘 +𝐆𝑘𝐮𝑘, 𝐲𝑘 = 𝐇𝐱𝑘

(24)

where 𝐅𝑘, 𝐆𝑘, and 𝐇 are the matrices of a discrete space
state form. In this study, a third-order 5𝐻𝑧Butterworth low-
pass filter was used to remove noise from the signal. Because
the Kalman filter operates at 100𝐻𝑧, it was possible to
discretize it as in (25) through the zero-order hold technique.

𝐅𝑘 = 𝐈 + 𝐀(𝑣𝑥(𝑘), 𝐹𝑧𝑖(𝑘), 𝜃𝑘)Δ𝑡,
𝐆𝑘 = 𝐁(𝑣𝑥(𝑘), 𝐹𝑧𝑖(𝑘), 𝜃𝑘)Δ𝑡,𝐇 = 𝐂 (25)
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whereΔ𝑡 is the sampling time of the Kalman filter and its
value is 10𝑚𝑠. The discrete-time system was a linear time-
varying (LTV) system that includes velocity (𝑣𝑥) and normal
force (𝐹𝑧𝑖). It is also affected by the cornering stiffness
parameter (𝜃).

• Initialization
�̂�0 = 𝐸[𝜃], 𝐏𝜃,0 = 𝐸[(𝜃 − �̂�0)(𝜃 − �̂�0)𝑇 ]

�̂�0 = 𝐸[𝐱0], 𝐏𝐱,0 = 𝐸[(𝐱0 − �̂�0)(𝐱0 − �̂�0)𝑇 ]
(26)

• Parameter prediction
�̂�−𝑘 = �̂�𝑘−1,𝐏−

𝜃,𝑘 = 𝐏𝜃,𝑘−1 +𝐐𝜃 (27)
Here, the covariance matrix 𝐐𝜃 determines how fast

the parameter changes. In proportion to the scale of the
parameter, it was set as follows:

𝐐𝜃 = Δ𝑡
[

10−3 0
0 10−14

]

(28)

• State prediction
�̂�−𝑘 = 𝐅𝑘

|

|

|𝜃=�̂�−𝑘
�̂�𝑘−1 +𝐆𝑘

|

|

|𝜃=�̂�−𝑘
𝐮𝑘

𝐏−
𝐱,𝑘 = 𝐅𝑘

|

|

|𝜃=�̂�−𝑘
𝐏𝐱,𝑘−1𝐅𝑘

|

|

|

𝑇

𝜃=�̂�−𝑘
+𝐐𝐱

(29)

By analyzing the model uncertainty, the covariance ma-
trix 𝐐𝐱 was set as in (30). In addition, because the bicycle
model and the linear tire model were used in this study, the
uncertainty of the model will increase with the increase of
longitudinal and lateral acceleration. Therefore, the accel-
eration term was introduced in the covariance matrix. This
serves to make estimation of the state more reliant on the
measurements than on the model when the longitudinal and
lateral accelerations are large.

𝐐𝐱 = Δ𝑡

⎡

⎢

⎢

⎢

⎣

10−4 0 0 0
0 10−4 0 0
0 0 10−4 0
0 0 0 10−4

⎤

⎥

⎥

⎥

⎦

×

⎛

⎜

⎜

⎜

⎝

1 +

√

𝑎2𝑥1 + 𝑎2𝑦1 +
√

𝑎2𝑥2 + 𝑎2𝑦2
2

⎞

⎟

⎟

⎟

⎠

(30)

• State correction
𝐊𝐱,𝑘 = 𝐏−

𝐱,𝑘𝐇
𝑇 (𝐇𝐏−

𝐱,𝑘𝐇
𝑇 + 𝐑𝐱)−1

�̂�𝑘 = �̂�−𝑘 +𝐊𝐱,𝑘(𝐲𝑘 −𝐇�̂�−𝑘 )
𝐏𝐱,𝑘 = (𝐈 −𝐊𝐱,𝑘𝐇)𝐏−

𝐱,𝑘

(31)

Matrix 𝐑𝐱 is the noise covariance matrix of the measure-
ments. Through noise analysis of the sensor used, 𝐑𝐱 was set
as follows:

𝐑𝐱 =
1
Δ𝑡

⎡

⎢

⎢

⎣

0.5 × 10−4 0 0
0 0.5 × 10−4 0
0 0 0.5 × 10−4

⎤

⎥

⎥

⎦

(32)

• Parameter correction
𝐊𝜃,𝑘 = 𝐏−

𝜃,𝑘𝐇
𝑇
𝜃,𝑘(𝐇𝜃,𝑘𝐏−

𝜃,𝑘𝐇
𝑇
𝜃,𝑘 + 𝐑𝜃)−1

�̂�𝑘 = �̂�−𝑘 +𝐊𝜃,𝑘(𝐲𝑘 −𝐇�̂�−𝑘 )
𝐏𝜃,𝑘 = (𝐈 −𝐊𝜃,𝑘𝐇𝜃,𝑘)𝐏−

𝜃,𝑘

(33)

Because the state Kalman filter and parameter Kalman
filter use the same measurement, the covariance matrices are
the same (𝐑𝜃 = 𝐑𝐱). Matrix 𝐇𝜃,𝑘 means output residual due
to parameter errors. It can be simplified as follows:

𝐇𝜃,𝑘 = 𝐇
𝜕�̂�−𝑘
𝜕𝜃

|

|

|𝜃=�̂�−𝑘

= 𝐇
[

𝜕𝐅𝑘

𝜕𝐚
�̂�𝑘−1 +

𝜕𝐆𝑘

𝜕𝐚
𝐮𝑘

𝜕𝐅𝑘

𝜕𝐛
�̂�𝑘−1 +

𝜕𝐆𝑘

𝜕𝐛
𝐮𝑘

]

|

|

|

|𝜃=�̂�−𝑘
(34)

Through the proposed dual LTV Kalman filter, the state
and parameters of the articulated vehicle were estimated
simultaneously. Finally, the sideslip angle and the cornering
stiffness were estimated as follows:

𝛽1 =
�̂�𝑦1
𝑣𝑥

𝛽2 =
�̂�𝑦1
𝑣𝑥

− �̂� −
(𝑙𝑟1 + 𝑃1)�̂�1 + 𝑙𝑓2�̂�2

𝑣𝑥
�̂�𝑖 = �̂�𝐹𝑧𝑖 − �̂�𝐹 2

𝑧𝑖

(35)

3.2. Observability of the proposed estimation
algorithm

The observability of the system determines the estima-
tion performance and stability of observers, including the
Kalman filter [38]. If the observability of the system is guar-
anteed, the convergence of the estimator is also guaranteed.
Therefore, in this section, the observability of the proposed
estimation algorithm is analyzed using the observability
matrix. The following statements about the observability
matrix are widely known [38].

• For a Kalman filter, a system with state vector 𝐱 of
dimension 𝑛 is observable if the observability matrix
(𝐎) has row rank 𝑛.

The observability matrices of the state Kalman filter and
the parameter Kalman filter were both analyzed.

• Observability of the state Kalman filter
For the state Kalman filter, the observability matrix and

rank are expressed as follows:
𝐎𝐱 =

[

𝐇 𝐇𝐅𝑘 𝐇𝐅2
𝑘 𝐇𝐅3

𝑘
]

, 𝑟𝑎𝑛𝑘(𝐎𝐱) = 4 (36)
where 𝐎𝐱 is the observability matrix of the state Kalman

filter. All states were observable because the number of
states matched the rank of the observability matrix.

• Observability of the parameter Kalman filter
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The stability of the parameter Kalman filter was also ver-
ified through the observability matrix. Because the parame-
ter does not change at the prediction stage, the observability
matrix and its rank are expressed as follows:

𝐎𝜃 = 𝐇𝜃,𝐤, 𝑟𝑎𝑛𝑘(𝐎𝜃) = 2 (37)
where 𝐎𝜃 is the observability matrix of the parameter

Kalman filter. The rank of the observability matrix of the
parameter Kalman filter matched the number of parameters
to be estimated. This means that all parameters are observ-
able and that estimation stability is guaranteed. If the corner-
ing stiffness of each axle has to be estimated individually,
observability is not guaranteed. This is because, although
the observability matrix rank is 2, the number of estimated
parameters is 3. In this study, the cornering stiffness of each
axis was expressed using two cornering stiffness parameters
as shown in (9). Reducing the number of parameters ensures
the observability of the parameter Kalman filter.

In this section, the dual LTV Kalman filter was pro-
posed for estimating simultaneously the sideslip angle and
cornering stiffness. The stability of the proposed estimation
algorithm was verified using its observability matrix. The
proposed algorithm has advantages in terms of computation
time and robustness.

4. SIMULATION RESULTS
4.1. Simulation environment

The simulation was conducted to analyze the perfor-
mance of the proposed algorithm for various situations that
are difficult to implement in actual experiments. The pro-
posed algorithm performance was verified through sim-
ulation using TruckSim as shown in Fig. 10 (a). In the
simulation, the specifications of the articulated vehicle were
the same as in the experiment. Noise with a signal-to-noise
ratio of 5% was added to the sensor signal. A third-order
Butterworth low-pass filter was used to filter out the noise.

�̂�𝛽1, �̂�𝛽2

Measurement
(Vehicle CAN)

Normal force
estimation

State
Kalman filter

Parameter
Kalman filter

Articulated bus �̂�𝐶1, �̂�𝐶2, �̂�𝐶3

TruckSim

�̂�𝛽1, �̂�𝛽2

Sensor data 
with noise

Normal force
estimation

State
Kalman filter

Parameter
Kalman filter

�̂�𝐶1, �̂�𝐶2, �̂�𝐶3

(a)

(b)

Constant 
(𝒂𝒂𝒙𝒙𝒙𝒙,𝒂𝒂𝒙𝒙𝒙𝒙 ≈ 𝟎𝟎)

Figure 10: Block diagram: (a) Simulations (b) Experiments
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Figure 11: Simulation scenario (sine steer, various acceleration
and road surface): (a) Steering angle of the first axle (b)
Velocity of the front unit and rear unit

As a simulation scenario, sine steer with deceleration
and acceleration was selected. The sine steer scenario uses
a sine function to steer. We verified the robustness of the
proposed algorithm through sine steer with acceleration and
deceleration. The steering angle and longitudinal velocity of
the front unit and rear unit of the scenario are as shown in
Fig. 11. Longitudinal acceleration and lateral acceleration
in the simulation are as shown in Fig. 12 (a). In addition, to
evaluate the robustness of the estimation algorithm accord-
ing to road surface changes, the tire-road friction coefficient
(𝜇) was set to 1.0 from 0 to 30 sec and then set to 0.5 after
30 sec.

Because the cornering stiffness can change up to 50%
depending on the road surface, 150% and 50% of the true
cornering stiffness were set as the initial cornering stiffness.
In Figs. 13 and 14, solid lines, dash-dotted lines, and dashed
lines represent the true value, and the estimated values for
the 150% and 50% initial cornering stiffness, respectively.
Estimation performance was analyzed using RMS error for
the sideslip angle and the final error for cornering stiffness.
In addition, the extended Kalman filter was introduced as
an algorithm to compare with the dual LTV Kalman filter.
The extended Kalman filter is provided in Appendix A. In
Figs. 13 and 14, blue lines and red lines show the estimation
results through the dual LTV Kalman filter (DKF) and
extended Kalman filter (EKF), respectively.
4.2. Simulation results: Sine steer with varying

acceleration and road surface
The estimated sideslip angle of the first and rear units

is shown in Fig. 12. The estimated cornering stiffness of
each axle is shown in Fig. 13. The estimation performance
is shown in Tables 3 and 4.

At the beginning of the sideslip estimation, as shown in
Fig. 12, the estimation performance of the sideslip angle
error was not good because of cornering stiffness error.
However, as the cornering stiffness converged to the real
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Table 3
Estimation error of sideslip angle (RMS error) and cornering
stiffness (final error), 𝜇 = 1.0 (0 ∼ 30 seconds).

Error DKF EKF
0.5 × 𝐶𝑡𝑟𝑢𝑒 1.5 × 𝐶𝑡𝑟𝑢𝑒 0.5 × 𝐶𝑡𝑟𝑢𝑒 1.5 × 𝐶𝑡𝑟𝑢𝑒

𝛽1 (rad) 2.61E-03 2.59E-03 2.67E-03 2.72E-03
𝛽2 (rad) 3.43E-03 3.70E-03 3.18E-03 3.85E-03
𝐶1 (%) -2.05 -1.29 -3.63 4.55
𝐶2 (%) 5.77 5.79 4.65 8.64
𝐶3 (%) 1.25 1.82 -0.21 6.93

value, the sideslip angle error decreased also. Estimated
sideslip angles of the first and rear units had a phase lag
effect. This is because the Kalman filter acts as a low-pass
filter. In addition, we verified that the proposed algorithm
was guaranteed to have good performance even with lon-
gitudinal acceleration and mu changes. Compared with the
EKF algorithm, the proposed DKF algorithm had similarly
or slightly better sideslip angle estimation performance. For
estimation error, DKF had an RMS error of 3.07𝐸−03 𝑟𝑎𝑑,
EKF had an RMS error of 3.15𝐸−03 𝑟𝑎𝑑 on average. These
indicate an error of approximately 0.18 𝑑𝑒𝑔.

Estimation results for cornering stiffness are as shown in
Fig. 14, and Tables 3 and 4 show the estimated performance
of the two areas according to 𝜇. As a result of estimation
using the DKF and EKF algorithms, the cornering stiffness
of the three axles converged to the true value. The longi-
tudinal acceleration was greatest at about 20𝑠𝑒𝑐 and 50𝑠𝑒𝑐,
respectively the estimated cornering stiffness values also
oscillated. As such, because the linear tire model was used
in this study, the estimation performance may deteriorate
when large longitudinal acceleration is applied. Moreover,
the true cornering stiffness decreases as the 𝜇 changes after
30 𝑠𝑒𝑐. Accordingly, the estimated cornering stiffness value
also converges to a smaller value. As shown in Fig. 14,
DKF responds faster than EKF when the parameters change
over time. For the entire simulation and all axes, the average
estimation error of DKF was 3.03% and that of EKF was
5.70%.

In Section 4, the performance of the proposed sideslip
angle and the cornering stiffness estimation algorithm was
verified through simulation using TruckSim. The proposed
algorithm for estimation of the sideslip angle and cornering
stiffness showed good performance even for various mu and
longitudinal accelerations. Moreover, the proposed DKF had
slightly better performance and shorter computation time
than EKF did, as shown in Table 5. In addition, 𝐶𝑖 was
observed to change according to 𝜇. In future studies, it is
expected that it will be possible to estimate 𝜇 based on the
estimate of 𝐶𝑖.

Table 4
Estimation error of sideslip angle (RMS error) and cornering
stiffness (final error), 𝜇 = 0.5 (30 ∼ 60 seconds).

Error DKF EKF
0.5 × 𝐶𝑡𝑟𝑢𝑒 1.5 × 𝐶𝑡𝑟𝑢𝑒 0.5 × 𝐶𝑡𝑟𝑢𝑒 1.5 × 𝐶𝑡𝑟𝑢𝑒

𝛽1 (rad) 2.72E-03 2.71E-03 2.69E-03 2.89E-03
𝛽2 (rad) 3.42E-03 3.43E-03 3.41E-03 3.80E-03
𝐶1 (%) 0.82 -0.91 5.13 8.68
𝐶2 (%) 7.10 7.13 8.62 10.34
𝐶3 (%) -1.25 -1.19 2.13 5.05

Table 5
Computation time of estimation algorithms.

DKF EKF

Time (sec) 5.2548E-05 5.9426E-05
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Figure 12: Simulation scenario (sine steer, various acceleration
and road surface): (a) Longitudinal and lateral acceleration of
the front unit and rear unit (b) Tire–road friction coefficient
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Figure 13: Simulation results from estimating the sideslip
angle: (a) Sideslip angle of the front unit (b) Sideslip angle
of the rear unit

<Dasol Jeong et al.>: Preprint submitted to Elsevier Page 10 of 14



Estimation of Sideslip Angle and Cornering Stiffness of an Articulated Vehicle Using a Constrained Lateral Dynamics Model

2

4

6
10

5 (a)

4

6

8

10

12
10

5 (b)

0 10 20 30 40 50 60

Time (s)

2

4

6

8

10
5 (c)

Figure 14: Simulation results from estimating the cornering
stiffness: (a) First axle cornering stiffness (b) Second axle
cornering stiffness (c) Third axle cornering stiffness

5. EXPERIMENTAL RESULTS
5.1. Experimental setup

The proposed estimation algorithm was verified through
experiments performed using an articulated bus called a bi-
modal tram [39], as shown in Fig. 1. The specifications of
the articulated bus are given in Table 1. In the experimental
setup, vehicle controller area network (CAN) data were used
as system measurements as shown in Fig. 10 (b). A third-
order, 5𝐻𝑧 Butterworth low-pass filter was used for noise
filtering. The reference signals were acquired by the RT-
3000. Two RT-3000s were used, one attached to the front
unit and one to the rear unit of the articulated bus. The
purpose of the experiment was to verify the performance of
estimating the sideslip angle and cornering stiffness. In this
section, the results from estimation of the sideslip angle and
cornering stiffness are presented.

Double lane change (DLC) was chosen as the experi-
mental scenario. The DLC is a situation in which the lane is
changed rapidly twice to avoid obstacles. It is also an impor-
tant situation in terms of obstacle avoidance in autonomous
driving. Accurate vehicle states and parameters are essential
to follow the desired path without losing control or becoming
unsafe during the violent lateral movements.

For the experiments, it was difficult to verify the load
transfer model due to the absence of equipment to measure
the normal force of each axis. Therefore, to neglect load
transfer, the longitudinal velocity was fixed at 60 𝑘𝑚∕ℎ as
much as possible. In conclusion, because the load transfer
model was verified through simulation, experiments were
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Figure 15: Experimental scenario (three DLCs): (a) Steering
angle of the first axle (b) Velocity of the front unit and rear
unit

Table 6
Estimation error of sideslip angle (RMS error) and cornering
stiffness (final error), 𝜇 = 0.5 (30 ∼ 60 seconds).

Error DKF EKF
0.5 × 𝐶𝑡𝑟𝑢𝑒 1.5 × 𝐶𝑡𝑟𝑢𝑒 0.5 × 𝐶𝑡𝑟𝑢𝑒 1.5 × 𝐶𝑡𝑟𝑢𝑒

𝛽1 (rad) 4.69E-03 4.20E-03 4.73E-03 4.07E-03
𝛽2 (rad) 2.97E-03 2.49E-03 3.20E-03 2.70E-03
𝐶1 (%) -9.70 -0.34 -6.03 15.53
𝐶2 (%) -2.73 -0.81 -1.85 4.38
𝐶3 (%) -8.52 -0.98 -5.25 12.29

performed to determine the pure sideslip angle without
longitudinal acceleration. The longitudinal velocity and the
front wheel steering angles are shown in Fig. 15.

As with the simulation, 150% and 50% of the actual
cornering stiffness were set as the initial cornering stiffness.
Similarly, notations of the lines in Figs. 16 and 17 are the
same as in Figs. 13 and 14. The estimation performance was
analyzed using the RMS error for the sideslip angle, and the
final estimation error for the cornering stiffness.
5.2. Experimental results: 60km/h DLC

The estimated values and estimation performance for the
sideslip angles are shown in Fig. 16 and Table 6. A sideslip
angle estimation error occurs at the beginning due to the
cornering stiffness error, but after the cornering stiffness
converges to the true value, the sideslip angle shows good
estimation performance. The average estimation errors of the
sideslip angles of the proposed DKF and EKF are 3.53𝐸 −
03 𝑟𝑎𝑑 and 3.68𝐸 − 03 𝑟𝑎𝑑, respectively. The error for each
of these is approximately 0.20 𝑑𝑒𝑔.

The estimated cornering stiffness value and performance
in the DLC scenario are shown in Fig. 17 and Table 6. As
shown in Fig. 17, the cornering stiffness quickly converges
to the true value at the beginning of the first lane change. The

<Dasol Jeong et al.>: Preprint submitted to Elsevier Page 11 of 14



Estimation of Sideslip Angle and Cornering Stiffness of an Articulated Vehicle Using a Constrained Lateral Dynamics Model

-0.02

0

0.02

1
 (

ra
d
)

(a)

0 5 10 15 20 25 30 35

Time (s)

-0.02

0

0.02

2
 (

ra
d
)

(b)

Figure 16: Experimental results from estimating the sideslip
angle: (a) Sideslip angle of the front unit (b) Sideslip angle of
the rear unit
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Figure 17: Experimental results from estimating the cornering
stiffness: (a) First axle cornering stiffness (b) Second axle
cornering stiffness (c) Third axle cornering stiffness

fast convergence speed is an advantage for obstacle avoid-
ance in autonomous driving. For the proposed DKF and
EKF, the average estimation errors of cornering stiffness are
3.85% and 7.56%, respectively. In addition, the computation
time of each algorithm had the same value as the simulation.
The proposed DKF was better in terms of computation time
and estimation performance.

The performance of the proposed estimation algorithm
was verified by performing an experiment using an artic-
ulated bus. Some estimation errors occurred. These were
analyzed and found to be due to model uncertainty, mea-
surement noise, and specification errors. Nevertheless, the
sideslip angle and cornering stiffness were estimated with
sufficient accuracy for vehicle control. In conclusion, it was
verified experimentally that the proposed estimation algo-
rithm simultaneously estimated sideslip angle and cornering
stiffness with high accuracy.

6. CONCLUSION
In this paper, we presented a strategy for estimating the

sideslip angle and cornering stiffness of articulated vehicles.
A constrained lateral dynamics model was proposed and
used in the estimation algorithm. The sideslip angle and
cornering stiffness were estimated simultaneously using a
dual LTV Kalman filter. This paper makes two major contri-
butions. First, unlike previous complex articulated vehicle
models, a constrained model was proposed that uses phys-
ical constraints. The proposed model describes the lateral
dynamics of articulated vehicles with only four states. It
has an advantage in terms of stability, calibration issues,
and computational time. Second, the sideslip angle and
cornering stiffness were estimated simultaneously using a
dual LTV Kalman filter. Moreover, estimation stability was
guaranteed by using its observability matrix. The proposed
estimation algorithm was verified through simulations and
by performing experiments using an articulated bus. The
estimation performance was accurate enough for use in vehi-
cle control applications. The proposed model and estimation
algorithm are expected to contribute to the field of vehicle
safety control and autonomous driving.

Although the proposed algorithm demonstrates good
estimation performance for sideslip angle and cornering
stiffness, there are some limitations. For example, the bicycle
model was used to describe articulated vehicles. This does
not allow consideration of pitch and roll dynamics. High
degrees-of-freedom modeling will be required to overcome
this. However, using complex models comes with poor ob-
servability and demanding computation issues. In future
work, selecting an appropriate model will be the first assign-
ment. In addition, the tire force was modeled using a linear
tire model. Therefore, the proposed algorithm cannot cope
effectively with the combined slip situation. This leads to the
degradation of estimation performance under severe driving
conditions. Therefore, future work will include nonlinear tire
modeling to describe the combined slip effect. This should
be accompanied by estimation of states and parameters ac-
cordingly. The incorporation of longitudinal dynamics mod-
els could ensure observability. We will work to overcome
the limitations and advance the model. This study provides a
cornerstone for higher-level modeling of articulated vehicles
and estimation of their states and parameters.
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A. Extended Kalman filter
The extended Kalman filter estimates augmented states

that combine states and parameters. The symbols are the
same as in Section 3.1.

• Discretization of system dynamics

Let, �̄�𝑘 =
[

𝐱𝑘
𝜃𝑘

]

,𝐮𝑘 = 𝛿(𝑘), 𝐲𝑘 =
[

𝑟1(𝑘) 𝑟2(𝑘) 𝛼(𝑘)
]𝑇 ,

𝐱𝑘 =
[

𝑣𝑦1(𝑘) 𝑟1(𝑘) 𝑟2(𝑘) 𝛼(𝑘)
]𝑇 , 𝜃𝑘 =

[

𝑎(𝑘) 𝑏(𝑘)
]𝑇

�̄�𝑘+1 = 𝑓𝑘(�̄�𝑘,𝐮𝑘) =
[

𝐅𝑘𝐱𝑘 +𝐆𝑘𝐮𝑘
𝟎2×1

]

,

𝐲𝑘 = �̄�𝐱𝑘 =
[

𝐇 𝟎3×2
]

�̄�𝑘
(38)

• Initialization
̂̄𝐱0 =

[

�̂�0
�̂�0

]

,𝐏�̄�,0 =
[

𝐏𝐱,0 𝟎4×2
𝟎2×4 𝐏𝜃,0

]

(39)

• State prediction
̂̄𝐱−𝑘 = 𝑓𝑘( ̂̄𝐱𝑘−1,𝐮𝑘),𝐏−

�̄�,𝑘 = �̄�𝑘𝐏�̄�,𝑘−1�̄�𝑇
𝑘 +𝐐�̄�

where �̄�𝑘 =
𝜕𝑓𝑘(�̄�𝑘,𝐮𝑘)

𝜕�̄�
|

|

|�̄�= ̂̄𝐱−𝑘
,𝐐�̄� =

[

𝐐𝐱 𝟎4×2
𝟎2×4 𝐐𝜃

] (40)

• State correction
𝐊�̄�,𝑘 = 𝐏−

�̄�,𝑘�̄�
𝑇 (�̄�𝐏−

�̄�,𝑘�̄�
𝑇 + 𝐑�̄�)−1

̂̄𝐱𝑘 = ̂̄𝐱−𝑘 +𝐊�̄�,𝑘(𝐲𝑘 − �̄� ̂̄𝐱−𝑘 )
𝐏�̄�,𝑘 = (𝐈 −𝐊�̄�,𝑘�̄�)𝐏−

�̄�,𝑘where �̄� =
[

𝐇 𝟎3×2
]

,𝐑�̄� = 𝐑𝐱

(41)
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