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Abstract: An airbag system has been a fundamental safety equipment for saving lives of
a driver and passengers. This system has some problems even though it is very efficient for
protecting drivers or passengers. After a crash is occurred, airbags must be deployed in a proper
time along the crash situation. But it is tricky to deploy at the exact time depending on the
situations. These tricky situations happen especially for the airbag deployment algorithm using
only the post-crash signals. In general, the airbag deployment algorithm uses airbag control
unit(ACU) X-Y sensor and frontal impact sensor(FIS). And it discriminates crash situations
along these sensors signals. However, during the crash process, these sensors are broken, rotated
or moved. That causes the malfunction of airbag deployment algorithm. In this study, a new
airbag deployment algorithm is developed which is enhanced with a radar sensor signal. Using
pre-crash information from the radar sensor, the algorithm can judge a crash situation before a
real crash is occurred and can revise the post-crash signal.

Keywords: Vehicle dynamics; Sensor fusion; Passive safety; Airbag; Crash algorithm; Precrash
algorithm; Radar.

1. INTRODUCTION

In these days, many safety systems have been developed
to ensure the safety of drivers and passengers and to make
more comfortable driving condition. These systems are
very important because it is linked with lives of drivers
and passengers directly. The safety system is divided
into two classes along the operated moment excepting
for integrated safety system: active and passive types.
The active safety system makes the vehicle avoid from
a crash when it may be occurred. Using high-technology
sensors such as a radar sensor, ultrasonic sensors, and
stereo-vision cameras, it gets the information about the
states of a frontal object. And then it decides the crash
probability and controls the brake or steering system to
avoid a crash before it is occurred (Skutek et al. [2005]
and Jansson et al. [2002]). On the other hand, the passive
safety system operates after a crash is occurred. For
example, seatbelts prevent a driver or passengers from
being thrown to the windshield of a vehicle. Airbags save
lives of a driver or passengers by reducing the impact
from a crash in a serious car accident. However, the two
systems rarely operate linked together even though it can
enhance the safety performance significantly. In the passive
system, only seatbelts use the information of the active
safety system. They are tensioned by the pre-tensioner
in advance when the crash is occurred. The combination
⋆ This work was supported in part by Hyundai Motor Company.

of active safety and passive safety systems can make a
much safer vehicle for a driver and passengers. Especially,
it can provide one way to solve several problems of an
airbag deployment algorithm through the estimation of
the frontal object trajectory using high-technology sensors
(Theisen et al. [2002]).

Airbags must be deployed in a proper time for each crash
situation and must never be deployed except for real crash
situations. However, it is difficult to discriminate crash
situation using only acceleration sensors for crash detec-
tion in the airbag deployment algorithm. These sensors
are easy to be broken or rotated by impact and also
the measured signal accuracy is sensitive to the mounting
location (Stuetzler and Century [2000]). In case of using
erroneous sensor signal, airbags may be deployed or not be
deployed by misjudging crash situations in the airbag de-
ployment algorithm. The confusion of airbag deployment
algorithm in the fuzzy situation of vehicle accidents may
cause inadvertent injures (Park et al. [2006]).

In this paper, a new airbag deployment algorithm is
developed using a radar sensor which is originally equipped
for ACC (Adaptive Cruise Control) systems. Unlike the
conventional airbag deployment algorithm using only FIS
and acceleration sensors in ACU, the proposed algorithm
uses also a radar sensor signal and vehicle states like
yaw rate, steering angle, wheel speeds and, longitudinal
and lateral acceleration. The radar sensor measures the



Fig. 1. Pre-crash system block diagram

distance, the lateral position and the relative speed to
a frontal object. This information is used to estimate
the states of the frontal object roughly. Combining the
information of a frontal object and a host vehicle, the host
vehicle decides the crash probability, crash time, and crash
types. The information can also be used to replace frontal
impact sensors which are used to discriminate crash types.
It can prevent the airbag deployment algorithm from
using the erroneous signal generated by frontal impact
sensors which may be broken or rotated due to an impact.
In section II, the pre-crash algorithm to make the pre-
crash information is discussed. In section III, the airbag
deployment algorithm using a radar sensor is discussed. In
section IV, the proposed algorithm is verified in simulation
to show the appropriateness.

2. PRE-CRASH ALGORITHM

In this section, a pre-crash algorithm for estimating the
trajectory of a frontal object is discussed. The pre-crash
algorithm consists of the host vehicle estimation, radar
modeling, frontal object estimation and crash situation
discrimination. The system block diagram is as shown in
Fig. 1.

2.1 Host Vehicle Estimation

The lateral velocity and longitudinal velocity of a host ve-
hicle are estimated using vehicle dynamics models(Farrelly
and Wellstead [1996] and Kwak and Park [2000]). Car-Sim,
a commercial vehicle dynamics simulation tool, is used for
the vehicle dynamics simulation.

An observer is designed to estimate the lateral velocity
using a modified bicycle model. The bicycle model is
described in Fig. 2. The state-space representation of the
lateral dynamics observer for the modified bicycle model
can be described as

˙̂x = Ax̂ + Bδf + K (y − ŷ) (1)

where,

x =
[

β̂
r̂

]
, y =

[
r

aym

]
, ŷ =

[
r̂
ây

]

Fig. 2. Bicycle model of a vehicle
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where, β̂ is the estimated sideslip angle, r̂ the estimated
yaw rate, r the measured yaw rate, vx the longitudinal
velocity calculated using wheel speed, δf the front steer-
ing angle, ây the estimated lateral acceleration, aym the
measured lateral acceleration, and K the observer gain.

Using the kinematic model of vehicle dynamics, the lateral
acceleration is estimated as follow,

ây = ˙̂
βvx + r̂vx (2)

The error dynamics of this system for a sideslip angle β is
as follow,

˙̃
β = A11(1 − K12vx)β̃ + (A12(1 − K12vx)
−K11 − K12vx)r̃

(3)

where, β̃ = β − β̂ and r̃ = r − r̂.

For simplicity, defining an observer gain K12 as 1
vx

, equa-
tion (3) becomes



Fig. 3. Kinematic model of vehicle lateral motion

˙̃
β = −(1 + K11)r̃ (4)

Other observer gains are defined using a negative pole
placement method.

With the observer gain matrix K defined as follow,

K =


Iz(lfCf − lrCr)p2

2CfCr(lf + lr)2
− 1

1
vx

−2p
m(l2fCf + l2rCr)
Iz(lfCf − lrCr)


=

[
K11 K12

K21 K22

]
for an arbitrary tuning parameter p, equation (1) can be
proven to satisfy an asymptotically stable condition.

Assume that the longitudinal velocity is nearly constant.
Since vehicle sideslip angle is defined as

β =
vy

vx
, (5)

the lateral velocity vy can be computed from vehicle
longitudinal velocity vx and the vehicle sideslip angle β.

Also, an observer based on the kinematic model is designed
to estimate the longitudinal velocity. The kinematic model
is as described in Fig. 3. The state-space representation of
the lateral dynamics observer can be described as

˙̂x = [A(t) − K(t)C(t)]x̂ + Bu + K(t)y (6)

where,

x = [ v̂x v̂y ]T , u = [ axm aym ]T ,

A =
[

0 r(t)
−r(t) 0

]
, B =

[
1 0
0 1

]
, C = [ 1 0 ]

where, v̂x is the estimated longitudinal velocity, v̂y the es-
timated lateral velocity, r the measured yaw rate, axm the
measured longitudinal acceleration and aym the measured
lateral acceleration.

For a time varying system as described in equation (6),
the negative pole placement method cannot be applied to
guarantee an asymptotical stable condition. In this study,
a frozen-time pole placement method is applied to prove
that the observer is asymptotically stable(LeFever [1997]).

The observer gain K defined as follow,

K(t) =
[
2α|r(t)| (α2 − 1)r(t)

]T (7)

where, α is the tuning parameter, r the yaw rate.

Table 1. Radar sensor specifications

Measurement Range Resolution Unit

Distance 1 - 200 0.1 [m]
Lateral Position -20 - 20 0.1 [m]
Relative Speed -255 - 88 1 [m/s] [km/h]
Detection Angle -30 - 30 0.1 - 1 [deg]

For an arbitrary tuning parameter α, equation (6) can be
made to satisfy the asymptotically stable condition.

A Lyapunov function is defined using the error dynamics
of this model as follow,

V (vx, vy) =
α2ṽx + ṽy

2
≥ 0,∀x = [ṽx, ṽy] ∈ R2 (8)

where, ṽx = vx − v̂x and ṽy = vy − v̂y.

Since,
˙̃vx = −2α|r(t)|ṽx + r(t)ṽy (9)

˙̃vy = −α2r(t)ṽx (10)

the time derivative of V is described as,
dV (t, x)

dt
= −2α3|ṙ(t)|ṽ2

x < 0,∀x = [ṽx, ṽy] ∈ R2 (11)

Therefore, the system is proved to be asymptotically stable
by applying LaSalle’s theorem in equations (8) to (11).

2.2 Radar Modeling and Signal Processing

The radar sensor is modeled using sensor specifications
and the real CAN data. This information is based on a
radar sensor equipped for ACC system in a luxury car. The
sensor specifications are as described in Table 1. A sensor
fusion method is applied to reduce the effect of phase lag
and to enhance the poor resolution of the radar signals.
This method uses the physical relation between distance
and relative speed measured by different methods. The
reliability of two signals is compared using resolution and
tolerance of signals.

(1) Resolution
- distance: 0.1m/ 0.02s
- relative speed: 1m/s(=0.02m/0.02s)/ 0.02s

(2) Tolerance
- distance: ±0.25m/ 0.02s
- relative speed: ±0.5km/h=±500m/3600s/ 0.02s

In this paper, the low reliability of the distance signal is
improved using the high reliability of the relative speed
signal. The state-space representation of the distance ob-
server is described as follow,

˙̂x = Lvm + K(xm − x̂) (12)

where, xm is the measured distance, vm the measured
relative speed, x̂ the estimated distance, and L, K tuning
parameters.

The radar sensor provides the information of the frontal
object to the host vehicle. The information includes

(1) existence of a frontal object
(2) distance to a frontal object
(3) lateral position of a frontal object
(4) relative speed of a frontal object



Fig. 4. Rectangular coordinate system based on a host
vehicle

The angle is computed using the distance and the lateral
position of the frontal object. The time-to-crash tTTC

can be estimated from the relation between distance and
relative speed.

2.3 Frontal Object Estimation

The movement of the frontal object is tracked using the
information of host vehicle and the radar signals. The new
rectangular coordinate system based on the host vehicle is
proposed as shown in Fig. 4. The origin of this coordinate
is located at the radar sensor mounted at the center of
the frontal grill. The moving distance of the host vehicle
for each direction means the shifted distance of the origin
in the predefined coordinate system. It is computed as
follows,

dx = x(k) − x(k − 1) = v̂x · Ts (13)

dy = y(k) − y(k − 1) = v̂y · Ts (14)

where, Ts is sampling time of CAN data, v̂x the estimated
longitudinal velocity, and v̂y the estimated lateral velocity.

Since the position of the frontal object and the origin
shifting are known, the heading angle and the lateral
position of the frontal object at the moment of a crash can
be estimated before the actual crash is occurred. Advance
of the frontal object and host vehicle during the sampling
time period is as described in Fig. 5. The related equations
are as follows,

̸ aheading = arctan
[

yt(k) − (yt(k − 1) − dy(k))
xt(k) − (xt(k − 1) − dx(k))

]
(15)

xt(tTTC) = ax · tTTC + bx (16)

yt(tTTC) = ay · tTTC + by (17)

where,

ax = −xt(k − 1) − xt(k) − dx(k)
Ts

,

bx = xt(k − 1) − (dx(k) + dx(k − 1)) ,

ay = −yt(k − 1) − yt(k) − dy(k)
Ts

,

by = yt(k − 1) − (dy(k) + dy(k − 1))

.

Fig. 5. Movement of the frontal object on the defined
coordinate system

Table 2. Classifying crash types

|yt(tTTC)|

|̸ aheading|
0 ∼ 0.25 · w ∼ 0.45 · w ∼

0.25 · w 0.45 · w 0.5 · w
0 ∼ 10 deg frontal offset oblique

10 ∼ 90 deg oblique oblique oblique

where, index k means the present time, k − 1 one sample
time ago, tTTC time to crash, Ts sampling time of CAN
data, and xt, yt the frontal object positions.

2.4 Crash Situation Discrimination

The crash situation is decided using the estimated infor-
mation of the frontal object based on the movement of the
host vehicle. The combination of time-to-crash tTTC and
lateral position at the crash time yt(tTTC) is used to decide
the crash probability. It is represented as Crash Flag which
is to set in case the crash will be occurred and otherwise
reset. The combination of heading angle ̸ aheading and
the lateral position at the crash time yt(tTTC) is used to
discriminate the crash type. The crash type is divided into
three cases which are frontal, offset and oblique crashes.
It depends on the position and angle of the frontal object.
In this study, a possible crash zone is defined to judge
whether the crash is occurred. The crash flag is set if the
following inequality conditions are satisfied. It means the
host vehicle cannot avoid a crash.

tTTC ≤ 0.1sec and |yt(tTTC)| ≤ 0.5 · w (18)

where, w is the width of a host vehicle.

In equation (18), a threshold of time-to-crash is deter-
mined by the response characteristic of a host vehicle. The
fastest yaw rate responding time of the host vehicle to a
step steering input is measured to be 0.1sec. The driver
cannot avoid the crash even if any actions are taken in
this time period. The crash types are classified into three
cases as shown in Table 2.

3. INTEGRATED AIRBAG DEPLOYMENT
ALGORITHM

In this section, a new airbag deployment algorithm is
discussed. Unlike the conventional airbag deployment algo-
rithm, this algorithm uses not only the acceleration signals



Fig. 6. Integrated airbag deployment algorithm

in ACU, but also the pre-crash information like crash flag,
time-to-crash, and crash type. The integrated algorithm is
as described in Fig. 6.

The pre-crash information is activated when the start
flag in the crash algorithm and the crash flag in the
pre-crash algorithm are all set. Airbags are deployed
according to the crash type discriminated by the pre-
crash algorithm. In case of the crash when the crash
flag is not activated, the airbag deployment algorithm
is operated as a stand-alone system using the sensors in
ACU. It prevents the malfunction of the airbag deployment
due to the fault of the radar sensor. Using the pre-crash
algorithm, the misjudgment of the crash situation owing
to the erroneous signals of the broken or rotated frontal
impact sensors can be prevented. It is as described in Fig.
7. Even though the signals of FIS(Front Impact Sensors)
must be nearly identical in case of the frontal crash as
shown in FRT#5(FRonT Crash), the signal can be faulty
as the case of FRT#6. This causes the misjudgment
of the airbag deployment algorithm; the crash type is
determined as oblique crash. As a result, the time of
airbag deployment is delayed and it cannot satisfy the
required-time-to-fire (RTTF) condition. However, using
the pre-crash information this problem can be solved easily
because the crash type is defined in advance before the real
crash is occurred.

4. SIMULATION RESULTS

Series of simulations are carried on to verify the perfor-
mance of the developed integrated airbag deployment algo-
rithm. Car-Sim, a commercial vehicle dynamics simulation
tool is used for this work. Twelve difference crash cases are
simulated. They are standard crash test modes including
the test modes of NHTSA and Euro NCAP. The integrated
airbag deployment algorithm is compared with one of the
conventional algorithm using only acceleration sensors in
ACU. The simulation results are as shown in Fig. 8, 9, 10
and 11.

In the lower region of the diagonal line, airbags are de-
ployed faster than RTTF. In the upper region, airbags
are deployed slower than RTTF. This case is especially
dangerous because airbags can strike a drooping down
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Fig. 7. Normal(FRT#4) and faulty(FRT#5) crash sensor
signals during frontal crashes
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Fig. 8. Conventional algorithm: frontal(FRT) collisions

head. As the case of FRT#2 in Fig. 8 shows, airbags of
the conventional algorithm are deployed twice even though
they must be deployed only once. Also the airbags can be
deployed too fast in case of the oblique crash as shown in
Fig. 10. As Fig. 9 and 11 show, the integrated algorithm
satisfies RTTF more precisely than the conventional algo-
rithm do. It shows that the pre-crash information is very
useful to improve the accuracy of the airbag deployment
algorithm.
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Fig. 9. Integrated algorithm: frontal(FRT) collisions
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5. CONCLUSION

In the airbag system, the most serious problem is occurred
when the erroneous frontal sensors are used. It makes the
airbag deployment algorithm misjudge the crash situation.
It can even cause a number of inadvertent injuries if the
airbags are deployed in no-fire conditions or not deployed
in fire conditions. The conventional airbag deployment
algorithm has limits like this because they use only ac-
celeration signals measured after a real crash is occurred.

In this study, the radar sensor in ACC system and other
vehicle state sensors are used as one way to solve this
problem. It allows the judgment of the crash situation
before the real crash is occurred and airbags are deployed
in a proper time. The performance of the integrated airbag
deployment algorithm has been verified through computer
simulation for standard crash test modes using real airbag
sensor data. The simulation results show that the pre-
crash information obtained and processed using a radar
sensor and vehicle state sensors is very useful to enhance
the accuracy of the airbag deployment algorithm. The dis-
crimination of the crash situation is very important in the
airbag deployment algorithm since it is linked directly with
RTTF. The integrated airbag deployment algorithm satis-
fies RTTF for all crash types. Therefore, the performance
of airbags improved significantly. In conclusion, this study
shows that the integrated algorithm can play a prominent
role in enhancing the accuracy of the airbag deployment
algorithm using only the vehicle sensors existing for other
control purposes.
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