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Abstract: Advanced automatic transmissions in recently developed vehicles are generally equipped with
the servo-actuated clutch system. In that system, the normal force or the clutch torque control of electric
motor type actuators is quite difficult because the measurement of the clutch torque is impractical in
the real environment. Particularly, the system studied in this paper is equipped with an actuator utilizing
self-energizing effect to reinforce the clutch force with much less actuation energy. Since such a system
includes torque amplification mechanism, some parametric uncertainties in the clutch torque controller
are also amplified. Adaptive sliding mode control scheme for a robust clutch control is proposed to ensure
the smooth engagement without torque measurement. The friction coefficient of the clutch surface is
estimated to control the engagement torque properly.

Keywords: Adaptive control, Automotive control, Force control, Servomotor actuators, Parameter
estimation

1. INTRODUCTION

The clutch plays an important role in power transmission from
the engine to the wheel of automotive systems. To meet some
requirements such as driving comfort, the clutch operation
should be performed accurately. In manual transmission (MT)
vehicles, the clutch engagement can be determined by driver’s
own intention and skill alone so that the shift feeling is not an
issue. Automatic Transmission (AT) does not require signifi-
cant consideration of clutch comfort because torque converters
bring about smoothed operation although there is some energy
loss. On the other hand, recent progress in advanced trans-
mission technology such as Automated Manual Transmissions
(AMT) or Dual Clutch Transmissions (DCT) makes clutch con-
trol strategy important especially when a dry friction clutch is
adopted. In such systems, the clutch and the gear shifting mech-
anism are servo-controlled by electrical or hydraulic actuators.

Since undesirable clutch slip and over-actuation may lead to the
degradation of engagement quality, the clutch torque has to be
controlled to ensure the engagement operation without slip and
satisfy driver’s comfort (Kim and Choi (2010)). Moreover, it is
especially problematic to control the engagement of dry clutch
systems due to the discontinuous characteristic compared with
wet clutches.

Various kinds of methods have been proposed for dry clutch
engagement. In Serrarens et al. (1999), the dynamic behav-
ior of automotive dry clutches and a decoupling proportional-
integrative controller for engine and torque control. In Heijden
et al. (2007), Garofalo et al. (2002), Dolcini et al. (2005), and
Glielmo and Vasca (2000), optimal control approaches are pro-
posed by the development of a linear quadratic regulator and a
model predictive control. Nonlinear control method based on
backstepping technique (Fredriksson and Egardt (2000)) and
a hierarchical approach consists of decoupled feedback loops

⋆ Corresponding author

have been proposed for gearshift control (Glielmo et al. (2006)),
respectively. Several researches introduced above are based on
the assumption that the clutch actuator works well without any
limitation. But, actuator dynamic behavior and physical limita-
tions are very important since it is critical to determine transient
response during the clutch engagement. In order to consider the
actuator dynamics, the hydraulic component models for clutch
positioning system are derived as well as driveline models in
Horn et al. (2003), Lucente et al. (2007), and Montanari et al.
(2004). On the other hand, This paper provides the develop-
ment of the normal force and the clutch torque controller con-
sidering actuator dynamics. The clutch actuator system taken
into account in this research is based upon the self-energizing
mechanism suggested by Kim and Choi (2011). Compared with
conventional clutch actuators, it has the advantage of reducing
actuation energy significantly by reinforcing the engagement
force. However, since there are uncertainties in the actuator dy-
namic model and the clutch torque parameters, the controllers
designed for general purpose can suffer the degradation of per-
formance.

In the self-energizing clutch actuator system, where the clutch
torque is amplified by self-energizing mechanism, parametric
uncertainties are also amplified. Thus, the control performance
can be deteriorated. To solve this problem, a sliding mode
controller is designed which is robust to modeling uncertainties.
Also an adaptation scheme to estimate the friction coefficient of
the clutch surfaces is developed.

2. DYNAMIC MODEL

2.1 Full System Model

In this section, the dynamic models for the clutch actuator
with self-energizing effect are presented to describe essential
dynamics of physical systems. The overall system can be di-
vided into two parts: an electric motor and a mechanical clutch
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Fig. 1. Schematic of the equivalent clutch actuator model

subsystem. It will be used to design a controller to track the
normal force and therefore the torque applied on the friction
surface for the engagement or disengagement of the clutch.

The motor electric and mechanical equations are as follows,
respectively.

Lm

dim

dt
+Rmim + kmωm = u (1)

Jm

dωm

dt
+Tf m(ωm,zm)+TL = Tm (2)

In (1), u is the voltage applied to the motor, im the motor
current, Rm the resistance, Lm the inductance, and km the back
electromotive force constant. In equation (2). Jm is the motor
moment of inertia, ωm the rotor speed, TL the load torque, and
Tm = kt im the motor torque. The nonlinear motor friction torque
Tf m is modeled by the LuGre friction model in Wit et al. (1995)
as

Tf m(ωm,zm) = σ0mzm +σ1mżm +σ2mωm

dzm

dt
= ωm −

|ωm|

gm(ωm)
zm (3)

σ0gm(ωm) = fcm +( fsm − fcm)e
−(ωm/ωms)

2

where, z denotes the internal friction state, gm the nonlinear
function for the stribeck effect of dry friction, fcm the Coulomb
friction level, fsm the static friction level, and ωms the stribeck
velocity. In (3), σ0m, σ1m, and σ2m are unknown friction pa-
rameters that represent bristle stiffness, bristle damping, and
viscous coefficient, respectively.

The fixed plate shown in Fig. ?? is interposed between the
clutch cover and the friction disks in order to adjust the axial
displacement of the actuation plate while rotating at the same
time. In free space, the rotational equation of motion for the ac-
tuation plate without the clutch engagement torque is described
as

Jaω̇a = Ta −Tf a(ωa,za) (4)

where, Ja is the moment of inertia of the actuation plate. Since
the pinions are constrained by two supporting plates and the
pinion guide, the motion of them coincides with the actuation
plate. Thus, it is reasonable to assume that the inertia of the
pinions is lumped into that of the actuation plate. In (4), the
frictional torque Tf a on the worm shaft is represented by

Tf a(ωa,za) = σ0aza +σ1aża +σ2aωa

dza

dt
= ωa −

|ωm|

ga(ωa)
za (5)

σ0ga(ωa) = fca +( fsa − fca)e
−(ωa/ωas)

2

where, all parameter notations are the same as (3) with the use
of the subscript ’a’ instead of ’m’.

The equivalent torsional stiffness ka of the mechanical link
between the lever and the worm shaft can be represented as
a series of the torsional stiffness of the ball-screw kbs and the
lever kl as shown in Ebrahimi and Whalley (2000).

ka =

(

1

kbs

+
1

kl

)−1

(6)

Then, the driving torque Ta is transferred from the motor to
the mechanical actuator due to an elastic deformation with the
equivalent torsional stiffness ka as

Ta = ka

(

θm

Ng

−θa

)

(7)

where, θa is the actuator angular position, and Ng the equivalent
conversion ratio between the motor and the actuator angular
position. Since the load torque TL in the motor dynamics (2) is
the driving torque Ta in (4) and (7), the following relationship
is satisfied, i.e., TL = Ta/Ng.

When the clutch is in contact with the surface for engagement
operation, the clutch torque and the reinforcement torque is
added in (4) as shown in Fig. ??. Therefore, the equation of
motion for the actuation plate in the slip phase is represented
by

Jaω̇a = Ta +Tc −2rpFp sinα −Tf a(ωa,za) (8)

where, Tc is the clutch torque, Fp the reaction force on the
rack and pinion surface, rp and α are the radius of bevel gear
position and the inclined surface angle, which is fixed and
engraved on the actuation plate and the fixed plate, respectively.
For the positive slip phase, the clutch torque Tc is obtained as

Tc = µRcFn (9)

where, µ is the dry friction coefficient, Rc the effective clutch
radius, and Fn the applied normal force. Since there is rack
and pinion mechanism, the relationship between Fp and Fn is
determined by the inclined surface angle α as shown in Fig. ??.
As a result, Fp is:

Fp =
Fn

cosα
. (10)

Note that the third term at the right hand side in (8) is related
to self-energizing effect. The existence of rack and pinion
mechanism can induce the reaction force Fp on the surface of
the actuation plate and the fixed plate with respect to the applied
normal force Fn.

The axial displacement of the actuation plate can be calculated
through the geometric relation as shown in Fig. ??. It is there-
fore given by

xp = 2rpθa tanα (11)

where, θa is the angular position of the actuation plate. The
normal force applied on the friction disk is

Fn = kpxp = 2kprpθa tanα (12)

where, kp is the stiffness of the actuation plate. It is assumed
that the normal force Fn is proportional to the actuator stroke xp

in axial direction.
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According to (9), (10), and (12), then the actuator dynamics (8)
in the positive slip phase can be rewritten as

Jaω̇a = µRcFn +Ta −2rp tanαFn −Tf a(ωa,za). (13)

The feasibility of the system model described in this section is
partially discussed in Kim and Choi (2011).

2.2 Simplified Model for Control

The dynamic model of the clutch actuator introduced in the
previous subsection is not useful for the purpose of control
due to its complexity. In the subsequent control development,
sliding mode control scheme will be employed. Since higher
system order may cause increased dimensionality of the sliding
hyperplane, it results in the degradation of control performance
in practical point of view if the relative order of the system
model for control is more than second order.

It is necessary to make some hypothesis to simplify the actuator
model. Some reasonable assumptions are:

a) the electrical dynamics of the DC motor is faster than the
mechanical motions.

b) the bandwidth of the actuation plate is very high, and the
rotating angle of it is very small

The first assumption means that the inductance of the DC motor
could be neglected due to the relation Lm ≪ Jm (Utkin et al.
(1999)). Thus, the dynamic equation (1) is converted into an
algebraic equation as follows.

u = Rmim + kmωm (14)

Also, the rotating motion of the actuation plate is relatively
small compared with that of the motor. The assumption is valid
if the stiffness of the actuation plate is very large. Therefore,
the dynamics of the actuation plate is negligible. Consequently,
equation (13) can be rewritten as

2rpFn tanα = Ta +µRcFn (15)

Combining (7) and (15) gives a single equation for the normal
force:

Fn =
ka (θm/Ng −θa)

2rp tanα −µRc

(16)

The expressions for the normal force shown in (12) and (16) are
combined into the relationship between the angular position of
the motor and that of the actuation plate.

θa =
ka

Ng(kb + ka)
θm (17)

where the auxiliary function kb is defined for notational sim-
plicity as

kb , ξ (µ)(2rpkp tanα) = ξ (µ)kpβ , (18)

ξ (µ), (2rp tanα −µRc) = (β −µRc), (19)

β , 2rp tanα. (20)

Substituting equation (17) in (16) derives an equation for the
relationship between the normal force and the motor position.

Fn =
ka

ξ (µ)

[

kb

Ng(kb + ka)

]

θm (21)

The above equation is applied to convert desired normal force
to desired motor position which will be used in the following
section. The steady-state friction model can be obtained by

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Normal Force

time (s)

F
n
 [

N
]

 

 

F
nd

F
n

Fig. 2. Normal force control : sliding mode control with
smoothed trajectory (Dash-dotted: smoothed reference ,
Solid: simulation)

setting ż = 0. Accordingly, the following linear-in-parameters
model depending only on the velocity is given by

T ′
f (ωm) = φ1sgn(ωm)+φ2ωm (22)

φ1 , σ0g(ωm), φ2 , σ2

where the detailed simplification process can be found in Wit
et al. (1995). Although, the worm shaft friction is neglected
in (15), it may affect the motor rotation so that the newly
defined variables φ1 and φ2 include this frictional effect. Thus,
a simplified model can be derived with respect to the motor
states. Combining equation (2), (14), (15), (17), and (22) yields

ω̇m +qωm +T ′
f (ωm)+ rθm +d = pu (23)

where, the auxiliary functions are

p ,
kt

JmRm

, (24)

q ,
1

Jm

(

ktkm

Rm

)

, (25)

r ,
kakb

JmNg
2(kb + ka)

= w

(

kb

kb + ka

)

, (26)

w , ka/(JmNg
2), (27)

T ′
f (ωm) = Tf (ωm)/Jm denotes the nonlinear friction model

with uncertain parameters, and d the modeling uncertainty,
respectively. Actual values of friction parameters are unknown
but bounded to a range of known values to be estimated.

As a result, the order of the actuator system can be reduced
to the second order as shown in (23). Consequently, the above
equation is appropriately simplified for the purpose of con-
troller design. It should be noted that this simplified model will
only be used to design a controller. Thus, the plant model in
the previous subsection remains in order to represent the entire
system dynamics.

3. NORMAL FORCE CONTROL DEVELOPMENT

3.1 Sliding Mode Control

In order to ensure the clutch engagement, a sliding control law
is proposed in this section. It is required to choose a sliding
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surface to derive the control command. Although the goal of
the control is to track the desired normal force for the appro-
priate clutch engagement operation, the normal force cannot
be directly chosen as an error variable because measuring it is
quite difficult or too costly. Moreover, it is even more expen-
sive to measure the clutch torque in commercial vehicle using
torque transducers. On the other hand, a feedback signal for
the controller obtained from motor position can be measured
easily by using an encoder. Therefore, the motor position error
is chosen to define a sliding surface instead of the normal force
or the clutch torque. Algebraic manipulation for converting
normal force into motor position has been introduced in (21).
It is assumed that the motor position is measurable, and its
speed is obtained from numerical differentiation of the position
signal. Define the desired motor position profile θmd , the motor

position error θ̃m = θm−θmd , and its derivative ˙̃θm = θ̇m− θ̇md ,
then a sliding surface is defined as

S , ˙̃θm +λ θ̃m (28)

where, λ is a constant design parameter. To make the surface
attractive, the desired dynamics of the motor position error is
defined as

Ṡ =−KS (29)

where K is a design parameter that determines the convergence
speed of the surface to zero. The time derivative of the surface
is

Ṡ = ˙̃ωm +λω̃m = ω̇m − ω̇mr (30)

where ω̃m = θ̇m − θ̇md , and ω̇mr = ω̇md − λω̃m. Substituting
the actual dynamics (23) into (30) yields the open-loop error
system as

Ṡ = pu−qθ̇m −T ′
f (θ̇m)− rθm −d − ω̇mr (31)

The motor voltage u can be chosen as the control input for the
entire actuator system. Thus, the control input u can be derived
as

u =
1

p

(

q̄θ̇m + T̄ ′
f + rθm + d̄ + ω̇mr −KS−Msgn(S)

)

(32)

where, q̄, T̄ ′
f , and d̄ denote the nominal values of the parameters

q, T ′
f , and d, respectively. And, M is a switching gain that will

be determined later. In order to confirm the performance of
the controller (32), the simulation is performed as shown in
Fig. 1. Considering the limitation of the actuator bandwidth, a
smoothed trajectory is chosen as a desired profile of the normal
force. Fig. 1 shows a desirable performance with no overshoot
and no steady-state error. The settling time is also short enough
for the clutch control.

3.2 Friction Coefficient Adaptation

Although the controller designed for tracking the normal force
applied on the clutch disk looks good enough to achieve the ba-
sic objective of a clutch system, parametric uncertainty should
be taken into account in order to guarantee the robustness of the
developed control system.

Due to the self-energizing nature of the developed system, small
parametric uncertainty can cause the significant degradation of
control performance such as a large steady state error or tran-
sient overshoot. Since the friction coefficient µ varies with the
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Fig. 3. Force tracking error [N] of sliding mode control in the
presence of parametric uncertainty µ (µp 6= µc)

operating temperature and the material properties, slip behavior
of both sides of the clutch during engagement/disengagement
operations cannot always be ideal.

To illustrate this behavior, the following example is given as
follows. Let µp denote the friction coefficient of the real plant
and µc one used in control model. If µc is set to a nominal
value 0.26 and µp is different values (i.e. 0.22, 0.34, and 0.45),
this results in steady-state error of tracking the normal force in
spite of large feedback gain K as shown in Fig. 2. The reason
for this error is that the value of friction coefficient used in the
controller is fixed at a nominal value. Furthermore, because the
normal force of the clutch is proportional to the stiffness of the
actuation plate according to section 2, small error between them
can cause a large error in the normal force as indicated in Fig.
2.

To solve this problem, adaptive control of friction coefficient
µ will be designed. This strategy is motivated by the fact that
the variation of the friction coefficient is related to the tracking
error of the clutch slip speed. The control law (32) suggested in
the preceding section is redefined with parametric uncertainty
as

u =
1

p
(u0 +ua −KS−Msgn(S)) (33)

where

u0 = q̄θ̇m + d̄ + ω̇mr,

ua = φ̂1sgn(θ̇m)+ φ̂2θ̇m + r̂θm,

r̂ = w

(

k̂b

k̂b + ka

)

, (34)

k̂b , ξ (µ̂)kpβ . (35)

Here, r̂ includes an erroneous parameter k̂b which is a function
of µ̂ and other system parameters. The closed-loop system is
rewritten by substituting equation (33) into (31) as

Ṡ =−q̃θ̇m − φ̃1sgn(θ̇m)− φ̃2θ̇m − r̃θm − d̃ −KS−Msgn(S)
(36)

where, q̃ = q− q̄, φ̃i = φi− φ̂i (i = 1,2), r̃ = r− r̂ and d̃ = d− d̄
are the errors between the real and the nominal parameters. As
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shown in (34), since r̂ is a function of various parameters in-
cluding parameter uncertainty µ , this problem can be classified
as a nonlinearly parameterized system.

Based upon above definition of r, a modified adaptation law is
derived as

˙̂r =−εθmS (37)

where ε is a positive constant adaptive gain. Note that r̂ can
be assumed as a slowly varying parameter so that the time
derivative it to be ˙̃rn = − ˙̂rn. In addition, adaptation laws for
compensating nonlinear friction in the system are given with
initial conditions as

˙̂φ1 =−δ1sgn(θ̇m)S, φ̂1(0) = fs/Jm, (38)

˙̂φ2 =−δ2θ̇mS, φ̂2(0) = bm/Jm (39)

where, δ1 and δ2 are design parameters for determining adapta-
tion rate.

3.3 Stability Analysis

Theorem 1. Under the desired trajectory θmd is sufficiently
bounded and smooth (i.e. θmd , θ̇md , θ̈md ∈ L∞), the controller
given by (33), (37), (38) and (39) ensures the asymptotic
tracking of the normal force control system in the sense that

θ̃ → 0, µ̃ → 0 as t → ∞

provided the positive adaptive gains ε , δ1, and δ2 are properly
chosen, and the switching gain M is selected according to the
following condition

|M| ≥ |q̃θ̇m + d̃|.

Proof. Let V ∈R denote a positive definite Lyapunov function
candidate

V =
1

2
S2 +

1

2ε
r̃2 +

1

2δ1
φ̃ 2

1 +
1

2δ2
φ̃ 2

2 , (40)

and the time derivative of (40) is given by

V̇ = SṠ+
1

ε
r̃ ˙̃r+

1

δ1

˙̃φ
2

1 +
1

δ2

˙̃φ
2

2. (41)

Using (33), and (36), it is rewritten as

V̇ = S[−q̃θ̇m − φ̃1sgn(θ̇m)− φ̃2θ̇m − r̃θm − d̃ −KS−Msgn(S)]

−
1

ε
r̃ ˙̂r−

1

δ1
φ̃1

˙̂φ1 −
1

δ2
φ̃2

˙̂φ2

=−KS2 −S
[

q̃θ̇m + d̃
]

+M|S|− r̃

[

θmS+
˙̂r

ε

]

−φ̃1

[

Ssgn(θ̇m)+
˙̂φ1

δ1

]

− φ̃2

[

θmS+
˙̂φ2

δ2

]

(42)

where the design parameter M is selected to satisfy the in-
equality |M| ≥ |q̃θ̇m + d̃|. By utilizing (37), (38), and (39), the
following inequality is obtained as

V̇ ≤−KS2. (43)

Therefore, the time derivative of V̇ is negative semi-definite.

Since the purpose of this scheme is the good estimation of the
friction coefficient µ̂ , it is required to derive an equation to
estimate µ . The time derivative of r̂ can be obtained from (34)
as,

˙̂r = w
d

dt

(

k̂b

k̂b + ka

)

= w
ka

(k̂b + ka)2

˙̂
kb. (44)

The equation for
˙̂
kb is rewritten by

˙̂
kb =

(k̂b + ka)
2

wka

˙̂r (45)

kb is defined as a function of µ in (18) for the notational
simplicity. The estimated versions of kb and its time derivative
are:

k̂b = ξ̂ (α, µ̂)(kpβ ) (46)

˙̂
kb =−(kpRcβ ) ˙̂µ. (47)

Combining (45) and (47) yields

˙̂µ =−
(k̂b + ka)

2

wkakpRcβ
˙̂r. (48)

Finally, the adaptation law in terms of µ̂ is given by

˙̂µ =−
{ξ̂ (µ̂)(kpβ )+ ka}

2

wkakpRcβ
˙̂r. (49)

Generally, the control system property of interest is asymptotic
stability. In (42), r̃, and S are bounded. A simple calculation
shows that V̈ is also bounded. Therefore, Barbalat’s Lemma can
be applied (Slotine and Li (1991)). It subsequently implies

lim
t→∞

r̃ = lim
t→∞

S = 0. (50)

Therefore, r̂ → r, and finally k̂b → kb. It means that the un-
known parameter µ̂ converges to an actual parameter µ when
the time goes to infinity. Another condition to check for the
parameter convergence is the persistence of excitation. The
adaptation law suggested is valid only if the persistence of
excitation (PE) condition is satisfied. Since the motor angular
position keeps θm > 0 or θm < 0, the PE condition is satisfied.

3.4 Simulation Results

The results of adaptive sliding mode control are shown in Fig.
3a, where the tracking performance is quite robust especially
for the friction coefficient of the clutch disk. There are no
steady-state errors as shown in Figure 3b. In these simulations,
the plant parameters are set to 0.22, 0.26, 0.34, and 0.45
to testify robustness of the controller. The initial value of
the adaptive law is fixed in its nominal value of 0.35 for
comparison. The results in Fig. 4 show that µ̂ converges to the
real parameter µp which is set to corresponding values in each
case. Compared with Fig 2, the normal force errors converge
to zero in spite of friction coefficient variations. These results
show that adaptation algorithm suggested in (32), (37), (38),
and (38) further improves the performance of the sliding control
law.

4. CONCLUSIONS

In this paper, a control scheme for the clutch actuator system
with self-energizing mechanism is developed based on sliding
mode control. Since the variation of the friction coefficient
may lead to undesirable large tracking error due to the self-
energizing effect, it should be taken into account to ensure
the robust control during fast engagement of the clutch. The
proposed adaptation algorithm considers not only parametric
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Fig. 4. Adaptive sliding mode control: (a) µ̂ Parameter adaptation (µp 6= µc). (b) Fn −Fnd with µ̂ Parameter adaptation (µp 6= µc).
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Fig. 5. Friction coefficient adaptation : µp =
0.22,0.26,0.34,0.45(dashed), and µ̂c0 = 0.35(nominal
value, solid)

uncertainties but also clutch engagement operations. The simu-
lation results show that performance of the sliding controller
can be improved significantly when it is combined with the
adaptation algorithm. In future works, experimental validation
is needed to verify the control performance.
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